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1. ABSTRACT 
 

River forecasts have two broad uncertainty 
classes: errors associated with meteorological forecasts, 
and those associated with the hydrologic model.  We 
developed a technology (dubbed Absynthe) to address 
the latter error class in a practical and defensible way.  
The technique merges the proven, Monte Carlo-based 
Generalized Likelihood Uncertainty Estimation (GLUE) 
concept for model parameter identification with: (i) 
multiple performance goals defined by operational and 
physical considerations, including matching daily, 
seasonal, and annual flows as well as snowpack, as 
expressed via individual behavioural criteria and a net 
likelihood function; (ii) several moving (rank-based) 
constraints to assure non-pathological parameter sets, 
containing values that are physically plausible not only 
for each parameter individually but also collectively; and 
(iii) a hard constraint on snow-free elevation bands to 
force the surface meteorological component of the 
watershed model toward correct solutions.  The result is 
an ensemble of parameter sets reflecting model 
uncertainty as captured in a loosely Bayesian 
framework.  BC Hydro will combine these with ensemble 
NWP weather forecasts to generate uncertainty 
estimates for operational hydroelectric reservoir inflow 
forecasts.   
 
2. INTRODUCTION 
 

Operational forecasts of streamflows (or derived 
quantities, such as reservoir inflow volumes or flood 
height) have two main classes of uncertainty.  These are 
errors associated with meteorological forecasts, and 
those associated with the hydrologic model.  The former 
include limitations to NWP capabilities in terms of both 
the accuracy and forecast horizon of meteorological 
forecasts, arising (broadly speaking) from deterministic 
chaos and data availability constraints.  Additional issues 
like heterogeneous boundary-layer effects in 
mountainous terrain, downscaling of NWP forecasts to 
local ground locations, and the limited spatial and/or 
elevation coverage of an existing surface station 
meteorological network, can all play important roles as 
well.  Errors associated with hydrologic modelling include 
model structural errors (such as a failure to represent all 
required terrestrial hydrologic processes for a given 
catchment at a level appropriate for a particular 
application), and parameter uncertainty as it arises in the 
process of model calibration. 

Calibration is the procedure of adjusting the 
values of certain fixed parameters within a mathematical-
computational watershed model such that it is optimized 

for application to a particular river.  Further general 
background on calibration is provided below in Section 
3.  In principle, calibration might seem to be a mundane 
procedure having only second- or third-order 
importance to hydrologic forecasting.  In practise, 
however, matters are usually quite different.   

A good calibration is a key source of 
hydrologic forecast skill, and conversely, a poor 
calibration can easily render a watershed model largely 
useless.  Indeed, calibration quality can overwhelm the 
completeness or accuracy of process physics 
representation within the model as a source of forecast 
skill, or lack thereof.  The question of identifying an 
optimum parameter set also turns out to be technically 
challenging, due to model nonlinearity, tradeoffs 
between model parameters, tradeoffs between multiple 
objectives, tradeoffs between quantitative objectivity 
and soft knowledge, and data constraints.  One 
consequence is the principle of equifinality (again 
discussed in further detail below in Section 3), which 
reflects the nonuniqueness of parameter values in 
terms of a given error metric.  Further, hydrologic model 
calibration is simply one example of the broader and 
very sophisticated problem of mathematical 
optimization, and has thus attracted applications of 
some of the most intellectually esoteric concepts to be 
found in the environmental sciences, including 
widespread adoption of bio-mimicry approaches such 
as evolutionary algorithms and particle swarm 
optimization.  At the same time, although there are 
clearly wrong (or at least poor) approaches to 
hydrologic model optimization, there does not appear to 
be a single right answer either.  Rather, the collective 
experience of the hydrologic modelling community has 
been that the most appropriate tool for a particular job 
is determined by a range of application-specific 
constraints and goals, both theoretical and applied in 
nature.  Additionally, uncertainties in other parts of the 
hydrologic forecasting chain may be propagated into 
parameter values.  For instance, many hydrologic 
models contain a parameter which adjusts 
meteorological station data in the basin for biases 
relative to the (in general, imprecisely known or 
occasionally, completely unknown) true total 
precipitation in the basin.  That parameter value will 
obviously be sensitive to the representativeness of the 
surface meteorological station network; further, as that 
representativeness is often unclear, additional 
uncertainty is generated in the parameter value. 

The net result of all the above considerations 
is that there is usually considerable uncertainty 
regarding the optimum parameter set, and such 
uncertainty is often in turn a major source of hydrologic 
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forecast error.  By extension, obtaining a good 
quantitative understanding of that parameter uncertainty 
enables quantitative estimation of confidence bounds 
around hydrologic forecasts. 

This article summarizes work completed at BC 
Hydro to (1) review existing watershed model 
optimization and uncertainty estimation technologies for 
applicability to BC Hydro’s operational hydrological 
forecast system, (2) develop a new method, consisting of 
a series of modifications of well-accepted existing 
technique, and (3) apply that technology to the re-
calibration of operational inflow forecast models for 21 
hydroelectric reservoirs.   
 
3. BACKGROUND 
 
3.1 BC Hydro operational forecast system 
 

BC Hydro is a power utility and British Columbia 
crown corporation that generates 43,000 to 54,000 GWh 
annually, primarily through 31 hydroelectric facilities, 
providing electricity to an area containing over 94% of 
BC’s population.  The responsibilities of BC Hydro’s 
Hydrology and Technical Services group (H&TS) include 
hydroclimate data collection and management, 
operational weather and reservoir inflow forecasting for 
BC Hydro engineers and planners, and improvement of 
the systems used to accomplish these duties.  We also 
are called upon to lead efforts to address the impacts of 
climatic variability and change upon reservoir inflows. 

There are four main types of hydrologic regimes 
in the BC Hydro watersheds for which H&TS issues 
operational forecasts (Figure 1).  (1) Rainfall-dominated 
(pluvial): these regimes are found mainly in low-elevation 
coastal regions. Inflow values closely follow those of 
rainfall. The maximum monthly flows usually occur in 
November and December, while the minimum monthly 
flows usually occur in July and August.  (2) Snowmelt-
dominated (nival): snowmelt regimes commonly occur in 
the mountain regions and the interior of the province. 
Winter precipitation dominantly falls as snow and remains 
in storage as snowpack until the spring melt freshet. The 
highest flows occur in May, June and July, while the 
lowest flows occur in the winter months, or very late 
summer.  (3) Combined rainfall and snowmelt (hybrid): 
many watersheds near the coast of British Columbia 
demonstrate characteristics of both rainfall and snowmelt 
dominated streamflow regimes. High inflows will occur in 
winter months (November, December, and January) due 
to rainfall events, and again during the spring snowmelt 
(May, June, and July). Lower inflows occur in the months 
in-between.  (4) Combined snowmelt and glacial melt 
(glacionival): High elevation watersheds can exhibit both 
snowmelt and glacial melt characteristics. These 
watersheds typically exhibit their highest inflows in the 
late summer (July, August), and lowest flows occur in the 
winter months when precipitation primarily falls as snow 
and remains in storage. 

H&TS issues both short-term and long-term 
forecasts of reservoir inflows.  Short-term inflow forecasts 
are made, once each working day or more often if 
deemed necessary, of daily mean inflow rates in cubic 

metres per second (cms), over a rolling 5-day forecast 
horizon, for each of 21 BCH projects. The forecasts are 
issued by H&TS by noon. There are four main 
components to the daily forecast process.  The first is 
data quality control (QC).  H&TS data analysts ensure 
that the incoming meteorological and inflow data are 
gap-free and of sufficient quality for use in the short-
term forecast process.  These data stem from BC 
Hydro’s Data Collection Platforms (DCPs), which are 
automated weather and hydrometric stations with 
telemetry; Environment Canada's observer network; 
Water Survey of Canada’s hydrometric network; and 
BC Hydro's FLOCAL inflow calculation program, which 
generates estimates of local (generally, unregulated) 
reservoir inflows on the basis of reservoir water level 
elevation, electric generation, and other information 
sources.   The second component is the weather 
forecast. In-house meteorologists consider solutions 
from various NWP models run by Environment Canada 
and others, with bias correction performed on contract 
by the University of British Columbia, and then form 
site-specific temperature and precipitation forecasts for 
our basins.  The third component is the inflow forecast 
product itself.  On a basin-by-basin basis, H&TS 
hydrologists run a process-oriented watershed model, 
called the UBC Watershed Model (see below), 
integrating past (observed) and future (forecast) 
weather to generate reservoir inflow forecasts for each 
day over the next five days.  The model is run within the 
River Forecast System (RFS), a software package 
custom-built for H&TS by Accenture, containing the 
UBC Watershed Model recoded in Visual Basic, a 
graphical user interface (GUI), and report generation 
features, coupled to an Oracle database (Weiss 2001).  
The fourth component is forecast product 
communication. Weather and inflow forecast 
summaries are compiled in tabular and graphical form, 
posted on the H&TS website, and disseminated via text 
files and emails.  Note that, although many of the 
constituent tasks have been automated, each step in 
the foregoing process requires a healthy manual 
injection of professional judgment and experience.  This 
applies also the forecast updating process for the UBC 
Watershed Model.  Forecast updating is critical to 
increase the accuracy of operational runoff forecasts 
generated with physically-based hydrologic models.  At 
BC Hydro, input and simulated state variables many be 
manually adjusted based on supplementary 
hydroclimate data available and past model 
performance.  Calibrated parameters are left 
unchanged. 

