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1. INTRODUCTION 

 
Forecast guidance from numerical air quality 

models has been available for operational use for a 
number of years (McHenry et al., 2004). Forecast 
guidance for both O3 and PM2.5 are available but, 
due to the complex nature of particle formation and 
removal processes, O3 forecast models are 
currently at a higher level of maturity as reflected in 
forecast skill.  As a result, this paper will focus on 
the operational use of O3 forecast guidance.  
Numerical O3 models are subject to errors from a 
variety of sources (Eder et al., 2009).  Of particular 
interest to operational forecasters are systematic 
forecast errors.  These errors can be driven, to 
name just a few possibilities, by model responses to 
topography, boundary layer processes, and 
variations in emissions of precursors.  It may be 
possible to improve the skill of numerical forecast 
guidance by post-processing methods that reduce 
the effect of systematic errors.  This paper 
describes and analyzes a number of post-
processing methods that are easily implemented in 
the current operational forecast setting.  Because air 
quality forecasting in the United States is carried out 
primarily by state and local air quality agencies, 
often with limited budgets and time constraints, this 
paper focuses on methods that are relatively 
inexpensive to design, install and implement. 

 
 

2. DATA AND METHODS 

 
This paper analyzes forecast guidance from the 

National Air Quality Forecast Capability (NAQFC) 
O3 forecast model.  The NAQFC is one of many O3 

forecast models available to the operational 
forecaster.  A partial list is provided in Appendix A. 

 
The development of a national air quality 

forecast capability was directed by Congress 
(Energy Policy Act of 2002). The NAQFC model  
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was developed by the National Oceanic and 
Atmospheric Administration (NOAA), in association 
with the United States Environmental Protection 
Agency (USEPA).   Forecast guidance was made 
available for testing beginning in 2004 and the 
model became operational in September of 2007 
(Otte et al., 2005).  The NAQFC runs twice daily, 
initialized at 0600 and 1200 UTC, and covers the 
continental United States.  This paper analyzes the 
performance of the 1200 UTC model run. 

 
For this study, O3 forecast guidance is collected 

from the NAQFC model for the Philadelphia 
metropolitan area (PHL) during the summer 
seasons (May-early September) of 2007-2009 
(Figure 1).  The standard predicand used for O3 
forecasting is peak domain-wide 8-hour average O3.  
This averaging time, and domain-wide spatial 
measure, is also used to determine attainment with 
the National Ambient Air Quality Standard (NAAQS) 
for O3.  For operational forecast purposes, this 
means that the geographic location of peak O3 
predicted by the model is of less importance than 
the magnitude. However, operational forecasters, as 
shown below, can use the location of the maximum 
predicted O3 as a way to calibrate the model for 
known errors.   

 
O3 forecasts are verified with observed O3 from 

a network of monitors across the forecast area 
(Figure 1).  During the period 2007-2009, there were 
15-19 active monitors in the PHL forecast area.  The 
O3 data for 2007-2008 were obtained from the EPA 
Technology Transfer Network Air Quality System 
(AQS) archive.  Because there is a time lag of 
months between observations and data availability 
at AQS, the data for 2009 was downloaded from the 
near real-time EPA AirNow data system 
(http://www.airnow.gov).  Prior experience has 
shown that differences between the AQS and 
AirNow databases are slight for the measures of 
interest analyzed in this paper. 

 
 

3. LIMITS OF CURRENT FORECAST METHODS  
 

Historically, air quality forecast guidance has 
been provided by statistical models (Ryan et al., 
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2000).  A variety of statistical methods have been 
successfully applied to O3 forecasting including, but 
not limited to, multiple linear regression (MLR), 
Classification and Regression Trees (CART) and 
neural networks (e.g., EPA, 2003; Nebot et al., 
2008).  In the PHL area, beginning in 1996, many of 
these methods have been tested and yield similar 
results.  The attraction of statistical models for O3 
forecasting is the low cost of development; ease of 
updating, and, until recently, adequate and reliable 
performance. 

