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1. INTRODUCTION 

Extreme rainfall events and the resulting floods 
usually cause a lot of damage to life and properties of 
human society. Determination of frequencies and 
magnitudes of these events are very important for 
flood plain management and designs of hydraulic 
structures, civil protection plans, etc. However, length 
of available records is not enough large to define the 
risk of floods, heavy rainfall, low flows, droughts, etc. 
In these cases, magnitude-frequency analysis, fitting 
samples to a frequency distribution, permit the 
estimation of how often a specific event will occur or 
the frequency of events greater than those observed 
during the period records. The frequency analysis 
includes the following underlying assumptions: 

• The extremes are a random variable, and thus 
can be described by a distribution of 
probability. 

• This distribution does not change from sample 
to sample (homogeneity). 

• The data are independent. 

The aim of this work is to determine the 
magnitudes of events associated to a predetermined 
frequency, fitting the samples to a more common 
distribution used for extreme events analysis. For 
these propose, two approaches for sampling extreme 
series have been used (annual maximum and partial 
duration), and the results obtained using both 
approaches have been compared. 

2. DATA 
 
2.1. Dataset and Quality Control 

The data used comprise a set of 85 daily 
precipitation series located in the South of the Iberian 
Peninsula (Figure 1), covering the period 1955-2006. 
The data series have overcome a quality control test: 

• Unrealistic or negative values have been 
checked against neighbour stations and 
historical records. 

• Just a maximum of 10 % of missing values 
was permitted. 
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• A homogeneity test (RHtestV2) was applied 
to ensure the homogeneity of series used 
(http://cccma.seos.uvic.ca/ETCCDMI/softwar
e.shtml) 

The simplest and more commonly employed 
method for sampling original data for extreme analysis 
is Annual Maximum (AM), where only the greatest 
event for each year is considered. A drawback of this 
method is that because of the fact that as just one 
event per year is considered, useful information from 
the second, third or greatest events of that year are 
lost. Moreover, some included events could be not 
really extremes. For these reasons, another approach 
to create the sample series is considerer: Partial 
Duration (PD), where all events above an a priori 
determined threshold (x0) are included. This approach 
permits include more cases and it adapts better to 
heavy-tailed distribution (Madsen et al. 1997). 

The classical PD series model includes the 
assumption that the number of threshold exceedandes 
are distributed under a Poisson process and their 
magnitudes are described by an exponential 
distribution (Todorovic and Zelenhasic 1970). This 
implies that AMS follows the Gumbel (Extreme Values 
type I) distribution. Also, several papers have focused 
on three parameters distributions: Generalized Pareto 
(GP) (Pickands 1975) distribution for PDS (Rosbjerg 
et al. 1992) and Generalized Extreme Values (GEV) 
distribution for AMS. 

2.2. Partial Duration Series Modelling 

One of the most delicate tasks in the PDS 
modelling is the threshold selection, since it is directly 
related to the assumption of independence of arrival 
times and exceedances. A low threshold level permits 
include more information, increasing the sample size 
and reducing the uncertainty of the analysis. On the 
other hand, if the threshold is too low, a violation of the 
assumption of independence can happen if the events 
are too close in time. In this sense, a declustering 
process reduces the problem of serial correlation to a 
large extent, allowing threshold values as low as 90th 
percentile (Begueria 2005). For this reason, a 
declustering process has been carried out in this 
study, and consecutive days with precipitation values 
above 1 mm were clustered and only the greatest 
event of each cluster was selected.  



 

 

Figure 1.  Location of the region of study inside western Europe (left) and topography, in meters (right).

Some systematic methods for the choice of the 
threshold value have been reviewed by Lang et al. 
(1999). In this work, the approach shown by Beguería 
(2005) for the choice of an adequate threshold was 
followed. PD series approach generally assumes that 
the number of exceedances follows a Poisson process 
(Cunnane 1979) The suitability of this assumption was 
tested by the Dispersion Index (DI) statistic (Cunnane 
1979): 

 (1) 

where s2 is the annual number of exceedances 
estimated, and λ is the mean. If data follow a Poisson 
process DI should be close to 1. Confidence levels 
were calculated testing against a chi-squared 
distribution with M-1 degree of freedom, where M is 
the total number of years. Figure 2 shows that 
posteriorly to the declustering process, the number of 
exceedances is more suitable to follow a poisson 
process for different thresholds. 

 

 

Figure 2. Example of DI statistic for different threshold values 
for 5 stations. In grey, confidence levels for DI at 95%, testing 
against chi-squared distribution. Original daily series, at the 
top, and series after declustering, at the bottom. 