Long-term water supply (also called long-term 
seasonal or, simply, seasonal) forecasts are made at 
the beginning of every month, from November onward 
to August, for each of 25 BCH basins. Although details 
vary between basins, with additional steps taken (for 
example) to satisfy Columbia River Treaty 
requirements, the overall emphasis is on making 
forecasts of total inflow volumes in millions of cubic 
metres (Mcm) (but usually expressed as % of normal 
conditions) over the upcoming February-September 
period.  Two techniques are used. One is statistical (the 
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VoDCa system, based on principal components 
regression; Garen, 1992). The second is the process-
oriented UBC Watershed Model, run in an Ensemble 
Streamflow Prediction (ESP) framework, again within the 
RFS environment (see above). Both yield probabilistic 
volume predictions, consisting of a best estimate along 
with confidence bounds.  Because the usable forecast 
horizon for detailed NWP models in this region is only a 
few days to a week at most, long-term weather forecasts 
are not available for the long-term water supply forecast.  
Instead, the reservoir inflow predictions mainly reflect 
initial conditions in each basin as of the forecast date, 
including antecedent precipitation and flows, along with 
snowpack for those forecast dates when it is available.  
For seasonal forecasts based on the UBC Watershed 
Model, accuracy can again heavily depend on skillful 
operational forecast updating, especially snowpack 
updating.  As used at BC Hydro, snowpack “updating” is 
a semi-quantitative snow water equivalent (SWE) data 
assimilation method, which corrects model-simulated 
SWE when measured SWE become available.  BC 
Hydro’s statistical forecast models additionally 
incorporate some climate state (specifically, El Niño-
Southern Oscillation) information in some cases.  This 
study focuses on calibration of the UBC Watershed 
Model used for both short-term and seasonal forecasting; 
the VoDCa system is briefly described above only for 
context. 
 The UBC Watershed Model is a process-
oriented, modestly physically based, “conceptual” 
streamflow model (e.g., Quick, 1995).  It is largely semi-
distributed in space, using elevation bands to distribute 
precipitation, track snowpack accumulation and 
depletion, and describe variability in some physical 
parameters like impermeable area, but other terrestrial 
hydrologic characteristics are treated as spatially lumped.  
Its current operational implementation in H&TS is fully 
deterministic for daily forecasting, but probabilistic (using 
an ESP approach, as noted above) for seasonal 
forecasting.  The UBC Watershed Model is considered 
appropriate to operational forecasting in British Columbia 
as, relative to many other models, it offers an appropriate 
mixture of properties, including accommodation of 
mountainous & forested terrain, complex meteorological 
gradients, and key regional runoff sources (rainfall, 
snowmelt, and glacial melt); it imposes comparatively 
modest day-to-day operational data requirements; and it 
is considered to have a lengthy and solid track record in 
practical applications. 
 
3.2 Hydrologic models and calibration 

 
Parameter uncertainty refers to issues 

associated with the hydrological model calibration 
process.   

A watershed model mathematically maps, in 
one way or another, inputs (meteorological data) to 
outputs (terrestrial hydrologic data, and in particular, 
streamflow rates or volumes).  Process-oriented models, 
which form the focus of the discussion here, accomplish 
this task by capturing the physics of runoff generation.  
Note, however, that many of the concepts discussed in 

this article apply equally well to strictly empirical 
techniques like statistical or soft-computing models.  
Because runoff generation involves many physical and 
biological processes, and the goals and therefore 
needs of any given modelling exercise may be different 
(e.g., fundamental research vs. operational 
forecasting), many different hydrologic modelling 
approaches have been developed.  These range from 
spatially lumped to fully spatially distributed 
representations of a watershed, and from approximate 
back-of-the-envelope mathematical relationships to full 
numerical solutions of governing partial differential 
equations.   

In virtually all cases, however, some degree of 
parameterization is involved.  That is, some salient 
characteristic of the terrestrial hydrologic environment is 
captured using a parameter, and the value(s) of that 
parameter must be determined for a particular 
watershed.  Physical considerations, direct field 
measurements, and personal experiential knowledge of 
the performance of a given watershed model in a given 
hydroclimatic environment all inform this procedure.  
Ultimately, however, it is usually necessary to iteratively 
adjust various parameter values such that the observed 
streamflow hydrograph is matched as well as possible 
by the hydrologic model output for the catchment, over 
some training period with known weather inputs.  That 
process is known as calibration. 

There are, essentially, two basic philosophies 
of hydrologic model calibration.  The first is manual 
calibration.  The procedure involves manually adjusting 
model parameters until an acceptable fit between the 
observed and modelled streamflow hydrographs is 
obtained.  The primary advantage of this technique is 
that it readily accommodates “soft knowledge,” i.e., the 
experiential knowledge and intuition of the hydrologic 
scientist or engineer.  One disadvantage is that the yin 
of accommodating soft knowledge is accompanied by 
the yang of strong sensitivity to modeller skill and 
opinion, that is, a lack of objectivity.  Two modellers 
may obtain very different parameter sets for precisely 
the same model and data.  A second, related 
disadvantage is that, in general, it is very unlikely that 
the parameter space will be thoroughly sampled in the 
course of a manual calibration.  There is simply not 
enough time to explore every combination of each 
“free” parameter (the parameters to be adjusted in the 
course of calibration).  There presumably is therefore a 
good chance that the final parameter set may not be 
truly optimal, or perhaps even a reasonable 
approximation to the optimal parameter set.  Manual 
calibration has also been criticized as being a slow, 
painstaking process.  The validity of this criticism is 
likely context-dependent.  Optimization algorithms, as 
discussed below, might be reasonably expected to 
speed the calibration process for fully distributed 
watershed models due to the hundreds or even 
thousands of parameter values that may have to be 
adjusted, depending on how the specific model 
operates and the exact calibration approach adopted.  
On the other hand, practical experience with the 
application of optimization routines to environmental 
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models will, in general, quickly educate a user that the 
process is in general not straightforward or quick, and for 
simpler hydrologic models, it may be unclear whether 
manual calibration is slower or faster than so-called auto-
calibration.   Perhaps the single most problematic aspect 
of manual calibration, however, is that it is inherently 
incapable of generating quantitative uncertainty 
estimates, in terms of either parameter uncertainty or the 
hydrologic prediction uncertainty that arises from it.  
Granted, some feeling for parameter identifiability can be 
obtained through post-hoc sensitivity analyses.  
However, these in general involve only minor 
adjustments of parameter values, in the immediate 
vicinity of the ostensible best set, on a parameter-by-
parameter basis without addressing parameter 
interactions and trade-offs. 

The second philosophy, optimization, involves 
the application of computational algorithms to determine 
the best parameter set, where “best” is quantitatively 
described by some prescribed fit or error metric.  
Common measures include root mean squared error 
(RMSE) and Nash-Sutcliffe efficiency (NE) of the 
modelled streamflow hydrograph, relative to the 
observational dataset.  A broad variety of optimization 
algorithms are available, and the development of refined 
or new approaches and routines is an active field of 
research in mathematics.  These methods are reviewed 
below in Section 4.1.  The advantages and 
disadvantages of this automated calibration philosophy 
are essentially the opposite of those listed above for 
manual calibration.  Automated optimization offers 
potential to thoroughly sample the parameter space, 
identify the best parameter set, and quantitatively 
describe parameter uncertainty as a means for both 
assessing parameter identifiability and numerically 
estimating hydrologic prediction uncertainty.  The 
disadvantages are that it is unclear whether many 
optimization techniques fully meet that potential, soft 
knowledge is considerably more challenging to 
incorporate into the process, a plethora of techniques 
exists, and in practise, higher information technology (IT) 
requirements are often involved.  The question of 
objectivity is a somewhat grey area.  Subjective, or only 
partially objective, choices must be made regarding the 
optimization technique and objective function(s) to be 
used.  However, once placed into motion, an optimization 
algorithm is essentially objective, and there seems little 
doubt that the overall process is more objective than 
manual calibration.   

Although optimization algorithms have been 
applied for decades to watershed model calibration in a 
research context, use of these techniques within the 
practitioner community remains very limited.  There are 
undoubtedly a number of reasons for this relative lack of 
adoption, but likely the dominant problem reflects the lack 
of soft knowledge in the automated process, with a 
common criticism being that there are no guarantees of 
physically and/or intuitively plausible results.      
 
 
 
 

3.3 Project context, goals, and approach 
 

The UBC Watershed Model as employed for 
inflow forecasts within the RFS was last calibrated 
about eight years ago.  Manual calibration techniques 
were employed for all basins.  A decision was made in 
2006 to initiate a process for recalibration of the UBC 
Watershed Model for all basins within the RFS. The 
general goals of the recalibration exercise are as 
follows: 

 
1. Update the models using more recent 

hydrometeorological and land cover data.  An 
additional half-decade to decade of meteorological 
data are now available.  Given that 
hydrometeorological records for many basins in 
British Columbia are short, this additional data may 
offer significant opportunity to expand the database 
used for calibration (and for ESP forecasting 
following incorporation of the recalibrated UBCWM 
into the operational RFS).  Further, 
nonstationarities in hydrologically salient land 
surface properties, such as glacial and forest 
cover, are such that updating the model setup with 
more recent estimates of these quantities will 
provide a more accurate representation of the 
watershed, potentially yielding improved forecasts. 

2. Improve the efficiency of the calibration process.  
Standardize the calibration process to minimize 
trial-and-error procedures.  Procedures for input 
station selection are an important example.  
Calibration in general requires many hours or days 
on a manual basis (and even using the automated 
procedures in Absynthe discussed below), as 
calibration is not a quick and easy process.  
Repeating the calibration multiple times for each 
watershed using each of a variety of 
meteorological input station combinations would 
therefore slow down the recalibration project 
considerably.  In contrast, a standardized protocol 
would require far less time (both personnel and 
CPU) per basin.   

3. Improve quality of the models by working to 
remove known biases and errors.  For example, 
consistent and substantial biases are known to 
exist in modelled flow volumes for certain months 
in certain basins.  Further, a few errors are known 
to be present in the UBC Watershed Model input 
parameter (.WAT) files for certain basins.  Such 
known biases and errors will be addressed in the 
recalibration. 

4. Obtain a measure of the prediction uncertainty 
arising from model parameter uncertainty.  To 
reiterate, many watershed model parameters, 
though having clear physical meaning, cannot be 
estimated directly by field or laboratory 
observation.  Rather, these parameters must 
primarily be estimated by calibrating the model to 
existing watershed-scale datasets (i.e., 
meteorological time series to drive the model, and 
streamflow time series as model output).  The 
calibration process involves finding a set of 
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parameter values that minimizes the difference 
between observed and model-simulated 
streamflows.  Even in hindcast mode, however, 
various error sources will lead to imperfect 
hydrologic predictions and to imperfect parameter 
value estimates.  Further, simulation error as a 
function of parameter value is typically a complex 
and nonlinear function for watershed models, and it 
is often challenging to find the global (rather than 
local) minimum.  Finally, watershed models are 
nonunique in terms of error as a function of 
parameter values.  This phenomenon does not 
necessarily imply physical nonuniqueness of 
watershed response, but rather refers to the fact 
(termed equifinality in the hydrology literature) that 
equally good predictions, as measured using some 
error metric such as the Nash-Sutcliffe efficiency for 
instance, can usually be produced using different 
parameter sets for a given model and dataset.  Thus, 
an entire suite of parameter sets may be identified 
as optimal or near-optimal, yet each may actually 
yield a different hydrograph.  Thus, it is very useful to 
obtain (i) quantitative estimates of parameter 
identifiability to support model diagnosis, and (ii) 
quantitative estimates of prediction uncertainty for 
operational forecast use. 