 
Any statistical model for O3 forecasting is 

anchored by the strong relationship between peak 
O3 concentrations and maximum surface 
temperature (Tmax).  For the period 1993-2008, 53% 
of the variance in peak 8-hour O3 in PHL can be 
explained by a linear regression model using Tmax 
as a predictor.  Persistence, or current day O3 
forecasted for tomorrow, is another commonly used 
predictor and, given the long life time of O3  in the 
troposphere, makes physical sense.  A more 
accurate measure of persistence relates upwind O3  
concentrations, as determined by back trajectory 
models, to next day O3 (Coburn and Hubbard, 
1999).  For the PHL area, the combination of Tmax  
and persistence explains 60% of the variance in 
peak 8-hour O3.  

 
Other commonly used predictors include 

relative humidity, as a proxy for cloud cover and 
precipitation, wind speed, to account for horizontal 
ventilation, and temperature advection or stability to 
account for vertical ventilation.  Because O3 has a 
distinct seasonal cycle, other measures, such as 
solar zenith angle, day length, or Julian date are 
also used.  The statistical models used for 
comparison purposes in this study can be found at: 
http://www.meteo.psu.edu/~wfryan/ams2010/phl-
stat1.xls.  These models use MLR methods which 
have the advantage of providing a quantitative 
(ppbv) forecast in a manner that is transparent to 
the user. 

 
Statistical O3 models, of any type, have several 

important limitations.  While they can account for 
meteorological and seasonal factors, they do not 
fully account for chemically forced effects.  With the 
exception of day of week predictors, statistical 
models typically assume a static chemical 
environment.  Some changes in emissions, for 
example, biogenic hydrocarbons, can be partly 
resolved by temperature predictors but others, often 
dependent on transport and air mass history, are 
unresolved.  Statistical models, which require a long 
historical dataset for training, can also be affected 
by secular trends in emissions.  For example, 
regional reductions in stationary source NOx 
emissions following the so-called NOx SIP Rule in 
2002 have had a significant impact on O3 
concentrations in the eastern US (Bloomer et al., 
2009).  The O3 monitor at Big Meadows in 

Shenandoah National Park, a regional scale 
observation site, has seen the frequency of days 
with O3 exceeding 70 parts per billion by volume 
(ppbv) drop from 38 days per year for the period 
1994-2002, to 9 days per year from 2003-2009. 
Statistical models in PHL, trained on data prior to 
2003, show a sustained increase in over-prediction 
bias, with an attendant loss of skill, since 2003 
(Figure 2). 

 
For 2009, a new statistical model, utilizing only 

post-NOx SIP Rule data (2003-2007) for training, 
was implemented in PHL.  While this model reduced 
forecast bias by 28%, compared to the older 
statistical models, and improved mean absolute 
error by 18%, it still exhibited an over-prediction bias 
(6.8 ppbv).  This may reflect an ongoing decline in 
emissions as additional NOx controls were phased 
in during the training period, or unusual 
circumstances during 2009, but it may also be 
related to more systematic changes in the chemical 
environment that limit the skill of statistical models.  
As noted above, the bulk of the skill in statistical 
models is due to the Tmax-O3 relationship.  Since 
2002, this relationship appears to have weakened, 
particularly in the high temperature range (Bloomer, 
et al., 2009).  Peak O3 concentrations in PHL, 
binned by ranges of Tmax, show a decrease on the 
order of 10 ppbv in warm (> 82⁰F) cases.  In 

addition, the variance in O3 explained by a simple 
one-predictor (Tmax) regression model decreased 
from 58%, for 1993-2002, to 44% for 2003-2009.  
This suggests that statistical model skill is unlikely to 
increase significantly in the coming years and 
forecasters must increasingly rely on numerical 
forecast guidance. 

 
   

 
4.  NUMERICAL FORECAST MODEL SKILL 

 
As noted above, the forecast verification metric 

of interest to operational forecasters is domain-wide 
peak 8-hour average O3.  There are a number of 
methods to extract peak domain O3 information from 
the NAQFC but, for this study, peak concentrations 
were determined from model forecasts at the grid 
cell closest to the location of existing regulatory O3 
monitors.  This approach was selected for several 
reasons:  First, the PHL forecast area is 
characterized by a complex sea-land boundary that 
includes several large bays.  The NAQFC model 
has a tendency to simulate very high O3 
concentrations along land-sea boundaries –
especially in prevailing westerly flow conditions.  An 
example of this effect is shown in Figure 3.  
Monitors in PHL are well away from the immediate 
coast and forecasts for these locations are less 
influenced by this effect (see, Figure 1).  Second, 
because the forecast deadline is soon after the 
availability of 1200 UTC model guidance, point data 
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is the quickest method to extract quantitative peak 
O3 forecast information from the NAQFC. 
 