 

Mean Excess plot (ME plot) was used to 
determine the suitability of the GP model for the real 
data series at different threshold values (see Figure 3 

as an example). In this plot, the average excess over 
a threshold against the value of this threshold is 
represented. A linear behaviour of ME plot appears if 
the variable follows a GP distribution over the 
threshold (Beguería 2005). Thus, a ME plot was 
represented for all stations. For most of them a linear 
behaviour appears until a value around 95-98th 
percentile. Therefore, a threshold value of 95th 
percentile, which favoured the series with as cases as 
possible, was selected to create PD series. 

 

 

Figure 3. Mean excess plots for some stations. 

 

3. METHODS.   

The AM series are usually distributed by GEV 
(which includes ‘Gumbel‘ or ‘EV1’ distribution when 
k=0). The exceedandes magnitudes in the PD series 
are assumed to be GP (which includes Exponential 
distribution when k=0) distributed. For this reason, 
both distributions were proposed to be employed in 
this study. GEV and GP distributions have the 
following cumulative distribution function, F(x), and 
quantile function, x(F),: 

Generalized extreme values (GEV) 

Range of x: -∝ < x ≤ ξ+ α/κ if κ > 0; -∝ < x < ∝ if κ = 0; 
ξ+α /κ ≤ x < ∝ if κ > 0 

 (2) 



 

 (3) 

Generalized Pareto (GP) 

Range of x: ξ < x ≤ ξ+ α/κ if κ > 0; ξ ≤ x < ∝ if κ ≤ 0 

 (4) 

 

 (5) 

Parameters: ξ (location), α (scale), κ (shape) 

The parameters of the distributions have been 
estimated using L-moments. This approach, 
introduced by (Hosking 1990) is increasingly being 
used by hydrologist. L-Moments have the theoretical 
advantages over conventional moments of being able 
to characterize a wider range of distribution and, when 
estimated for a sample, being more robust to the 
presence of outliers in the data. More details and 
properties of L-moments can be found in Hosking and 
Wallis (1997). In summary, L-moments, λr, are linear 
combinations of Probability Weighted Moments 
(PWM) introduced by (Greenwood et al. 1979)The first 
L-Moments are the mean of the distribution (λ1), a 
measure of the location, λ2 is a measure of scale, λ3 is 
a measure of skewness and λ4 is a measure of 
kurtosis.  

A useful dimensionless version of L-moments is 
defined by dividing the higher order L-moments by the 
scale measure. So, L-moments ratios are defined: 

   r=3,4,… (6) 

L-moments ratios measure the shape of a 
distribution independently of its scale of measure. The 
L-moment ratios τ3 and τ4 are the L-skewness and L-
kurtosis respectively. 

The coefficient of L-variation is also defined as: 

 (7) 

Although the L-Moments are theoretically defined 
for a probability distribution, in the practise, they are 
estimated for a given sample. Hence, the samples L-
moments (lr) and L–moments ratios (tr) are defined. 
The samples L-moments lr are an unbiased estimator 
of λr. In spite of the estimators of τr and τ are not 
unbiased, their bias are very small for moderate or 
large samples (Hosking and Wallis 1997) 

4. RESULTS 

4.1 Choice of a distribution  

L-Moment ratio diagram 

The L-moments ratio diagram is a graphical 
measure about if the data samples from different sites 
are consistent with the fitted probability distribution 
functions (see Figure 4). This shows the ratio between 
the L-kurtosis and L-skewness used to determined the 
goodness of fit for the selected distribution. 

 

Figure 4. L-moments plot for samples and theoretic 
distributions used. The fitted distribution curves were drawn 
using  polynomial approximations (Hosking 1990). 

 

The 3 parameters distribution fit better to the 
samples due they are more flexible (because of the 
shape parameter inclusion). The cloud of points 
corresponding to PD series are closer to the GP 
distribution than that corresponding to AM series of 
GEV distribution. It can be due to PD series have 
more information that AM series.  

Quantile-Quantile (QQ) plot 

The QQ plots relate the quantiles derived of 
empirical probability distributions with the quantiles 
estimated by the fitted distributions. In this study, the 
empirical cumulative probability was assigned to the 
observed events via a plotting position formula: 

 (8) 

where j is the jth observation sorted in ascending 
order and n is the total number of observations. 

This plotting position formula was found to give 
good results for Wakeby GEV and GP distributions 
(Hosking and Wallis 1997). 

The three parameters distributions show a better 
fit than the two parameters distributions. Both, GP and 
Exponential distribution fit better for smaller quantiles 
than GEV or EV1 distributions (see Figure 5). 



 

Figure 5. QQ plots for empirical and fitted distributions (EV1 - 
top left, GEV - top right, EXP- bottom left, GP - bottom left). 

