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1 INTRODUCTION

Storm surge resulting from mid-latitude weather sys-
tems have the potential to cause considerable damage
and fatalities as a result of coastal �ooding (Lavery and
Donovan, 2005; Lescrauwaet et al., 2006; Jonkman
and Vrijling, 2008). The real-time, accurate prediction
of storm surge is of primary importance in �ood fore-
casting and warning systems. Whilst existing deter-
ministic, hydrodynamic forecast models are highly suc-
cessful at predicting storm surge (for example, Hors-
burgh et al. (2008)) the development of new models
and further improvement to existing models is expen-
sive. Therefore, opportunities exist for alternative, com-
plementary approaches to improve upon predictive ac-
curacy and our understanding of the system dynamics.

Arti�cial intelligence (AI) and probabilistic tech-
niques have been applied to the real-time or hindcast
prediction of water level including meteorological ef-
fects with some success. For example, arti�cial neural
network (ANNs) models have been applied to this prob-
lem in the Gulf of Mexico (Tissot et al., 2001; Cox et al.,
2002; Tissot and Zimmer, 2007), Western Australia
(Makarynskyy et al., 2004), Taiwan (Lee, 2008b,a),
the Bohai Sea (Liang et al., 2008) and the North Sea
(Ultsch and Röske, 2002; Prouty et al., 2005). A
real-time forecast system now successfully operates
in the Gulf of Mexico (Tissot et al., 2008). Alter-
native approaches have included Support Vector Ma-
chines (SVMs) applied to the Adriatic Sea (Canestrelli
et al., 2007) and Taiwan (Rajasekaran et al., 2008); Ge-
netic Programming (GP) applied to the Gulf of Mex-
ico (Charhate and Deo, 2008); and, chaos and fuzzy
Naive-Bayes models applied to the North Sea (Siek
et al. (2008) and Randon et al. (2008) respectively).

For mid-latitude, coastally-trapped storm surges in
shelf seas with moderate tidal ranges, such as those
that occur in the North Sea, Adriatic Sea and Sea of
Azov, it has been shown that surges tend to cluster on
the rising limb of the tide due to a small phase shift in
turn driven by the change in water depth due to the
meterologically-driven surge (Horsburgh and Wilson,
2007). Storm surge predictions by data-driven tech-
niques, such as those referred to, tend to use the resid-
ual water level record, which displays this clustering
and may include a leaked tidal component in the sig-
nal resulting from non-linear interactions. It is therefore
proposed that instead an alternative metric, the skew

surge record, be used to train and test a storm surge
predictor. Skew surge, is de�ned as the difference in
elevation between the maximum observed water level
in a tidal cycle and that predicted by tide tables and
is considered to be the most appropriate measure of
storm surge for �ood warning purposes (since the peak
total water level is simply reconstructed from the skew
surge plus the high water level for that tidal cycle). The
components of total water level are schematised in Fig-
ure 1.

Figure 1: A schematic of total water level and it's con-
stituents.

Furthermore, there has only been very limited use
of data-driven models to provide insight into the system
dynamics (for example, Siek and Solomatine (2007);
Liu et al. (2007); Lee et al. (2008)). This is primarily
due to the choices of technique, which were likely to
have been chosen for their ease of implementation and
computational ef�ciency given the weight of evidence
for good predictive accuracy. An alternative, probabilis-
tic data-driven technique is proposed - speci�cally, a
fuzzy, linguistic, entropy-based decision tree - which of-
fers a transparent structure in combination with proven
predictive accuracy for similar environmental problems
(McCulloch et al., 2007, 2008).

The fuzzy decision tree algorithm is applied to the
problem of predicting skew surge at the entrance to the
Thames Estuary, UK, given harmonic tidal predictions,
skew surge from remote tide gauges around the North
Sea and meteorological reanalysis and forecast data.

2 DATA AND METHOD

2.1 Fuzzy Decision Tree Method

The continuous data sets are �rst transformed into
fuzzy sets. The method can therefore also use cat-
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egorical or descriptive data sets. An entropy-based
probabilistic decision tree then splits the training record
to maximise homogeneity in the target fuzzy sets (the
skew surge at Sheerness), with each node subse-
quently assigned a probability distribution for the target
fuzzy sets. The predicted probability distributions can
subsequently be 'defuzzi�ed' to give real-valued predic-
tions, given test input data.