Two immediate issues are raised for forecast 
verification and post-processing during the period 
2007-2009.  First, the NAQFC, and its sub-models, 
underwent continual revisions, including yearly 
emissions updates, during this period (see, 
http://www.emc.ncep.noaa.gov/mmb/aq/AQChangel
og.html).  Several of the post-processing methods to 
be discussed below utilize 2007-2008 results to 
inform forecasts issued in 2009.  Because the 
model is not “frozen”, results from 2007-2008 may 
not be stable enough to support their use as 
predictors.  However, in the PHL area, overall 
NAQFS performance was similar for both 2007 and 
2008 (Figure 4). Categorical forecasts of high O3 
(Code Orange or [O3] ≥ 76 ppbv) were similar, 
although slightly better in 2007, with a “hit” rate of 
75%, compared to 69% in 2008, and a “false alarm” 
rate of 25% compared to 46% in 2008.   Second, 
2009 was a uniquely low O3 season. In PHL, for the 
first time in the modern monitoring network era, 
there were no instances of Code Red (≥ 96 ppbv) 
O3.  While the 2009 summer season (June-August) 
was cool and wet both in PHL and across the 
region, it was similar to the cool and wet summers 
of 2000 and 2004.  However, the frequency of Code 
Orange O3 cases was 78% lower in 2009 (7 cases 
in 2009 compared to 35 in 2000 and 30 in 2004).  At 
the regional scale, the monitor at Big Meadows in 
Shenandoah National Park did not exceed 70 ppbv 
(8-hour average) during the summer compared to 
an average of 10 cases per year for 2003-2008.  
2009 was also a remarkably low summer for PM2.5 
concentrations.  PM2.5 is generally less sensitive to 
temperature than O3.  In 2009, PM2.5 concentrations 
in PHL did not exceed 30 µg/m

3
 (24-hour average), 

compared to 16.4 such days for 2004-2008.  In 
addition, the frequency of days at SNP exceeding 
20 µg/m

3
 decreased from 23% (2004-2008) to 2% in 

2009. The low frequency of enhanced PM2.5 
concentrations cases suggests that factors in 
addition to weather, perhaps reduced industrial 
activity due to the economic recession, also played 
a role.  

 
Overall results for the NAQFC model in 2009, 

compared to persistence and the post-processing 
methods to be described below, are given in Table 
1.  Because forecasts are used to initiate Air Quality 
Action Day alerts, skill in the upper end of the O3 
distribution (Code Orange or higher) are of most 
importance.  Table 1 provides skill score measures 
based on a 2 x 2 contingency table using Code 
Orange as the threshold (Stephenson, 2000, Wilks, 
1995).  The overall error statistics for 2009 are 
similar to 2007-2008 but with a slightly higher over-
prediction bias.  The critical problem for the NAQFC 
model in 2009 is the high frequency of “false 
alarms” – Code Orange forecast but not observed.  
The false alarm rate for the NAQFC in 2009 was 

74% compared to an average of 34% in 2007-2008.  
This may be due to the unusual weather patterns 
during 2009 and may also reflect changes in the 
emissions base.  In any case, the over prediction 
bias and false alarm rate highlights the need for a 
robust post-processing technique. 

` 
 

 
5. POST-PROCESSING OF NAQFC FORECAST 

GUIDANCE 
 

A number of post-processing methods were 
tested using the 2007-2009 forecast dataset.  The 
methods were selected, in part, based on ease of 
application.  Operational air quality forecasting in 
the US is carried out almost exclusively at the state 
and local government level where time and 
resources are limited.  As a result, adoption of 
numerical model forecast guidance as part of the 
usual forecast “rote” requires post-processing 
methods that are inexpensive to install and operate, 
locally focused and, because forecast deadlines 
follow immediately after the NAQFC 1200 UTC run 
completes its cycle, timely.   