 
At an early stage in the process, it was decided 

that a reasonable “best” approach would be initially 
identified.  Due to time and resource constraints, 
experimentation with a variety of techniques (e.g., a 
range of algorithms for automated watershed model 
calibration) would not be feasible in practice.  A project 
roadmap was therefore developed on the basis of the 
following considerations: 
 
• Evaluation of technical information and hands-on 

experiential insights gained from a variety of 
sources.  These information sources included 
discussions with BC Hydro personnel, such as brief 
interviews with forecast product users and 
experienced modellers; extensive literature reviews; 
discussions with outside personnel having significant 
experience with calibration of semi-distributed 
watershed models in British Columbia’s challenging 
hydrologic landscapes, coupling the UBC Watershed 
Model to automated calibration schemes, 
optimization technique development, and/or 
automated calibration of watershed models for the 
purpose of operational flood and/or hydroelectric 
inflow forecasting in both BC and other Nordic 
hydrologic environments, including but not limited to 
discussions at various conferences; and prior 
personal experience with the implementation and 
use of optimization techniques for quantitative earth 
systems modeling. 

• The necessity for satisfying all four general project 
goals as outlined above in this section. 

• The necessity for balancing sophistication against 
practical considerations, such as methodological 
robustness, project and timeline risk minimization, 

and relative ease of implementation under time and 
resource constraints. 

 
4. METHODS 
 
4.1 Optimization review 
 
 As noted in Section 2, the first major project 
step was to perform a review and assessment of 
watershed model parameter optimization and 
uncertainty estimation techniques.  A summary of 
results is provided below.   
 
4.1.1 General concepts 
 

Optimization has been a distinct subdiscipline 
of mathematics for generations, reflected in such 
classical puzzles as the backpack problem and the 
traveling salesman problem.  The latter belongs to a 
class of mathematical problems known as NP-complete 
or NP-hard problems, which are notoriously difficult to 
solve because the computational cost involved 
increases exponentially with the dimension of the 
problem (e.g., Press et al., 1992).  Indeed, the traveling 
salesman problem continues to be employed as a 
research test question to this day, for instance in 
quantum computing investigations. 

Optimization problems arise throughout the 
physical, biological, and social sciences.  Although a 
variety of different problems fall under the general 
rubric of optimization, including the combinatorial 
(discrete) optimization considered by the traveling 
salesman problem, and goal-seeking subject to 
constraints as addressed through linear programming, 
the basic idea in many cases (and which is considered 
here) is as follows.   

One begins with a mathematical and 
computational model of some system of interest.  That 
model contains parameters which cannot be directly 
measured in a meaningful way.  The “best” values for 
the parameters are therefore found through an iterative 
process, whereby many values are tried in the model, 
and the values that give model predictions best-
matched to observational data are identified as correct, 
or at least sufficiently good for a given purpose. As 
noted above, in the case of watershed modeling, the 
data to be matched are (in general) streamflow 
observations, and the overall process is often known as 
automated calibration; inverse modeling and parameter 
estimation are other synonyms. 

Automated watershed calibration can be a 
tricky application of optimization techniques, because 
the optimization problem is in this case usually ill-
posed.  A well-posed inverse problem involves a 
mathematical model having the following properties: (i) 
a solution exists; (ii) the solution is unique; and (iii) the 
solution depends continuously on the data.  The main 
problem lies with (ii) vis-à-vis the equifinality of 
watershed models, which refers to the fact that, in 
general, a given degree of error is not uniquely 
associated with a particular parameter set.  The 
problem is particularly severe for high-dimensional 
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models, which contain a large number of free parameters 
to be estimated during the optimization process.  These 
facts can have profound practical implications for 
watershed model calibration, as summarized below. 
 
4.1.2 Early methods 
 

An early attempt at systematic optimization of 
watershed models was the random search, along with 
more sophisticated variants.  The overall idea in this 
case is simply to randomly search the feasible parameter 
space – that is, the range of values thought physically 
plausible for each free parameter in the optimization – 
until a best set is found.  Problems with this approach 
are that it is essentially a blind search, and therefore 
computationally inefficient; and that one can never be 
absolutely certain that the exact best parameter values 
have been found, because there is little or no imposed 
movement in the search toward an error minimum.  The 
latter problem, however, might be mitigated by two 
considerations at a practical level: a sufficiently 
extensive search yielding a reasonable final calibration 
may prove quite adequate for a given modeling task, and 
subsequent work has questioned the meaningfulness 
and usefulness of a single, absolute-best parameter set 
(see discussion of GLUE methodology below).  Raw 
random search algorithms have not been suggested for 
some time as a preferred approach to watershed 
calibration.  However, due in part to their ability to 
sample essentially the entire feasible parameter space, 
similar concepts play a central role in several modern 
techniques, as discussed below. 

Another early line of work employed various 
types of gradient-descent algorithm.  The best-known of 
these within the environmental sciences, though also 
used much more broadly, is the Levenberg-Marquardt 
algorithm and its variants.  The basic idea behind 
gradient-descent methods is as follows.  An objective 
function, also known as a cost or error function, is 
defined.  This function gives a measure of the mis-match 
between observed and model-predicted streamflows, 
such as RMSE.  One wishes to find model parameters 
which minimize this cost function.  As a function of all the 
parameters, the objective function forms an error 
landscape, and the best-fit set of parameter values 
corresponds to the lowest point in that surface.  
Individual techniques vary, but gradient-descent 
approaches are based in one way or another on the 
partial derivatives of the objective function with respect 
to the parameters; one thus uses the derivative to find 
the direction “downhill” from some starting position to the 
lowest point in the error landscape.  Under certain 
assumptions, statistical confidence bounds on the best-
fit parameter values can be directly inferred from the 
results (e.g., Fleming and Haggerty, 2001), and these 
can in turn be used to generate Monte Carlo model 
predictions reflecting the effects of parameter 
uncertainty.   

A problem with gradient-descent techniques is 
that in complex nonlinear problems, such as most types 
of watershed modeling, the error terrain has a 
complicated form, with many individual dips and hollows 

apart from the global minimum.  Gradient-descent 
techniques tend to go downhill until the first low point is 
found, and then stop.  They therefore get trapped in 
such local error minima, rather than finding the global 
optimum.  Such methods are therefore known as local 
search techniques.   

A potential work-around is multi-start local 
optimization, whereby the entire procedure is 
independently repeated several times with different (in 
general, randomly chosen) initial starting points, and 
the best-performing of the resulting parameter 
estimates are selected as the optimum parameter set.  
As is the case for random searches, difficulties with 
multi-start gradient-descent algorithms include 
computational inefficiency and a lack of assurance that 
the precise global optimum has been attained.   

There are three additional potential issues 
with gradient-descent techniques; these appear to 
have been at least partially overcome in more recent 
implementations, but are still worth noting.  First, a 
feasible parameter space is not specified a priori.  
Consequently, physically unrealistic parameter values 
may be returned by the algorithm.  However, methods 
have been developed to help circumvent this problem, 
such as regularization.  Second, gradient-based 
optimization techniques are also occasionally criticized 
because analytical expressions for the derivatives of 
the objective function with respect to the model 
parameters can be difficult or impossible to obtain for 
computational watershed models (e.g., Duan, 2003).  
However, it is unclear whether this critique is still 
relevant to modern applications.  In practice, 
algorithms implementing finite-difference 
approximations to the Jacobian matrix have 
progressed sufficiently to be used with success for 
difficult environmental modeling problems; some fairly 
recent examples include Fleming and Haggerty (2001) 
and Haggerty et al. (2001).  Third, local-search 
methods are normally applied only to a single objective 
function.  However, a composite objective function 
containing several optimization goals can be 
constructed, with varying degrees of success (see also 
Section 4.1.4 below).   

Although often dismissed in the modern 
automated watershed calibration literature, local-type 
gradient-descent algorithms are perhaps more widely 
used in practise than ever.  The Parameter ESTimation 
(PEST) software application uses a cutting-edge 
implementation of the Levenberg-Marquardt routine.  It 
is available in both non-GUI freeware and GUI-driven 
proprietary forms, and in both conventional and 
parallelized versions.  Capabilities for regularization, 
sensitivity analysis, and parameter confidence bound 
estimation are incorporated.  A major advantage of this 
application is that it is intended to be model- and 
platform-independent, so that in principle it can be 
coupled to any pre-existing environmental modeling 
application without the need for software development 
or revision.  While references to the software in the 
peer-reviewed literature (e.g., Gallagher and Doherty, 
2007) are limited relative to some of the techniques 
discussed below, it is perhaps the most widely 
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employed tool for automated calibration of environmental 
models in practice.  The technique is used regularly in 
private-sector consulting and by governmental regulatory 
bodies, with applications ranging from hydrogeological to 
rainfall-runoff to water quality modeling.  The freeware 
version is available for download through the US EPA’s 
website (http://www.epa.gov/ceampubl/tools/pest/), 
which might be viewed as a de facto endorsement of its 
use.  It is also to be noted that gradient-descent and 
related approaches, including but not limited to the 
Levenberg-Marquardt algorithm, are routinely used today 
to train neural networks (e.g., Li, 2005; Fleming, 2007), 
and the various solutions obtained using different 
random initial network biases and weights (in what 
amounts to a multi-start local-type optimization 
procedure) can be used to form the basis of ensemble 
ANN models (e.g., Hsieh, 2001). 

However, as noted above, the Levenberg-
Marquardt and related or analogous algorithms may not 
deal efficiently with the issue of local vs. global error 
minima, and they do not appear especially well-suited to 
directly addressing certain key issues that have emerged 
in watershed modeling, such as multiple objective 
functions or equifinality.  Further, conversations with 
other modellers and IT personnel seemed to suggest 
that considerable project overhead might be involved in 
specifically coupling the UBC Watershed Model to 
PEST.  Thus, although local optimization techniques like 
Levenberg-Marquardt remain in general a valuable 
workhorse for a wide variety of optimization problems, 
and the PEST package appears to be a generally well-
respected and widely-used approach, local search 
methods are not considered further here. 
 
4.1.3 Global search methods 
 

The watershed calibration problem of finding 
the global optimum with some confidence, and in 
reasonable CPU time, was largely solved by the 1990s.  
Two key methods were genetic algorithms (GA) and 
Markov Chain Monte Carlo (MCMC).  These and other 
successes led to the development and very widespread 
adoption of the shuffled complex evolution algorithm 
(SCE; sometimes denoted SCE-UA to denote its origin 
at the University of Arizona). 