2.1.1 Fuzzy Discretisation

In order to construct a model allowing for inaccuracies
and noise in the observational data, the input and out-
put data sets are discretized into trapezoidal fuzzy sets.
In this problem, it is useful to think of the discretisa-
tion or partitioning in terms of labels, such as f smallg,
f mediumg and f largeg, and to consider the fact that in
the real world different voters might consider it appro-
priate to label any given value by different labels (that is,
one voter may consider it appropriate to label a value
f smallg whilst another might label it f mediumg). By
applying a full fuzzy covering with 50% overlap, appro-
priate label sets (combinations of labels) can be de-
�ned by probability distributions or mass assignments
on the fuzzy sets, mx r or my , for the inputs and tar-
get respectively. The label sets are then both exclusive
and exhaustive and are derived only from adjacent la-
bels (i.e. for the example given, appropriate labels sets
are f smallg, f small or mediumg, f mediumg, f medium
or largeg and f largeg only; the set f small or largeg is
not appropriate). This process is presented in Figure A
for a model example.

The partitions can be chosen by applying a statisti-
cal or percentile distribution to the data such as a uni-
form distribution applied in this case; or the partitions
can be assigned to minimise entropy. Entropy, E , is
a measure of the homogeneity or `purity' of the out-
put partition interval or `bin' given the input data; it is a
measure of the spread of class or partition boundaries
across each database and is derived from the probabil-
ity of a particular partition across a database:

E = �
X

t =1 ;:::;m

P(Ft )logm P(Ft ) (1)

where

P(Ft ) =

P N
i =1 my (i )

P N
i =1

P m
t =1 my (i )

(2)

and Ft are the label sets of the database for each tar-
get fuzzy set, t = 1 ; : : : ; m, and i = 1 ; : : : ; N are the
data vectors at each timestep. The entropy function is
illustrated for a binary case (for example, where the out-
put classi�cation can be true or false) in Figure 2 which
shows that entropy is maximised if the data is uniformly
spread with a probability of 0.5 for each output class
and minimised if the data set tends lies purely in one
class or the other. Minimising the entropy maximises
the information gained from a given partition, since a

low entropy suggests the data set of interest tends to-
wards being homogenous in the output class.
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Figure 2: Entropy, E , of a binary classi�cation system
against the probability of each output class, P (Ft ).

The data can be discretised by entropy by prede�n-
ing the desired number of fuzzy sets (Qin and Lawry,
2005) or by applying the Minimum Description Length
Principle (Quinlan and Rivest, 1989; Fayyad and Irani,
1992).

The predictor is highly sensitive to the choice of
fuzzy discretisation (method and number of fuzzy sets)
(Qin, 2005) and so was thoroughly tested with uniform,
normal and percentile distribution and entropy-based
discretisation methods for a range of number of fuzzy
sets. It has been found that a uniform discretisation
is most successful for predicting events throughout the
domain. Additionally, in this case where we are in-
terested in extreme values, additional label sets have
been de�ned at the end of each universe to improve
predictive accuracy here (Randon, 2004). This can
be thought of as including linguistic label sets of f very
smallg and f very largeg at the extrema.

2.1.2 Probabilistic Decision Tree

The probabilistic decision tree, hereafter denoted DT,
is based on the ID3 algorithm, which develops the tree
structure using an entropy-based approach whereby
the input variable used at each depth of the tree is
chosen to maximise information gain (by minising en-
tropy) and thus the tree should tend towards the small-
est possible tree to a given threshold for the data sets
presented to it. At each depth, the expected entropy of
developing a branch with each of the remaining avail-
able input data sets is calculated and each branch is
extended using the data that provides most information.
In the �rst instance, the entropy for the entire database
can be calculated from equation 1. The entropy for sub-
sequent branches, E (B ), is derived from equations 1
and 2 by summing the mass assignments over the sub-
sets of data at each branch node, i 2 B , rather than the
entire database. For the input variables, x r =1 ;::: k , each
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fuzzy label set (such as f small or mediumg) is denoted
F j where j = 1 ; : : : ; n and for the target variable, y,
each fuzzy label set is denoted Ft where t = 1 ; : : : ; m.
The probability of an output classi�cation, Ft , given a
branch, B , is denoted P(Ft jB ). Similarly, the entropy
of a branch extended by an unused input variable, x r , is
determined from the mass assignments summed over
the new subsets of the data at each new node and is
denoted E (B [ F jr ). The subsequent information gain,
IG , from extending a branch, by each fuzzy set j of
each input variable x r is given by:

IG (B; x rj ) = E (B ) � EE (B; x rj ) (3)

where the expected entropy from extending a branch,
EE , is de�ned as:

EE (B; x rj ) =
X

F j

E (B [ Frj )P (Frj jB ) (4)

and the probability distribution within a node can be
given by the standard frequentist view:

P(Ft jB ) =

P
i 2 DB mx r (i )(F j )my (i )(Ft )

P
i 2 DB mx r (i )(F j )

(5)

or extended using Laplace's law of succession with a
Dirichlet distribution as a prior:

P (Ft jB ) =

P
i 2 DB mx r (i )(F j )my (i )(Ft ) + 1

P
i 2 DB mx r (i )(F j ) + m

(6)

As the DT expands, the branch may be terminated at a
leaf node if there are no examples in the `training' data
set of a combination of fuzzy sets in a given branch
and so a null set exists at the node. In this case,
P (Ft jB ) cannot be estimated from the `training' data
and is therefore assigned an equal probability in each
fuzzy set:

P (Ft jB ) =
1
m

(7)

In addition, the user may set termination criteria which
creates leaf nodes based on con�dence or signi�cance
testing or on homogeneity criteria in the target fuzzy
sets.

2.1.3 Prediction and `Defuzzi�cation'

Given an input vector, the DT model will predict a set of
probabilities of the output variable falling within each of
the nodes. The probability of following a branch given
any speci�c input data vector is equal to the joint prob-
ability (or product) of the mass assignments along that
branch (de�ned from the prior probabilities of the `train-
ing' dataset):

P (B jx ) =
kY

r =1

mx jr (F jr ) (8)

The probability of obtaining each fuzzy set in the output
variable, Ft , is then determined using Jeffery's rule:

P (Ft jx ) =
X

v

P(Ft jB v )P (B v jx ) (9)

where v branches exist in the tree structure.
To then `defuzzify' the predicted probability to a

real-valued prediction of the output variable, given a
speci�c input, the estimate or expected value is given
by:

ŷt =
X

F t

ai P(Ft jx ) (10)

where ai can be determined from some distribution on
the target fuzzy sets (Randon, 2004). Appropriate de-
fuzzi�cation methods include the use of the mode of
each fuzzy set and the use of the expected value, given
by:

ai =

R

 t

yt my t (Ft )dyt
R


 t
my t (Ft )dyt

(11)

2.2 Site of Interest and Data

Coastally-trapped tides and surges, resulting from dis-
turbances in the North Atlantic Ocean and/or meteo-
rological forcing within the North Sea basin, propagate
cyclonically around the North Sea, following the UK's
east coast from north to south. Therefore, observed
sea levels from the north-east coast of the UK can in-
form of storm surges progressing towards the Thames
Estuary (Darbyshire and Darbyshire, 1956; Rossiter,
1959). The UK Tide Gauge Network gauge at Sheer-
ness, the whereabouts of which is given in Figure 3,
is of particular importance because predicted extreme
sea levels here are used to determine whether or not to
close the Thames Barrier which protects London from
�ooding. Hence this gauge is chosen as the target for
the prediction model. UK Tide Gauge Network data
was provided by the British Oceanographic Data Cen-
tre (BODC, 2008).

Yearly data is provided in ASCII �xed-format �les
giving the date and time of observations, total ob-
served water level and the residual water level (be-
ing the observed total water level minus the astro-
nomical tidal prediction which can therefore be back-
calculated). The residual water level includes storm
surge from meteorological forcing, mean sea level vari-
ations or drift resulting from effects such as density vari-
ations, phase shift in the tidal predictions due to non-
linear effects, particularly in shallow water, and noise
from shorter period forcing. The skew surge is sub-
sequently calculated for each tidal cycle, reducing the
number of data records and removing some of these
unwanted effects. Data are �agged by BODC to indi-
cate where values are null or missing, improbable, or
interpolated. The null and improbable values are set to
null values in the original data sets, resulting in corre-
sponding null values in the skew surge record.
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The correlation between the surge signal at Sheer-
ness and remote gauges along the UK's east coast im-
proves with proximity to Sheerness, as expected. How-
ever, in order to provide a suf�cient lead-time to al-
low for the closure of the Thames Barrier, the most
southerly tide gauge that is appropriate as an input to
the predictive model is Whitby, with a lead time of ap-
proximately 8 hours (Randon et al., 2008). Potential
model inputs consist of the observed skew surge, har-
monic prediction for high water and timing between the
observed and harmonic prediction of high water, from
�ve remote tide gauges from Lerwick to Whitby, also
shown in Figure 3, located along the UK east coast
with wave travel times to Sheerness in the approxi-
mate range of 8 to 14 hours. Additionally, barometric
pressure and easterly and northerly wind speed com-
ponents for an area over the southern North Sea are
derived from archive data from the UK's operational
storm surge model operated by the UK Meteorological
Of�ce's Storm Tide Forecasting Service (STFS, 2009).