 
Four methods were tested initially:  (1) binned 

bias correction; (2) running bias correction; (3) 
“trend” correction; and, (4) a simple ensemble.  The 
methods are described in more detail below with 
results from the 2009 summer season provided in 
Table 1.  The binned bias correction method used 
forecast guidance from 2007-2008 placed in bins of 
10 ppbv size with the forecast bias computed for 
each bin and used to correct the operational model 
forecast.  In general, the NAQFC model tended to 
under-predict in low O3 forecasts and over-predict in 
high O3 forecasts.  The length of the running bias 
correction, based on results from earlier tests, was 
set at two days.  That is, mean error over the 
current and previous day was added (or subtracted) 
to the next day model forecast.  The trend correction 
method compares the current day NAQFC forecast, 
determined from the previous day’s 1200 UTC 
model run, to the next day forecast and adjusts the 
current day observed O3 concentrations to account 
for the forecast trend.  For example, if 60 ppbv was 
forecast for the current day and 70 ppbv for the next 
day, then 10 ppbv is added to today’s observed 
concentrations.  In operational use, as opposed to 
this test, the last two methods are limited by 
incomplete knowledge of current day peak 8-hour 
O3.  That is, the forecast is issued during the early 
afternoon hours before peak 8-hour average 
concentrations are typically reached.  The simple 
ensemble method is a so-called “poor man’s 

ensemble” that combines the NAQFC forecast with 
output from statistical forecast models.  In this case, 
the weighting is 50% NAQFC model, 30% new 
statistical model (trained on post-NOx SIP Rule 
data) and 20% old statistical model (trained on pre-
NOx SIP Rule data). 
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6. RESULTS AND DISCUSSION 

 
The bias correction methods (binned and two-

day running bias) provided the best results overall.  
As expected, they reduced forecast bias but also 
reduced mean and median absolute error in the 
range of 4-9%.  The binned bias method also 
reduced rms error by 15% suggesting that it has 
fewer large error cases.  The large error cases 
typically involve abrupt air mass changes and/or 
precipitation.  None of the methods solved the 
problem of false alarms although all improved on 
the Threat Score of the NAQFC.  Although a variety 
of skill measures were calculated from the 
contingency table, only the Threat Score is given in 
Table 1 as it is the most meaningful measure in 
situations where the threshold is only rarely 
exceeded – in this case less than 10% of the time 
(Stephenson, 2000).  The other measures 
corroborated the results given by the Threat Score.  
The 2-day running bias correction provided the most 
improvement at the Code Orange threshold, 
reducing the false alarm rate at only a slight cost to 
the hit rate. 

 
Further analysis of the false alarm cases in 

2009 showed that the NAQFC tended to over-
predict in warm temperature cases and in cases 
where previous day upwind convection affected 
regional scale O3 concentrations.  The temperature 
affect is shown in Figure 5.  The upwind effects are 
not easily accounted for but can be approached 
using persistence O3 as a predictor.  With this in 
mind, an additional post-processing method was 
tested with a simple multiple linear regression model 
(MLR) using NAQFC forecast O3, Tmax and 
persistence O3 as predictors.  The details of the 
model are provided in Table 2 and the results in 
Table 3.  Overall, the MLR model provided the best 
forecast, rivaling the public (expert analysis) 
forecast.  More importantly, the MLR model was 
able to reduce the false alarm rate without adversely 
affecting the hit rate – a rare occurrence.  In 
absolute terms, the number of false alarms was 
reduced from 14 (NAQFC model) to 5 by the MLR 
model and, of these five, three were cases of “near 
misses” - observed peak O3 ≥ 71 ppbv.   Other skill 
measures corroborate the results shown in Table 3.  
For example, Brier scores, a measure of both 
forecast reliability and resolution, show an increase 
in skill for the MLR model (Table 4).  Table 4 also 
shows the effect of changes in emissions due to the 
NOx-SIP Rule.  The “old” statistical model, trained 
on data prior to the NOx SIP Rule and which 
provided adequate forecasts prior to 2003, shows 
no skill as applied in 2009.  The “new” statistical 
model shows some skill but less than the NAQFC 
and considerably less than the post-processed 
NAQFC. 