Genetic algorithms involve a view of 
optimization as a (literally) evolutionary process.  GAs 
are reported (Wagener et al., 2004) to have been first 
applied to watershed model calibration by Wang (1991).  
Chromosomes are defined as the set of free parameters 
in the optimization problem, and individual genes on 
those chromosomes represent individual free 
parameters.  A population of chromosome values is 
randomly generated.  Then, in successive generations, 
the genetic content of the chromosomes is altered 
through such analogs to biological evolution as breeding, 
crossover, and mutation.  The overall process involves 
random changes superimposed upon an evolution to the 
fittest genetic structure, where fitness is defined as the 
global minimum in the error landscape.  Thus, the 
method includes both a thorough random sampling of 
the feasible parameter space, helping ensure that a 

global rather than local optimum is achieved, and a 
driving force toward the optimum, achieving greater 
efficiency and better assurance that a precise error 
minimum has indeed been attained. 

Markov Chain Monte Carlo methods similarly 
consist of what might be loosely viewed as a directed 
random search.  Two relatively early and still-important 
implementations are the Metropolis algorithm and 
simulated annealing (SA) (e.g., Press et al., 1992).  
The Metropolis algorithm appears to have been first 
applied to watershed model calibration by Kuczera and 
Parent (1998), although the method dates to the 
1950s, and simulated annealing had previously been 
applied to other optimization problems in 
environmental and geophysical model fitting.  The 
overall idea is as follows.  The feasible parameter 
space is randomly sampled and the objective function 
is evaluated; this may be viewed as the Monte Carlo 
component.  The objective function value is then 
compared to that in the last iteration of the optimization 
routine; such first-order memory corresponds to the 
Markov chain component of the algorithm.  If the 
prediction error is lower in the new iteration, the new 
parameter set is always retained.  If the prediction error 
is instead higher in the current iteration, there is still a 
small but non-zero probability that the new parameter 
set is retained.  That is, improvements are always 
accepted; degraded performance is occasionally 
accepted.  Thus, as in GA, the probabilistic aspect of 
the method avoids trapping in local minima, but there is 
an overall impetus within the algorithm to descend the 
error gradient, affording greater efficiency than (for 
instance) a purely random search. 

The shuffled complex evolution algorithm was 
developed by Duan et al. (1992).  The method 
evidently consists, in essence, of a clever mélange of 
existing techniques which provides relatively fast 
convergence to a global optimum.  Guidance on 
practical implementation of the technique was provided 
by Duan et al. (1993).  Tolson and Shoemaker (2007) 
described SCE as “the dominant optimization algorithm 
in the watershed model automatic calibration literature 
over the past 10 years, given that more than 300 
different publications reference the original set of SCE 
publications.”  This characterization seems accurate, 
and testifies to the status of SCE as the culmination of 
decades of research and practice in the global 
optimization of watershed models within a traditional 
(single-objective, single-solution) context. 

These three global optimization techniques 
share many characteristics, but there are some 
distinctions.  MCMC yields posterior probability 
distributions for the free model parameters (i.e., in a 
Bayesian framework, giving the distribution conditioned 
upon the available data through iterative modification 
of a generally simple prior distribution).  These 
distributions serve as important measures of parameter 
identifiability, and also as the basis for estimating the 
component of forecast uncertainty due to parameter 
uncertainty.  The basic versions of GAs and SCE do 
not inherently have this capability.  However, useful ad 
hoc estimates might be obtained by recalibrating a 
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model within a GA or SCE framework to several subsets 
of the data, or with different initial parameter values in 
the calibration, yielding a suite or distribution of 
parameter sets (D. Roche, Kerr Wood Leidal, pers. com., 
2007; see also immediately below).  Further, there now 
exist various different versions of these techniques more 
directly offering estimates of parameter uncertainty (see 
next subsection).  There may be differences in efficiency 
as well.  Although far more efficient than random 
searches, for instance, neither genetic algorithms nor 
Markov Chain Monte Carlo appear to be known for 
speedy convergence, whereas shuffled complex 
evolution was devised with efficiency in mind. 

Notably, genetic algorithms and shuffled 
complex evolution have been applied to automated 
calibration of the UBC Watershed Model in British 
Columbia catchments (Lan, 2001; Roche, 2005).  Both 
applications can be regarded as generally successful.  
Discussions with the authors of these studies indicated 
that neither provided quantitative information on 
parameter uncertainty that can be directly employed to 
generate forecast bounds, although in principle there 
may be ways around this limitation (see above).  
Interestingly, starting the SCE algorithm from different 
initial, random parameter values was consistently found 
to yield substantially different final calibrated values for 
certain UBC Watershed Model parameters (Roche, 
2005).  This behaviour is superficially similar to that 
encountered in a multi-start local-type search method 
(see previous subsection), but given the SCE algorithm’s 
global search abilities, it appears to arise from a different 
source – specifically, the equifinality discussed in further 
detail in the next subsection.  Behaviour was somewhat 
different between the two watersheds (Illecillewaet and 
Coquitlam) considered by Roche (2005), but in general 
UBC Watershed Model parameters associated with the 
vertical distribution of rainfall (e.g., E0LMID, P0GRADHI, 
P0GRADM) tended to show the greatest indeterminism, 
whereas final estimates for terrestrial hydrologic 
parameters, such as time constants for various 
reservoir/pathway systems, appeared relatively stable 
irrespective of the random parameter values used to 
initialize the SCE optimization. 

 
4.1.4 Modern directions 
 

At about the same time that the global 
optimization problem was more-or-less solved, it began 
to grow clear that this solution, although important, might 
not be quite as useful or complete as had been hoped.  
In response to a number of considerations and concerns, 
watershed model optimization research has taken a 
variety of directions since the early 1990s or so.  Many of 
these issues and proposed solutions are closely inter-
related. 

The importance of generating estimates of 
parameter identifiability and the forecast error due to 
parameter uncertainty was discussed above.  A number 
of earlier techniques incorporated such capabilities, but 
many did not.  Considerable work has been devoted to 
furthering the development of these capabilities.  Some 
well-known and well-regarded examples include the 

shuffled complex evolution Metropolis (SCEM) 
algorithm, which essentially combines the MCMC and 
SCE techniques (Vrugt et al., 2003), and the Monte 
Carlo toolbox and “dotty plot” techniques of Wagener 
et al. (2003) and Wagener and Kollat (2007). 

A number of key insights were provided in the 
seminal work of Beven and Binley (1992), relating to 
the concept of equifinality and how to best deal with 
this challenge.  This term denotes the fact that several 
different sets, or a continuous distribution of sets, of 
watershed model parameters can all yield prediction 
qualities which are, all things considered, essentially 
indistinguishable.  That is, watershed model 
parameterizations are in general nonunique in terms of 
prediction error.  Note that this does not necessarily 
require physical nonuniqueness, as two model 
parameterizations may yield identical objective function 
values but hydrographs which are substantially 
different.  Nevertheless, physical nonuniqueness 
(identical hydrographs from different parameter sets for 
the same meteorological forcing and initial conditions) 
would also lead to equifinality.  Equifinality may arise 
from a variety of sources, including similar/competing 
effects (i.e., trade-offs) between different model 
parameters, or lack of sensitivity of the objective 
function to a given parameter.  In terms of optimization, 
the impact of equifinality is that the global minimum in 
the error landscape is not a well-defined and localized 
crater, but instead a low broad plain (or potentially, a 
field of separated craters of approximately equal 
depth).  Any set of parameters which yields a 
prediction error lying upon that plain or within those 
craters is an acceptable model parameterization.  
Equifinality therefore amounts to parameter 
indeterminism, and the widespread occurrence of 
equifinality in watershed models in turn implies that the 
concept of a highly precise global optimum may not be 
hugely relevant in practice. 

In response to these observations, Beven and 
Binley (1992) suggested a new paradigm for hydrologic 
model optimization, termed generalized likelihood 
uncertainty estimation (GLUE).  Although 
computationally relatively simple, the method involved 
a fundamental change in perspective.  An exact global 
optimum is not considered possible, or at least 
hydrologically meaningful, and no attempt is made to 
identify one per se.  The technique employs a random 
search through the feasible parameter space.  All 
parameter sets which yield model predictions deemed 
to be acceptable in terms of some error metric are 
denoted behavioural.  By weighting each behavioural 
parameter set by a normalized variant of the 
corresponding error metric, a posterior distribution 
reflecting parameter uncertainty or indeterminism may 
be defined on the basis of the optimization.  
Subsequent work (Kuczera and Parent, 1998) has 
identified this technique as a form of importance 
sampling, and has criticized the identification of formal 
(e.g., 95%) confidence bounds on its basis unless an 
unreasonably large number of realizations is 
employed.  Nevertheless, the method is widely credited 
with providing a direct and reasonable measure of the 
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overall ranges in parameter values and their impact on 
hydrologic predictions, and is perhaps the only technique 
that directly addresses equifinality.  In line with the 
overall concept of a distribution of acceptable 
parameters, the initial work of Beven and Binley (1992) 
did not emphasize the production of a single best 
hydrograph prediction.  However, the resulting suite of 
parameter sets constitutes an ensemble, and an 
ensemble mean may be readily produced (normally, with 
members weighted by their individual performances), as 
summarized by Wagener et al. (2003).  Similarly, the 
original work of Beven and Binley (1992) was primarily 
directed toward the parameterization of distributed 
hydrologic models, as equifinality issues tend to grow 
with the number of free parameters, of which there can 
be many in a distributed model.  However, subsequent 
work has shown the concepts and techniques to be 
general in nature, and applicable to semi-distributed or 
lumped watershed models.  Additionally, the approach 
has been applied to other environmental modeling 
contexts (e.g., Binley et al., 1997; Jia and Culver, 2008), 
and continues to be widely and profitably used in a 
variety of hydrometeorological problems (e.g., Unkrich et 
al., 2007).  Within the technical literature, references to 
the GLUE method appear to run into the hundreds, likely 
exceeding even those to SCE.  A recent review of the 
equifinality concept and GLUE is provided by Beven 
(2006). 