Lerwick

Wick

Aberdeen

North Shields

Whitby

Sheerness

Figure 3: The North Sea region, highlighting UK tide
gauges used in the analysis.

Available data was taken from 1980-2008 for the
tide gauge locations, and from 1999-2008 for the me-
teorological data. The available data for each period of
data was collected to create two sets of model inputs:

1. Skew surge and timing (between the observed
peak water level and harmonic prediction for high
water) at Lerwick, Wick, Aberdeen, North Shields
and Whitby and tidal high water at Sheerness.

2. The water level data as above, and additionally
barometric pressure at Sheerness and northerly
and easterly components of wind speed aver-
aged over the southern North Sea for that tidal
cycle.

The �rst model learns from the �rst 80% of the avail-

able data set and is tested on the unseen latter 20%,
as a long record exists, whereas for the second model
(which has less data), a 50% split is used for training
and testing. Where data is missing, the record is ne-
glected so a fair comparison can be made with a lin-
ear least squares model. However, it is noted that the
method can be used with missing data, which is as-
signed a uniform prior probability for each fuzzy set.

3 RESULTS

The real-valued predictions for the unseen test data
from the fuzzy DT model are compared against a lin-
ear least squares regression (LS) model for each of
the two input structures (without and including mete-
orological data). The root mean squared error (RMSE),
correlation, r , and coef�cient of determination, r 2 , are
determined for the two models. A comparison can be
also be made against a reference forecast of persis-
tence, which assumes the same observed skew surge
from the previous tidal cycle persists at Sheerness. The
mean squared error skill score (MSE-SS) compares the
mean squared error of the model to that of a persis-
tence forecast and is given by:

MSE-SS = 1 �
MSEmodel

MSEpersistence

Hence, the MSE-SS is a measure of the reduction of
variance by the model compared with the reference
forecast.

Figures 4 and 5 present comparative scatter plots
of the predicted skew surge at Sheerness against that
observed for the test data sets, for the DT and LS mod-
els for the two input structures respectively. Table 1
presents the error and variance statistics of the model
predictions. It is noted that the error of the UK's oper-
ational storm surge forecats model are of the order of
0.1m (STFS, 2009).

Table 1: Comparison of fuzzy decision tree (DT) model
predictions with linear least squares regression (LS)

Model Without Meteorological Data
Predictor Fuzzy DT Linear LS
RMSE (m) 0.121 0.121
MSE-SS 0.63 0.64
r 0.71 0.73
r 2 0.50 0.53

Model Including Meteorological Data
Predictor Fuzzy DT Linear LS
RMSE (m) 0.108 0.102
MSE-SS 0.69 0.72
r 0.79 0.82
r 2 0.62 0.67
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It can be seen that the real-valued predictions from
the DT model are comparable in accuracy to predic-
tions from a linear LS regression model, although the
linear LS regression prediction appears to have less
scatter than the DT prediction. This is most notable
in the second extended model where less training data
is available for the model structures. The DT model is
considerably more skillful at predicting a large positive
skew surge at Sheerness than a persistence forecast
or random chance. The decision tree predictions at the
extremes are biased towards the more central values
of skew surge due to the natural leptokurtic distribution
of the data and the transform of real-valued data into
fuzzy sets and back. However, for largest positive skew
surge events at Sheerness in the test data set for the
second model, including meteorological data, the DT
model accurately predicts the skew surge where the lin-
ear LS regression model fails.

Given the comparable accuracy to other data-
driven prediction methods, a signi�cant bene�t of the
DT method is that the tree structure can be interrogated
as sets of rules, allowing insight into the key physical
drivers of surges at this critical location.

Figure 6 schematises the tree branches where the
DT model predicts strong probabilities of a large pos-
itive skew surge at Sheerness, for the �rst model with
only water level input data. These branches can be in-
terpreted as rules which are given below for both the
�rst water level model and the second, extended model
with meteorological data respectively.

Model 1: Without meteorological data

Rule 1:
IF Whitby skew surge IS large positive
AND Aberdeen skew surge IS medium positive
AND ( Wick skew surge IS small positive )
OR ( Wick skew surge IS medium positive
AND skew surge timing at Aberdeen IS slightly advanced )
THEN there is a strong probability (P > 0.95) that Sheerness
skew surge will be large positive.