 

Uncertainty in the shape parameter 

Although L-moment ratio diagrams as well as QQ 
plots show that the three parameters distributions fit 
better to the data, there is a large uncertainty involving 
the shape parameter in these distributions. 
Determining if the shape parameter differs significantly 
from zero is necessary. When the shape parameter is 
not significantly different from zero, two parameters 
distributions are advisable to use instead three 
parameters, due to their robustness. A test has been 
employed in this study to determine if the shape 
parameter is significantly different from zero, for GEV 
distribution (Hosking et al. 1985) and also for GP 
distribution (Rosbjerg et al. 1992). The results from 
both tests show that for most of stations (67% for GEV 
and 87% for GP) the shape parameter was not found 
significantly (at the 95 % confidence level) different 
from zero.  

Summarizing the results obtained from L-Moment 
ration plots, QQ plots and the uncertainty in the shape 
parameter, in this work we have considered to use two 
parameters distributions (Exponential for PD series, 
and Gumbel or EV1 for AM series).  

4.2. Estimation of the T-year return quantiles. 
Comparison between AMS-EV1 and PDS-EXP 
approaches. 

The result of an extreme-values analysis is often 
simply a summary of quantiles corresponding to large 
cumulative probabilities. A pth quantile, xp, is the value 
with cumulative probability F(xp)=p. Often these 
extreme probabilities are expressed as averaged 
return periods. A return period associated with a 
quantile x typically is interpreted to be the average 
time between occurrence of events of that magnitude 
or greater. The T-year event based on AM series is 
defined as the (1-1/T) quantile in the annual maximum 
distribution. In a PD series context, the T-year event is 
defined as the (1-1/λT) quantile in the distribution of 
exceedances. The quantile functions for both Gumbel 
and Exponential distributions are expressed in the 
Equations (3) and (5), respectively. 

In this study, quantiles corresponding to four 
return periods (10, 25, 50 and 100 years) were 
calculated for both approach, AMS-EV1 and PDS-
EXP. 

The uncertainty in the estimation of quantiles for 
the different T return periods selected has been 
evaluated by a Montecarlo simulation. The simulation 
algorithm employed was similar to that used by 
(Madsen et al. 1997). For each case 10.000 samples 
were generated and the RMSE of the estimated T-
year events were calculated. The relative RMSE for 
the different estimated T-year events are shown in the 
Figure 6.  

Most of stations present a relative RMSE lower 
than 10%. Also, quantiles associated to higher return 
periods present higher relative RMSE. In general, 
lower relative RMSE were found with the PDS-EXP 
approach. An example of the spatial distribution of the 
estimated quantiles for 25 years return period, as well 
as its respective relative RMSE, is shown in the Figure 
7. Note that the greatest relative RMSE appears in the 
southeast part of the region of study. In this area, the 
precipitation behaviour is different from the rest of the 
region, showing a lesser number of wet days, mainly 
consequence of the convective nature of the rainfall.

 

Figure 6. Relative RMSE in % for the four estimated quantiles associated to four return periods using the PDS-EXP approach 
(left), and the AMS-EV1 approach (right). 
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Figure 7. Estimated quantil values (in mm) for T=25 year 
using PDS-EXP approach (top), and their relative RMSE (in 
%) obtained through a Montecarlo simulation (bottom). 

Finally, a comparison between the ratio of relative 
RMSE for both, PDS-EXP and AMS-EV1 approaches, 
and for all the quantiles estimated, against the length 
ratio of PD and AM series, for each station, was 
carried out (Figure 8).  

 

Figure 8. Comparison between the relative RMSEs for two 
approaches (PDS-EXP, AMS-EV1) in relation with the ratio 
between the length of PDS and AMS for all stations and 
return periods analyzed. 

The relative RMSE for the PDS-EXP approach 
was found to be always lower for all the estimated 
quantiles than the relative RMSE for AMS-EV1 when 
the ratio between length of PD and AM series 
becomes greater than 2. 

 

5. CONCLUSIONS 

In this work we have calculated the occurrence 
probability of the precipitation extreme events in the 
South of the Iberian Peninsula using different 
approaches. Results can be summarized as follow: 

• Due to the uncertainty that involves the shape 
parameter in the three parameters distributions (it 
was found non significant different from zero in 
most of the stations, for both, AMS and PDS 
approaches), two parameters distributions, 
Exponential and Gumbel, were selected to fit the 
PD series and AM series respectively.  

• In general, the PDS-EXP fit shows lower relative 
RMSE for the estimated quantiles , for all the  
proposed return periods , than the AMS-EV1 fit,  
specially when the ratio between length of the PD 
series and AM series is greater than 2. 

• In most of the stations, the relative RMSEs for 
estimated quantiles are below 10%, except in 
southern stations, where relative RMSEs around 
10-20 % were found. For this latter case, to fit 
distributions to the series could be more difficult 
due to the convective nature of the precipitation in 
this region. 
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