An additional issue to which considerable 
attention has been devoted over the last several years is 
the choice of objective function.  In the presence of an 
imperfect model and imperfect data, perfect hydrograph 
matches are not possible.  A consequence of this fact is 
that a calibrated model will tend to best match the 
component of the hydrograph to which it is (in effect) 
fitted, and the component to which it is fitted is 
determined by the form of the objective function.  For 
instance, minimization of root mean square error 
(RMSE) or maximization of Nash-Sutcliffe efficiency are 
two common objective functions.  In practice, such 
objective functions tend to emphasize a successful 
match to peak flows.  Whether this is desirable depends 
on the purpose to which the model is put.  An alternative 
is minimization of error in the logarithms of the 
streamflow data, which tends to emphasize low flows at 
the expense of matching higher flows, and which may be 
useful for aquatic habitat or water resource studies (e.g., 
Hogue et al., 2003; Samaniego et al., 2007; Fleming, 
2007).  Noting that streamflow time series are second-
order nonstationary, with variance that tends to increase 
with flow magnitude, the Heteroscedastic Maximum 
Likelihood Estimator (HMLE) was introduced as a new 
error metric (for reviews, see Gupta et al., 2003 and 
Wagener et al., 2004).  In practice, using an objective 
function wherein HMLE is minimized leads to poorer 
prediction of high flows (Wagener et al., 2004), and was 
found to fail entirely for the Illecillewaet basin when used 
in conjunction with shuffled complex evolution and the 
UBC Watershed Model (Roche, 2005).  Another 
possibility, not yet thoroughly explored in the rainfall-
runoff modeling literature, is to minimize frequency-
domain rather than time-domain error; work to date (e.g., 

Duffy and Al-Hassan, 1988; Fleming et al., 2002) 
suggests that this approach might yield better matches 
to hydrograph timing. 

Multi-objective (MO) optimization, also known 
as multi-criteria optimization, is another fast-emerging 
field in hydrologic model calibration (see, for example, 
Hay and Umemoto (2006) and references therein).  In 
effect, this method includes several different 
approaches; the common thread is that all involve 
simultaneous optimization of several objective 
functions.  One technique focuses on using multiple 
model fit metrics, such as Nash-Sutcliffe efficiency of 
both streamflow and the logarithm of streamflow (e.g., 
Samaniego et al., 2007), intended to simultaneously 
capture prediction quality for both high and low flows.  
Another approach to achieving the same goal is to split 
the streamflow time series into different components 
(e.g., driven and non-driven components) in a data pre-
processing step, and then perform a MO optimization 
in which RMSE in both is simultaneously minimized 
(e.g., Gupta et al., 2003b).  Yet another implementation 
considers multiple target time series, such as both 
streamflow and groundwater level (e.g., Seibert, 2000; 
Beldring, 2002), or streamflows from several nested 
subcatchments (e.g., Seibert et al., 2000), and 
simultaneously minimizing prediction error in all of 
these.  The overall idea in all cases is that a better-
rounded model will result.  In the particular case of 
multiple target time series, improvement in physical 
meaningfulness of the model may be highly significant, 
although this advantage comes at the expense of 
greater (and perhaps in many cases, unrealistic) data 
requirements.  Another property of MO techniques in 
general is that the solution is phrased in terms of 
Pareto optimality, whereby an improvement in one 
objective function can only be attained by poorer 
performance in another.  By the same token, the result 
for any given objective function within the MO 
framework will generally be inferior relative to that 
which would be obtained using a conventional single-
objective optimization on that objective of interest 
alone.  That is, MO optimization solutions are usually 
compromises, which (again) may or may not be 
desirable, depending on the use to which the model is 
put.   

MO techniques are commonly developed from 
pre-existing methods.  A relatively simple and broadly 
used approach is a composite objective function, 
whereby the objective function in a traditional single-
objective optimization consists of some combination of 
error metrics.  An example is the use of a combined 
metric capturing both correlation skill and volume error 
(Lindström, 1997).  Masking of improvements in one 
objective component by decreased skill in another may 
be particularly severe in this approach and evidently 
may limit ability to find a genuine Pareto optimum, but 
it appears this may be overcome using compromise 
programming, which in practice evidently consists of a 
straightforward weighting scheme (e.g., Samaniego et 
al., 2007).  Another approach is to combine various 
individual error metrics using fuzzy logic (Seibert, 
1997).  An advantage of composite objective functions 
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is that they can be implemented within any optimization 
scheme; a disadvantage is that the effects of different 
components of the objective function might be 
challenging to disentangle.  Another general approach is 
to modify existing techniques to explicitly perform MO 
optimization and clearly define a Pareto optimum.  
Methods developed in this way and applied to watershed 
model calibration include a multi-objective version of 
SCE, dubbed MOCOM-UA (for reviews, see Beldring, 
2002; Gupta et al., 2003b), and a multi-objective version 
of SCEM, dubbed MOSCEM (Zhang et al., 2007). 

A method closely related to, but conceptually 
distinct from, MO optimization is the staged or multi-step 
calibration (e.g., Hogue et al., 2003; Hay and Umemoto, 
2006).  The overall idea is to emulate, within an 
automated framework, the techniques commonly 
employed in manual hydrologic model calibration.  
Typically, recommended manual calibration procedures 
involve first estimating a certain subset of parameters to 
match some portion or aspect of the hydrograph, then 
another subset of parameters believed to be primary 
controls on some other portion or aspect of the 
hydrograph, and so forth (e.g., Quick, 1995; Smith et al., 
2003).  In the multi-step automated calibration, the same 
approach is taken, except that values of the parameters 
to be estimated at a given step are obtained using a 
formal optimization technique, such as SCE (Hay and 
Umemoto, 2006).  This method is an intriguing hybrid 
between manual and automatic calibration approaches, 
but does not appear to have been extensively and 
broadly tested yet.  One potential problem is that 
estimates of parameter identifiability and uncertainty may 
be less meaningful, as (at best) they would be obtained 
on a batch basis during each step.  The results would 
solely represent the sensitivity of a particular parameter 
subset corresponding to a particular hydrograph 
component, and generally at a calibration stage when 
the parameter set as a whole is sub-optimal.  By the 
same token, comprehensive quantitative assessments of 
the effects of parameter inter-relationships and 
parameter set uncertainty as a whole, as so clearly 
illuminated using a GLUE approach for example, would 
seem difficult or impossible to meaningfully extract in the 
multi-step framework. 

Another direction in very recent research is the 
development of more efficient search strategies.  The 
SCE approach was lauded as efficient in its day, and in 
most cases convergence will indeed be acceptably fast 
for any reasonable semi-distributed or lumped watershed 
model.  However, interest in distributed models has 
grown significantly, and run times for such models can 
be long.  Minimizing the number of runs required in the 
iterative optimization process thus becomes more 
important.  A significant step forward is the Dynamically 
Dimensioned Search (DDS) algorithm of Tolson and 
Shoemaker (2007).  The premise is to maximize the 
optimization performance obtained within a user-
specified number of runs, by reducing the number of 
parameters inverted as the optimization progresses (i.e., 
to obtain the biggest bang for the buck in terms of CPU 
time).  Results to date have been promising, and work 
continues on the DDS algorithm (Tolson et al., 2007).  

Similarly, more computationally efficient versions of 
SCEM have also been recently proposed (Vrugt et al., 
2007). 

Potentially relevant new optimization 
techniques continue to emerge, both within the 
hydrologic modeling literature and in other fields.  
Particular effort continues on finding more efficient, 
feasible, or physically reasonable ways to 
parameterize distributed hydrologic models and 
models in ungauged basins, yielding diverse 
methodological outcomes (a recent sample includes 
Shi et al., 2007; Chu et al., 2007; Pokhrel et al., 2007; 
Wagener et al., 2007; McMillan et al., 2007; Kling et 
al., 2007; Liu et al., 2007; Samaniego et al., 2007).  
Multi-model ensembles (e.g., Georgakakos et al., 
2004) may subsume the parameter uncertainty present 
in individual ensemble members.  Reverse-jump 
(transdimensional) Markov Chain Monte Carlo 
techniques, an MCMC approach in which the algorithm 
decides the dimensionality of the optimization problem, 
have been applied to models of groundwater flow and 
contaminant transport (Mendes and Draper, 2007).  
Multi-objective differential evolution techniques, 
consisting of a differential evolution method (Storn and 
Price, 1997) related to traditional genetic algorithms, 
but incorporating multiple objective functions, have 
been applied to chemical engineering problems for 
instance (Babu et al., 2005) and are being investigated 
for use in hydrometeorology (A. Cannon, Environment 
Canada, pers. com., 2007).  Particle swarm 
optimization (Goswami and O’Connor, 2007; Gill et al., 
2007) and delayed rejection adaptive Metropolis (Smith 
and Marshall, 2007) algorithms have also seen 
application to watershed model calibration.  More 
broadly, fully interactive modelling software that may 
be run in forward or inverse modes with user-
selectable free parameters in as few or as many 
stages of calibration the user wishes, loosely akin to 
the multi-step approach outlined above but far more 
flexible, has been commercially available and broadly 
applied in the field of geophysical modeling for some 
time (e.g., Fleming and Trehu, 1999), though the 
technique may share the multi-step method’s 
limitations with respect to generating meaningful 
estimates of parameter uncertainty/identifiability and 
prediction error bounds.  Further, the general problem 
of optimization under challenging conditions (including 
but not limited to those encountered in hydrology) 
remains an active field of research within the 
mathematics community. 
 
4.2 Optimization method choice/development 
 

As noted in Section 2, the second major step 
was to select and/or build an optimization and 
uncertainty estimation system specific to our needs. 
 
4.2.1 Selection criteria 
 

On the basis of the considerations and 
processes listed in Section 3.3 and in light of the 
issues and findings discussed in Section 4.1, the 
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following nine criteria were identified for screening, 
selecting, and/or developing candidate optimization 
techniques and software: 
 
• Global.  The method should be robust to local 

minima in the error landscape. 
• Multiple/flexible optimization goals.  From the 

perspectives of both H&TS, and BC Hydro 
operations planning engineers responsible for 
various projects, it is important that the recalibrated 
model simultaneously satisfies multiple inflow 
forecasting goals.  These include both daily forecast 
reliability (particularly for small, flashy, coastal 
basins with limited reservoir storage) and monthly 
and seasonal forecast volumes (particularly for 
larger basins in Columbia/Kootenay and Peace 
regions with large reservoir storage and major 
individual contributions to overall British Columbia 
power generation).  Two model parameterizations, 
each obtained using a single corresponding 
objective within their respective independent 
optimizations, could be developed for each basin, 
and used separately for daily and seasonal 
forecasting.  However, it is far preferable for a 
number of reasons – recalibration project efficiency, 
ease of incorporation of the final result into the 
existing RFS, and general conceptual elegance, for 
example – to develop a single model 
parameterization for each basin, capable of 
adequately performing multiple operational 
forecasting tasks.  Note that for similar reasons, and 
the added complication of establishing initial 
conditions at seasonal model change-over, a set of 
seasonal calibrations for each basin (i.e., yielding 
different model parameter sets for different seasons) 
was ruled out.  However, a capability to adjust the 
optimization goals somewhat from one basin to the 
next, reflecting local hydrometeorological 
characteristics and/or project-specific user priorities, 
is also desirable.   