 

 
 
7.  CONCLUSIONS 

  
Numerical air quality forecast models now 

routinely provide forecast guidance to operational 
air quality forecasters.  Numerical models for O3 are 
more advanced, in terms of skill, than PM2.5 models 
but their adoption as a key tool in operational 
forecast preparation has been slow.  Adoption of 
model guidance as part of the routine forecast “rote” 
will be accelerated if skill overall and in the high end 
of the O3 distribution can be shown (≥ 76 ppbv).  
The standard metric for forecast verification, local 
peak 8-hour O3 concentrations, is a difficult 
measure for numerical forecast models to resolve.  
Model performance may be improved by the use of 
post-processing methods.  Because air quality 
forecasting is carried out at the local air quality 
agency level, often under significant time and 
resource constraints, post-processing methods must 
be inexpensive to design and operate, locally 
focused and timely.   

 
A number of post-processing methods, 

adaptable to local conditions, were tested in the 
PHL area using data from the summer of 2009.  Of 
the various methods tested, the most effective were 
bias correction, with the two-day running bias 
correction showing the largest improvement in skill.  
A recurring problem in 2009 was the frequency of 
“false alarm” forecasts of Code Orange conditions.  
This was likely due both to weather effects (2009 
was a cool and wet summer) and to changes in 
emissions (e.g., impacts of the severe economic 
recession).  A simple MLR model was able to 
reduce the rate of false alarms significantly, with no 
loss of detection skill.  The unusual circumstances 
in 2009 suggest that further research along these 
lines will be necessary. 
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Table 1. Skill measures for PHL O3 forecast methods in 2009.  All measures are given in ppbv for peak 
domain-wide 8-hour average O3 concentrations.  The skill score measures are based on a 2 x 2 contingency 
table using 76 ppbv (Code Orange) as the threshold (Stephenson, 2000). “AE” refers to absolute, or 
unsigned, error.  The “Threat” score is also known as the Critical Success Index (CSI).  A summary of skill 
score measures can be found at:  http://www.meteo.psu.edu/~wfryan/ams2010/skill-contingency-2009.docx 
 
 
 

 
Philadelphia Ozone Forecasts (2009) 

Error and Skill Measures 
 

 
NAQFC Binned Bias 

Running 
Bias 

Trend Ensemble Persistence 

Bias 4.3 2.8 -0.2 -0.3 6.0 0.0 

Mean AE 7.5 6.8 7.2 7.9 7.6 10.6 

Median AE 7.0 6.7 6.5 7.0 6.4 10.0 

rms 8.9 7.6 8.8 9.5 9.2 12.8 

 Skill Score Measures 

Hit 0.71 0.57 0.67 0.67 0.71 0.14 

False Alarm 0.74 0.67 0.56 0.64 0.71 0.86 

Threat 0.24 0.27 0.36 0.31 0.26 0.08 

 
 

 
 
 
 
 
 
 

Table 2. A summary of information describing the multiple linear regression model (MLR) used to post-
process NAQFC forecasts for Philadelphia in 2009.  The model was trained using data from 2007-2008 (N = 
269).   
 
 

 
Multiple Linear Regression Model for 

Post-Processing NAQFC Forecasts in Philadelphia 

 

 
[O3]obs = 0.58*[ O3]NAQFC + 0.44*Tmax + 0.17*[O3]lag – 21.3 

(r = 0.79;  r
2
 = 0.65) 

 

 Standard 
Coefficient 

(“Beta” Weight) 
Tolerance t 

NAQFC 0.512 0.397 8.58 

Tmax 0.209 0.411 3.56 

Persistence O3 0.168 0.683 3.69 
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Table 3.  Forecast results and skill scores, as in Table 1, for the NAQFC model, two post-processing 
methods described in the text (MLR Model and 2-Day Running Bias Correction), the forecast issued to the 
public after expert analysis (Public Forecast), and the reference forecast (Persistence). 
 