Rule 2:
IF Whitby skew surge IS small positive
AND tidal range IS neap or mid-range
AND skew surge timing at Wick IS slightly delayed
AND skew surge timing at Lerwick IS central
THEN there is a strong probability (P > 0.95) that Sheerness
skew surge will be large positive.

Rule 3:
IF Whitby skew surge IS medium positive
AND Lerwick skew surge IS small positive
AND skew surge timing at Wick IS slightly delayed
AND skew surge timing at Lerwick IS slightly advanced
THEN there is a strong probability (P > 0.95) that Sheerness
skew surge will be medium or large positive.

Rule 4:
IF Whitby skew surge IS medium positive
AND Lerwick skew surge IS central
AND North Shields skew surge IS central
AND skew surge timing at Whitby IS signi�cantly advanced or
slightly delayed
THEN there is a strong probability (P > 0.95) that Sheerness
skew surge will be medium or large positive.

Rule 5:
IF Whitby skew surge IS medium positive
AND Lerwick skew surge IS small negative
AND North Shields skew surge IS medium positive
AND tidal range IS between mid-range and neap tide
THEN there is a strong probability (P > 0.95) that Sheerness
skew surge will be medium or large positive.

Model 2: With meteorological data

Rule 1:
IF Whitby skew surge IS small positive
AND north-south wind component IS strong northerly
AND timing of skew surge at North Shields IS central or slightly
delayed
THEN there is a strong probability (P = 0.87) that Sheerness
skew surge will be medium or large positive.

Rule 2:
IF Whitby skew surge IS small positive
AND north-south wind component IS northerly
AND timing of skew surge at North Shields IS delayed
THEN there is a moderate probability (P = 0.62) that Sheer-
ness skew surge will be medium or large positive.

Rule 3:
IF Whitby skew surge IS central
AND north-south wind component IS strong northerly
AND atmospheric pressure at Sheerness IS mid-range
THEN there is a moderate probability (P = 0.50) that Sheer-
ness skew surge will be medium or large positive.

The two rules leading to the highest probability of a
large positive skew surge at Sheerness (labelled Rules
1 and 2 for Model 1) are given by an observed skew
surge amplifying as it progresses from north to south.
The rules generally identify a phase shift from delays
in the skew surge at the more northerly gauges to an
advance in the time of expected peak water level at the
more southerly gauges, which itself can be explained
by an increase in wave celerity with increased depth
caused by the surge within this shallow shelf sea. The
propagation speed (c) of all shallow water waves is
given by c = ( gh)1=2 where g is Earth's gravitational
constant and h is water depth. The entropy-based al-
gorithm also identi�es that information can be gained
from the state of the tide, with large skew surges at
Sheerness more likely to occur during smaller (neap)
tidal ranges. This is consistent with earlier examination
of the data for this site (Horsburgh and Wilson, 2007).
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The second extended model, including meteorolog-
ical data, is dominated by the inputs with largest cor-
relation with the skew surge at Sheerness; the skew
surge at Whitby and the north-south wind speed com-
ponent.

4 CONCLUSIONS AND PROSPECTS

The accuracy of the method is comparable to alterna-
tive prediction methods whilst offering the major bene�t
of transparency. Potential improvements to predictive
accuracy at the extremes may be gained from more
sophisticated data sampling into training and test sets
(such as bagging or clustering), prior and post trans-
formation of the data to reduce its leptokursis (for ex-
ample by a sigmoid function) and more sophisticated
approaches to the fuzzy set discretisation.

The tree predictions and interpretation are encour-
aging for further development and application of this
technique to this problem, and other tidal and sea level
applications. The probabilistic approach avoids opti-
mization procedures, and it also allows null values in
some or all of the input variables, where measured
data may sometimes be missing for operational rea-
sons. The resulting rules from the decision tree struc-
ture can be interpreted and preliminary results are con-
sistent with our understanding of the physical system.
The method is fast to implement on standard PCs and
could therefore be utilized in a real-time application.
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Figure 4: Scatter plots of predicted against observed skew surge at Sheerness for the �rst model structure without
meteorological data, for a) the decision tree model and b) linear least squares regression.
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Figure 5: Scatter plots of predicted against observed skew surge at Sheerness for the second model structure
including meteorological data, for a) the decision tree model and b) linear least squares regression.
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Figure 6: Schematic of the fuzzy decision tree model branch structures for large skew surge at Sheerness, for the
�rst model structure without meteorological data.
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(c) Trapezoidal fuzzy sets applied to continuous data
with label sets corresponding to Figure (b). Example
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Figure A: The process of fuzzy discretisation of a data vector for a model example.
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