• Direct and meaningful uncertainty estimation.  This 
selection/development criterion follows from the 
main goals of the recalibration exercise, as 
discussed in Section 3.3.  The method should 
provide quantitative estimates of parameter 
identifiability, and ultimately hydrologic forecasts 
with error bounds reflecting the effects of parameter 
uncertainty, in a manner which explicitly addresses 
such issues as equifinality and parameter 
interdependence, preferably within a Bayesian 
framework.  Additionally, hydrograph prediction 
uncertainty has to be captured specifically via an 
ensemble of individual hydrograph traces, rather 
than solely as a statistical summary metric like the 
standard error of prediction, because individual 
hydrograph  forecast traces are required as input by 
some software applications employed by forecast 
product users. 

• Physical reasonableness of estimated parameters.  
Methods should be in place for ensuring that the 
hydrological model parameters estimated using the 
optimization algorithm, and the corresponding 

hydrographs and hydrograph components (e.g., 
relative contributions of rainfall, snowmelt, glacial 
melt, and groundwater seepage) are physically 
plausible and defensible. 

• Utilitarian but user-friendly.  Large investments in 
developing a finely honed, commercial-grade 
optimization software package are not appropriate 
or feasible at this time.  However, given that 
several personnel will likely be using the 
optimization code, a reasonable level of user-
friendliness, including a sensible user interface for 
input, optimization control, and output visualization 
and interpretation, is desirable. 

• Transparency and accessibility.  Although not a 
strict requirement, it would be preferable if the 
optimization code employed is open to scrutiny by 
BC Hydro, and written in a manner that facilitates 
understanding, and revision if desired. 

• Amenable to coding in Visual Basic for 
Applications (VBA).  This requirement is a product 
of other criteria or constraints, including: available 
IT support; facilitation of the transparency and 
accessibility described above; realization of project 
efficiencies through the use of some existing 
H&TS code resources; and technical details of the 
development of computationally efficient interfaces 
between various software components.  The VBA 
code must integrate user control, optimization, 
UBC Watershed Model parameter (.WAT) file 
creation, calls to the UBC Watershed Model (in 
this application, an external executable file, 
compiled previously from Fortran) for each 
function evaluation, ASCII conversion and 
importation of binary-file model results, and 
visualization and summary capabilities, within a 
single application. 

• Capitalize on existing UBC Watershed Model & 
BC Hydro knowledge, capabilities, and results.  
The current (manual) calibration of the UBC 
Watershed Model used in the RFS is the result of 
considerable effort by experienced and 
knowledgeable professionals.  Further, practical 
time and resource constraints must also be borne 
in mind.  Thus, a complete, ground-zero model re-
development did not seem prudent or appropriate 
at this time, and much of the structure of the 
current UBC Watershed Model parameter files is 
to be maintained.  As just one example, the 
number and placement of elevation bands for 
each basin in the current calibration is the result of 
basin-specific hypsometric analyses and extensive 
experience with the UBC Watershed Model; 
modification of the number of elevation bands 
currently employed is reported to be unlikely to 
result in significant hydrograph prediction or model 
run-time gains; and number and placement of 
bands would be challenging to incorporate as free 
parameters into an automated calibration 
procedure.  Consequently, it was decided that the 
number and placement of elevation bands would 
not be altered from the current calibration, unless 
(for a given basin) there would be a clear 
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operational forecasting benefit to be gained by doing 
so.  Similar considerations apply to several other 
questions of model parameter structure.  Rather, the 
emphasis in the optimization was to refine a number 
of free parameters clearly amenable to such 
techniques, conditional upon updated 
hydrometeorological and land surface (e.g., glacial 
and forest cover) data, and to obtain corresponding 
parameter and prediction uncertainty estimates. 

• Proven track record.  Although some innovation and 
development could be appropriate, and indeed 
ultimately proved necessary, an optimization and 
parameter/prediction uncertainty estimation 
technique with a well-demonstrated prior history of 
successful and wide application to watershed model 
calibration was strongly preferable in order to 
minimize project and timeline risks. 

 
It is expected that similar or analogous criteria 

would be imposed by many operational hydrologic 
forecasting groups. 
 
4.2.2 Selected approach: modified GLUE 
 

The method chosen (dubbed Automated 
Behavioural SYNThetic Hydrograph Estimation, or 
Abysnthe) consists of generalized likelihood uncertainty 
estimation, with a number of modest but important 
modifications introduced here to better satisfy our 
requirements.  Some aspects of the method bear some 
similarities to the signature index approach proposed by 
Yilmaz et al. (2007), though the indices or criteria 
considered here are defined more on the basis of 
operational forecasting requirements than the underlying 
physics of the model per se.  Overall logic of the 
Absynthe technique is illustrated schematically in Figure 
2. 

Equifinality and the GLUE method were 
described at a conceptual level in Section 4.1.4 above.  
In practise, the standard GLUE method – which forms 
the platform upon which Absynthe is built – proceeds as 
follows.     
 
1. Define prior distributions.  Define which parameters, 

for a given basin, are to be left free in the 
optimization, and choose physically reasonable 
ranges for each.  Selection of the feasible space for 
each free parameter will be made using, for 
guidance, both general hydrologic knowledge as 
well as catchment-specific modelling experience.   

2. Input distribution sampling.  Perform random 
sampling of the feasible parameter space for each 
free parameter in the optimization.  This Monte 
Carlo sampling is completed using a uniform 
distribution as the Bayesian prior for each 
parameter.  The uniform distribution is bounded by 
the parameter’s feasible space.  Among other 
things, this framework ensures that each parameter 
can take on only values which are deemed to be 
physically reasonable. 

3. Model run.  Run the model using the randomly 
sampled parameter set.  For the specific case of the 

UBC Watershed Model, this involved rewriting the 
.WAT file using the selected parameter set, 
running the UBC Watershed Model, convert the 
resulting output binary file to ASCII, and returning 
the simulated hydrograph, using (in part) VBA 
script cannibalized from an existing H&TS 
application. 

4. Behavioural test.  Deem the parameter set 
behavioural in the usual GLUE sense if the quality 
of the hydrograph is sufficient.  A common 
approach is to specify a minimum acceptable 
Nash-Sutcliffe efficiency of daily flow predictions. 

5. Loop.  Repeat steps 2 through 4.  The condition 
for convergence is normally the accumulation of 
some specified number of behavioural parameter 
sets, often numbered in the thousands.  The 
resulting parameter sets may then be used to (i) 
define the posterior distributions of the individual 
parameters in a (loosely) Bayesian framework, 
providing estimates of parameter identifiability, 
and (ii) generate ensemble flow predictions on the 
basis of the ensemble of parameter sets, yielding 
parameter uncertainty-based confidence bounds 
on the forecasts.   

 
A working prototype Absynthe system 

(Fleming and Weber, 2008) incorporated the following 
changes and additions to the standard GLUE 
procedure: 
 
• Multiobjective test for behavioural sets.  Based on 

collective operational forecasting experience with 
the UBC Watershed Model, interviews with 
forecast product users, general physical 
hydrologic considerations, and the practical 
requirement for a single model for both daily and 
seasonal forecasting, a multi-criteria framework 
was adopted.  The three criteria were matches to 
daily, monthly, and annual flows.  The daily 
objective entailed a minimum acceptable RMSE 
improvement over the persistence forecast, and is 
particularly important for mountainous, temperate 
maritime watersheds on the southwest BC coast, 
as these (in general) have flashy hydrologic 
responses and small reservoirs, and can be 
subjected to large rainfall and rain-on-snow 
events.  The monthly objective in fact included 12 
sub-objectives, specifically, reduction of monthly 
volume biases for each month.  Imposing a 
maximum acceptable % bias for all months is 
particularly operationally important for interior BC 
projects with large reservoirs and significant total 
system planning impacts, and is also important in 
terms of technical forecasting issues insofar as it 
avoids the necessity for bias correction.  The 
annual objective involved a minimum acceptable 
improvement in yearly total volume RMSE over 
the mean, and is important for seasonal inflow 
volume forecasting.  Unlike a conventional MO 
optimization, however, a Pareto compromise is not 
an explicit goal in the MO GLUE procedure, and 
the foregoing were instead hard targets for 
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parameter set acceptance or rejection.  A 
generalized likelihood function was generated as the 
mean of the likelihood function functions for the 
three error components.  These in turn were simple 
mathematical expressions to capture the foregoing 
error components in such a manner as to have 
increasing values as the fit quality increased.  Note 
that a likelihood function was devised for the volume 
bias for each month individually, for a total of 12 
likelihood functions, and then these were averaged 
to obtain a single likelihood function for the month-
scale optimization target.  Thus, daily-, monthly-, 
and annual-scale calibration performances were 
each given equal weight in the calculation of the 
global likelihood function.  However, the importance 
of each calibration target can be controlled by the 
user through suitable adjustment of the behavioural 
criteria.  For instance, the stronger importance of 
daily flow forecast quality for small, flashy coastal 
basins is such that the bar may be set high for the 
daily performance, but lower for monthly or annual 
performances.  There is some precedent for the 
incorporation of multiple calibration goals into the 
GLUE framework (e.g., Jia and Culver, 2008).   