 
Philadelphia Ozone Forecasts (2009) 

Error and Skill Measures 

 

 
NAQFC MLR Model 

Public 
Forecast 

Running 
Bias 

Persistence 

Bias 4.3 3.0 3.4 -0.2 0.0 

Mean AE 7.5 6.4 6.4 7.2 10.6 

Median AE 7.0 5.9 5.0 6.5 10.0 

rms 8.9 8.2 8.0 8.8 12.8 

 Skill Scores 

Hit 0.71 0.71 0.57 0.67 0.14 

False Alarm 0.74 0.50 0.56 0.56 0.86 

Threat 0.24 0.42 0.33 0.36 0.08 

 
 
 
 
Table 4.  Brier Score and Brier Skill Score for PHL O3 forecasts in 2009.  Persistence is used as the 
reference forecast for the calculation of the Brier Skill Score.  Three categories, based on the lowest 25

th
 

percentile of observed O3, the inter-quartile range and the highest 25
th

 percentile, were used to calculate the 
Brier scores.  The Old Statistical Model is trained on pre-NOx SIP Rule data and the New Statistical Model is 
trained on post-NOx SIP Rule data.   
 
 

 
Brier Score Measures for 2009 

Philadelphia Forecast Area 

 

 Brier Score Brier Skill Score 

NAQFC 0.30 0.23 

MLR Model 0.20 0.50 

Running Bias 0.26 0.34 

Old Statistical Model 0.43 -0.09 

New Statistical Model 0.34 0.14 

Persistence 0.39 - 

 
 
  



Figure 1.  The Philadelphia metropolitan air quality forecast area (blue box) with location of surface 
O3 measurement monitors given by black triangles.  Figure courtesy of USEPA AirNow Tech website 
(http://www.airnowtech.org/). 

  

 
 
 
 
Figure 2.   Forecast bias for peak domain-wide 8-hour O3 for two statistical models used in the 

Philadelphia metropolitan area for the summer (early May-early September) seasons of 2003-2009.  
Both models used MLR regression techniques and were trained on data preceding the regional NOx 
emission controls in 2002. 
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Figure 3.  Peak 8-hour average O3 forecast (in ppbv) for August 5, 2009 from the NAQFC model initialized at 
1200 UTC on August 4.  Figure courtesy of NOAA EMC Mesoscale Modeling Branch 
(http://www.emc.ncep.noaa.gov/mmb/aq/). 

 
 

Figure 4.  Selected skill measures for peak 8-hour average O3 for the NAQFC model in the PHL area for 
2007-2008.  Bias, mean and median absolute error (in ppbv) are at the top left.  Pearson’s correlation 
coeffient (r) and explained variance (r

2
) for a simple linear regression model, using NAQFC forecast O3 as a 

predictor, are given in the bottom left.  A histogram of signed forecast error is given on the right. 
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Figure 5. Maximum temperature at PHL and peak 8-hour O3 concentrations observed and forecast 
for the summer season of 2009. 
 
 
 
 

 
 
 

 
 

 
 

Appendix A.  A Partial List of Operational Numerical O3 Forecast Models 

 
 
National Air Quality Forecast Capability Model (NOAA/EPA):   
http://www.weather.gov/aq/ 
 
Environment Canada:   
http://www.weatheroffice.gc.ca/chronos/index_e.html#o3_10   
 
Barons Advanced Meteorological Systems:   
http://www.baronams.com/ 
 
University of Houston, Institute for Multi-Dimensional Air Quality Studies:  
http://www.imaqs.uh.edu/ozone_forecast.htm 
 
North Carolina Department of Environment and Natural Resources, Division of Air Quality: 
http://daq.state.nc.us/airaware/forecast/model/ 
 
SUNY-Albany, Atmospheric Sciences Research Center: 
http://asrc.albany.edu/research/aqf/aqvis/tomorrowforecast_maps.htm 
 
Washington State University, Air-Quality Forecasting for the Pacific Northwest (AIRPACT): 
http://lar.wsu.edu/airpact-3/ 

http://www.weather.gov/aq/
http://www.weatheroffice.gc.ca/chronos/index_e.html#o3_10
http://www.baronams.com/
http://www.imaqs.uh.edu/ozone_forecast.htm
http://daq.state.nc.us/airaware/forecast/model/
http://asrc.albany.edu/research/aqf/aqvis/tomorrowforecast_maps.htm
http://lar.wsu.edu/airpact-3/