• Screening for pathological sets.  In most or all 
Monte Carlo-driven methods, a feasible parameter 
space is predefined, in part or in full on the basis of 
physical reasonableness; final estimates are 
guaranteed to fall within that range.  Even in other 
methods (e.g., gradient descent), a penalty can 
assigned to force the cost function toward a 
physically reasonable parameter value.  But in many 
cases, and in particular for medium-to-high 
dimensional inverse problems, that is not sufficient 
to ensure physical plausibility of the estimated 
parameter set, or therefore acceptability of the final 
model.  In mathematics and physics, a pathological 
value or function is loosely defined to be one which 
is strictly mathematically correct but is in some way 
profoundly atypical, irrelevant, misbehaved, or 
senseless.  We adapt this concept to watershed 
model calibration.  In our context, we define a 
pathological parameter set as one which (i) satisfies, 
or may satisfy, the mathematical optimization goal 
(i.e., pass behavioural tests or minimize an objective 
function), (ii) satisfies the mathematical feasible 
range constraints set out in the specification of the 
Bayesian prior distributions for each parameter, and 
(iii) makes no physical hydrologic sense when 
considered as a whole.  That is, we define a 
parameter set as pathological if the values satisfy 
the optimization problem and are physically realistic 
individually but not collectively.  For example, say 
our watershed model has time constants for an 
upper groundwater system and a lower groundwater 
system.  In the UBC Watershed Model, these 
parameters are specifically denoted P0UGTK and 
P0DZTK with units of days, but similar ideas apply 
to other models.  One might reasonably set the prior 
distributions to P0UGTK ~ U[5 35] and P0DZTK ~ 
U[25 85], and obtain (through some calibration 
method) the parameter set (P0UGTK = 33.4, 

P0DZTK = 29.7).  Such a set would meet 
conditions (i), (ii), and (iii) outlined above and thus 
be identified as pathological, as it is a legitimate 
answer to the mathematical optimization problem 
but implies shallow groundwater responding 
slower than deep groundwater, which for most 
watersheds (karst environments being a possible 
exception) is physically unreasonable.  The 
advantages of process-oriented models are their 
abilities to explain hydrologic behaviour in terms of 
underlying physical processes, and predict 
hydrologic behaviour under circumstances not 
sampled by the hydrometeorological record 
available for the study basin.  Hence, both the 
utility and credibility of a process-oriented model 
require that the parameter set be fully physically 
reasonable; otherwise, one might as well use a 
statistical or soft-computing model, which 
sacrifices process description for easier 
implementation and (often) superior prediction 
performance.    One simple solution to the 
pathologic-set problem is to specify feasible 
ranges such that they do not overlap, but this 
limits the parameter space that can be explored 
and is useful only if the true value for each 
parameter can be reasonably well-estimated a 
priori.  This is often not the case.  Here, we 
implement a more general solution: test each 
randomly sampled parameter set for pathological 
relationships, and only perform modelling for those 
that pass the test.  The emphasis in our work is on 
correct ordering of time constants for various 
terrestrial hydrologic pathways (in the specific 
context of the UBC Watershed Model, the 
constraint is P0FRTK < P0FSTK < P0GLTK < 
(P0IRTK and P0ISTK) < P0UGTK < P0DZTK).  
Due to the emphasis on correct ordering of values 
across parameters rather than the specific value 
taken on by a particular parameter, the pathology 
test is a rank-based or sliding constraint on the 
optimization problem.  The importance of such 
correct ordering is rarely if ever discussed in the 
watershed model optimization literature, but 
seems key to establishing the hydrologic credibility 
of the optimization process and its results.  To our 
knowledge, the explicit definition, identification, 
and screening of pathological parameter sets is a 
novel feature of Absynthe. 

• Set selection and ensemble size.  The aim in 
Absynthe, as in any GLUE-based technique, is to 
generate an ensemble of parameter sets.  
However, we make two departures from standard 
GLUE procedures in this respect.  Both are 
motivated by BC Hydro-specific operational 
considerations (see also Section 3.1), though 
these considerations might apply elsewhere as 
well.  (i) We generate only 100 behavioural (and 
non-pathological; see above) parameter sets for a 
given basin.  This figure appears considerably 
smaller than that typically used in GLUE 
applications, but operationally, it would be difficult 
to perform (say) 5000 simulations for each of 21 
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basins every morning by noon, particularly if 
modeller adjustments and re-runs are required.  
This volume problem is compounded by the fact that 
for each GLUE ensemble member, an ensemble of 
weather realizations (historical climate traces in the 
existing ESP seasonal forecasting framework, or 
NWP ensembles in a forthcoming planned 
probabilistic daily system) would be run.  Even for 
the short individual run times of the UBC Watershed 
Model, the total CPU time would be prohibitive.  
Additionally, the software applications currently 
employed by some in-house forecast product users 
for reservoir operations or planning purposes cannot 
accommodate large ensembles.  The implication of 
the smaller Absynthe ensembles is that they do not 
provide statistically rigorous estimates of flow 
distributions.  For current operational purposes, and 
in the context of other practical forecast issues like 
NWP uncertainty or the relatively short duration of 
available historical climate records available for BC 
Hydro ESP runs, this problem is likely of secondary 
importance.  (ii) From among the Absynthe 
ensemble we choose one set to serve as the official 
calibration for the basin, with the ensemble serving 
only for uncertainty estimation purposes.  This 
approach appears somewhat contrary to the spirit of 
equifinality and the GLUE approach, but is 
unavoidable for current operational purposes in 
H&TS.  Viewing each parameter set as constituting 
a distinct model, and drawing on work in 
meteorology, climatology, and hydrology (e.g., 
Christensen et al., 2007; Block et al., 2007; 
Georgakakos et al., 2004; Block et al., 2007; 
Goddard et al., 2007), such a forecast could be 
generated as one of several types of ensemble 
mean: for example, an arithmetic average of each of 
the ensemble traces, or a weighted mean of those 
traces with the weights drawn from the Bayesian 
global likelihood function value associated with each 
parameter set.  However, using the single, nominal 
“best” parameter set out of the ensemble for 
deterministically generating a single trace (with 
ensembles run separately if desired) was preferable 
for our purposes, in part due to run-time concerns.  
Looking forward, however, parallelization of 
computing resources and increasing user comfort 
levels with probabilistic modelling methods may 
ultimately lead to more fully ensemble-based 
implementations in H&TS operational practise. 

 
This initial Absynthe implementation proved 

successful, and its performance is described in Section 
5.1 below.  However, during the course of application to 
a range of basins with different characteristics and lying 
in different hydroclimatic regions across the BC Hydro 
system, it became clear that some additional 
modifications would prove useful.  These further 
changes to the GLUE procedure and/or Absynthe 
prototype were as follows. 

 
• Secondary data targets.  The three calibration 

targets listed in the multi-criteria discussion above 

are all based on the streamflow hydrograph.  In 
the second major version of Absynthe, the 
potential calibration targets were extended to 
include two other data sources.  The first is April 1 
snow water equivalent (SWE).  April 1 snow 
measurements approximately capture the total 
snowpack available for water production during 
the spring-summer freshet.  Additionally matching 
to SWE data can therefore help guide the 
parameter sets toward better solutions, and in 
particular, may in principle help mitigate 
equifinality issues insofar as a correct partitioning 
of general runoff generation mechanisms is better 
supported.  The second is total annual 
precipitation.  The UBC Watershed Model, like 
most or perhaps all process-oriented watershed 
models, contains a de facto local-scale 
meteorological model which, among other things, 
uses various scaling factors to help adjust point 
meteorological measurements from surface 
weather stations to better represent catchment-
wide meteorological conditions, including total 
basin precipitation.  Thus, ClimateBC-estimated 
total annual precipitation values integrated over 
the watershed were obtained in a GIS 
environment and also used as a secondary data 
target.  ClimateBC (Wang et al., 2006) is a higher-
resolution, British Columbia-specific data product 
developed at the University of British Columbia, 
based on the well-known PRISM dataset  (Daly et 
al., 2002) from Oregon State University.  The 
global likelihood functions are adjusted to 
additionally incorporate the adequacy of SWE or 
total basin precipitation fits.  Also note that while in 
theory the inclusion of additional, non-hydrograph 
calibration targets like April 1 SWE or total annual 
basin precipitation should dramatically improve the 
physical plausibility of the calibration, in practise 
results were found to be somewhat mixed, 
reflecting to a large degree the local accuracy, 
representativeness, and completeness of the 
available SWE or ClimateBC data.   

• Increased user control.  Two general sets of 
changes were made to give Absynthe users fuller 
control over the optimization and uncertainty 
estimation process.  The first was flexible 
calibration metrics.  The overall hydrograph 
calibration goals remain phrased in terms of daily, 
monthly, and annual hydrograph matches, but it 
was found that flexibility in the metrics employed 
for each was useful.  Thus, a user-selectable 
menu of different fit measures was incorporated 
into the second-generation Absynthe software.  
For instance, several measures of daily 
hydrograph fits are now available; Nash-Sutcliffe 
efficiency is the most commonly used of them.  
The second was increased flexibility in free 
parameter selection.  In the prototype, a 
substantial but finite number of UBC Watershed 
Model parameters were deemed potentially free.  
In the second-generation version of Absynthe, 
virtually any parameter in the model can be 
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opened up for estimation and uncertainty 
assessment.  This capability has to be used with 
discretion, of course, as issues with both parameter 
identifiability and indeterminism, and the CPU time 
required to adequately sample the feasible 
parameter space, grow quickly with increasing 
numbers of free parameters.  

• Hard constraint on snow-free bands.  The highest 
elevation band in the UBC Watershed Model that 
must be snow-free at least one day per year can be 
specified.  Any simulation which fails to meet that 
constraint is rejected.  It was found that this 
constraint could be useful in some cases for 
correctly partitioning summer freshet flows between 
snow and glacier melt, and to avoid progressive 
build-up of permanent snow over successive model 
seasons at elevations where it is known not to 
occur.  In the context of glacier-fed catchments, this 
elevation band corresponds to the equilibrium line 
altitude (ELA).  Whereas screening for pathological 
parameter sets (see above) is a flexible or moving 
constraint, the highest snow-free band stipulation is 
a fixed constraint. 

 
The Absynthe technique as described above 

satisfies all nine selection criteria (Section 4.2.1).  It is 
perhaps particularly noteworthy that using GLUE as a 
starting platform afforded great flexibility; for instance, 
both the sliding (pathology) and fixed (snow-free band) 
constraints, which are key to ensuring that the 
optimization method returns parameter sets that 
represent a physically plausible hydrologic reality, are 
very simple to implement in the relatively straightforward 
and robust GLUE framework.  These benefits are 
believed to more than compensate for the 
disadvantages, which include substantial computational 
inefficiency, no guarantee of locating the precise 
minimum in the error surface, and the perhaps non-
rigorous nature of the quasi-Bayesian likelihood 
functions (but see Beven, 2006).  The practical question 
of how to incorporate the results into fast and robust 
generation of hydrograph ensembles in an operational 
forecast setting remains only partially resolved, but this 
important challenge is in no way unique to the method 
selected. 
 
4.3 Other methodological considerations 
 

Although the primary emphasis of this paper is 
on model parameter optimization and uncertainty 
estimation, a number of other key technical issues had to 
additionally be considered in the model recalibration 
process.  These are briefly summarized below. 
 
4.3.1 Hydroclimatic data quality control 
 

Unregulated, local reservoir inflows are not 
directly measured by BC Hydro, but are instead 
calculated from measured changes in reservoir storage 
and discharge using the principle of conservation of 
mass.  

Due to the nature of reservoir inflow 
calculations, data with a high temporal resolution, such 
as daily data, are noisy (i.e., contain random errors).  
Noisy inflows can arise due to wind set-up on the 
reservoir (i.e., seiches) and the coarse resolution of 
elevation measurements. Noise becomes more 
obvious at times of low inflows, such as the winter low 
flow period, when the signal-to-noise ratio is low.  
Other error sources are measurement errors in 
reservoir elevations, turbine flow, spillway or valve 
readings, errors in stage-storage curves and errors in 
rating curves for various outlet facilities.  

BC Hydro performs quality control on raw 
daily inflows using custom-built VBA Excel tools.  The 
process involves comparison of inflow data with data 
from nearby unregulated Water Survey of Canada 
streamflow gauges.  The objective is to remove noise 
while conserving overall inflow volume and correcting 
for obvious errors.  The process is semi-automated 
and divided into two major steps.  In the first step, a 5-
day moving window is run over the data and linear 
regression relationships with reference streamflow data 
determined.  The algorithm logic is such that raw inflow 
data are deemed to be good and left unchanged, if the 
best coefficient of determination for inflows and 
reference streamflows is greater than or equal to 0.5.  
The reasoning is that the reservoir inflow estimates are 
good if they respond in a similar manner as observed 
streamflow data from comparable reference stream 
gauges in the region.  If the coefficient of determination 
is poor, i.e., between 0 and 0.5, then inflow data are 
estimated based on the best-correlating streamflow 
data.  If the correlation coefficient is below 0, i.e., when 
the relationship between raw inflows and streamflows 
is extremely poor, then an estimate is calculated from 
the 5-day moving average of raw inflows.  In a second 
step, long periods of poor data can be estimated using 
an additive relationship with reference streamflow data 
based on unit yield.  With user intervention being 
possible at every step and additional data, such as 
temperatures, precipitation, reservoir elevations and 
outflows being available, the final quality of the data 
depends to a large degree on the hydrologic 
experience of the operator (Weber 2001). 

Water Survey of Canada’s streamflow data 
have undergone quality control by the agency itself and 
are assumed to be of good quality.   
 Raw climate data, specifically daily 
precipitation and daily minimum and maximum 
temperatures from BC Hydro-operated automated 
weather stations and Environment Canada’s station 
network, can experience problems due to a variety of 
reasons.  These include snow-capping, freezing, full 
precipitation standpipes, radiation effects on 
temperature sensors, or equipment malfunctions.  

Quality control of raw data, as well as record 
extension, was done using a custom-built VBA Excel 
tool.  First, precipitation and temperature data  are 
screened for gaps, absolute outliers and regional 
outliers.  Then, missing or poor data are estimated 
based on simple monthly (for temperature) and annual 
(for precipitation) linear relationships with 



16 

predetermined reference stations.  Additional features to 
estimate long-term gaps in precipitation records include 
the matching of a temporal pattern of precipitation at a 
selected reference station.  Temperature data can also 
be estimated using the temperature lapse rates for the 
day in question as calculated from regional stations, or 
by adding the temperature change recorded at a 
reference station since the previous day to the previous 
day’s temperature at the station estimated.   

  
4.3.2 Land surface data 
 

Many of the land surface data used in the 
previous set of calibrations of the UBC Watershed Model 
at BC Hydro were derived from paper maps, particularly 
for the larger watersheds in the province.  For this 
calibration, all data were derived from digital GIS 
sources, using better and more up-to-date sources than 
were previously employed.  The number and distribution 
of elevation bands was maintained from the previous 
calibration whenever possible.  Pre-existing digital 
watershed boundaries were also used whenever 
available, but had to be delineated using digital elevation 
models (DEMs) for most of the larger watersheds.  Band 
slope, orientation, mid-elevation and area were also 
derived from digital elevation models.  2005 glacier data 
for British Columbia were provided by the Western 
Canadian Cryospheric Network (B Menounos, University 
of Northern British Columbia, pers. comm., 2005).  
Forest and crown cover data were derived from the ca. 
2006 Vegetation Resource Inventory and supplemented 
by ca. 1992 Baseline Thematic Mapping (BTM) land use 
data, both available from the Government of British 
Columbia’s Land and Resource Data Warehouse 
(www.lrdw.ca). 
 
4.3.2 Meteorological station selection 
 

The UBC Watershed Model as implemented in 
the RFS requires time series of daily total precipitation, 
daily maximum temperature, and daily minimum 
temperature.  Meteorological station data were 
incorporated into the model through the use of 
composite stations, which consist of a combination of 
data from various real weather stations within and/or 
near the watershed into a single “index” or “virtual” time 
series and location.   

The choice to solely use composite stations 
(one per basin, and generated using a standard 
procedure, outlined below in this section) was motivated 
by both calibration and operations considerations.  The 
following advantages were thought to outweigh the 
drawbacks, which are an inability to model inversions, 
and no guarantee of optimal meteorological data 
selection and representation: 
 
• Relatively good objectivity, consistency, and 

standardization across multiple Absynthe users, in 
comparison to the trial-and-error approach; 

• Efficiency, again relative to a trial-and-error 
approach to station selection; 

• Defensibility, insofar as a reasonable and 
standardized approach was taken; 

• Reduced optimization dimensionality, and thus 
reduced calibration effort/run time and mitigated 
equifinality, because additional parameters 
requiring calibration arise with additional 
meteorological stations; 

• Operational robustness, in the sense that when 
using several station inputs but integrating them 
into a single composite value, the day-to-day 
practical consequences of data collection or 
transmission failures, or poor data quality, for a 
given individual station may be somewhat 
mitigated insofar as the effects of erratic data can 
be partially reduced by lumping; 

• Operational simplicity, because by having only a 
single meteorological station (i.e., a single time 
series for each meteorological data type), the 
clarity and speed with which changes to the 
historical record (a common requirement in 
operational forecasting, generally arising from 
monitoring network incompleteness) can be made 
and tracked should be improved; 

• Conceptual consistency with existing approaches, 
such as the index stations used in the existing 
RFS calibration for some basins, and methods 
used by the US National Weather Service models; 

• Mitigated potential for physically unrealistic 
elevation-SWE distributions that are known to 
occur in the existing calibration when the 
horizontal heterogeneity in spatial meteorological 
fields is transposed into spurious vertical 
gradients in an elevation band-based semi-
distributed watershed model; 

• Relative amenability to stochastic weather 
generation, insofar as a multi-site weather 
generator would not be required, at least within a 
given watershed. 

 
 Selection of stations for inclusion in the 
composite proceeded on the basis of the following 
criteria.  (i) Pre-screening with data QC analysts for 
station reliability and accuracy, as different sites and 
equipment have different performances; (ii) record 
length; (iii) proximity to the basin; (iv) a significant 
elevation range span across the suite of selected 
stations; and (v) linear cross-correlations between total 
annual flow volume and total annual rainfall volume.  In 
general, no more than two or three stations were 
selected for inclusion in the composite, due to both 
meteorological network limitations, and the observation 
that including a larger number of stations into the linear 
combination employed to generate a synthetic record 
(see immediately below) tended to unrealistically damp 
out day-to-day variations.  A composite precipitation 
daily precipitation record was then generated as: 
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where the coefficients, a1,N, were obtained from a 
multiple linear regression of total annual flow volume 
upon the total annual precipitation recorded at the 
candidate stations: 
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A daily maximum temperature time series was generated 
for the composite station by averaging the daily 
maximum temperature records from the constituent 
stations.  A similar procedure was employed for daily 
minimum temperature.  Because temperature variations 
are in general far more spatially coherent than those in 
precipitation, it is believed this simpler composite 
generation technique may reasonably be used for 
temperature.  The station was nominally accorded an 
elevation equal to the mean of the elevations of the 
constituent stations, but in some cases this elevation 
was treated as a free parameter in the optimization, as 
doing so may allow the calibration routine to adjust for 
temperature biases in the data resulting from incomplete 
coverage of the surface meteorological observation 
network. 
 
5. RESULTS 
 
 The final project component, as outlined in 
Section 2, was to implement the Absynthe technique for 
BC Hydro forecasting basins.  This task was performed 
in two phases.  The first was an initial benchtesting 
phase, described below in Section 5.1.  This was 
following by some code modification to develop the 
second-generation Absynthe application (as described 
above in Section 4.2.2), and then the second phase of 
implementation, described in Section 5.2 below, 
consisting of production-line, team-based application of 
Absynthe across 21 basins.  This second phase is not 
yet finished, but the number of basins completed to date 
is sufficient to provide a good feeling for the use and 
effectiveness of the method. 
 
5.1 Preliminary stand-alone Absynthe results 
 
 The Alouette catchment was used as an initial 
proving ground for Absynthe.  Alouette is a small coastal 
watershed, dominated by steep terrain and temperate 
rain forest, driven mainly by rainfall with moderate 
snowmelt and minor glacial melt contributions.  To 
assess specifically the performance of the Absynthe 
algorithm, without the confounding influences of other 
recalibration project steps as outlined in Section 4.3, the 
initial implementation used the same land cover, 
meteorological, and streamflow data as did the existing 
RFS calibration.  Instead, we simply allowed 21 
parameters in the existing operational Alouette model to 
be free in an Absynthe parameter estimation.  The first-
generation version of the Absynthe software was 
employed, without calibration to snowpack or a hard 
constraint on the lowest snow-free elevation band; this is 
not unreasonable for Alouette.   

 An Absynthe ensemble for a typical year is 
illustrated in Figure 3.  About 72% of the observations 
lie within the envelope of Absynthe hydrograph traces, 
which appears to be a middle-of-the-road value for 
GLUE-based methods (see, for example, the 
“containing ratio” values reported by Xiong et al., 
2009).  About 17% of the observations lie above the 
upper bound and 11% below the lower bound, which is 
reasonably symmetrical.   
 Performance of the nominal best parameter 
set is summarized in Table 1.  Two “best” sets are 
illustrated: the individual parameter set having the 
highest value of the global likelihood function, and the 
individual parameter set with the best daily Nash-
Sutcliffe efficiency, which is particularly important 
operationally for small, flashy coastal projects like 
Alouette.  The Absynthe recalibration set yields daily 
and annual performance statistically similar to that of 
the existing calibration, while dramatically reducing the 
maximum monthly volume bias (i.e., of the 12 months 
of the year, the worst found in the calibration; for 
Alouette, this occurred during summer baseflows, 
when a modest absolute error can yield a substantial 
% error). 
 The foregoing results suggest that Absynthe 
produces results which are useable for deterministic 
and probabilistic forecasting operations.  However, an 
additional key consideration in applying this method 
was to obtain a better understanding of the properties 
of the UBC Watershed Model.  Some useful insights 
are provided by diagnostic features which were 
incorporated into Absynthe.   

Some examples of “dotty plots” (projections of 
points on a likelihood surface onto a single parameter 
axis; Wagener et al., 2003; Beven, 2006; Wagener and 
Kollat, 2007) for the preliminary Alouette optimization 
are provided in Figure 4.  Caution must be exercised 
when interpreting these figures, as each point on a 
given plot corresponds to an entire parameter set, not 
just the parameter referred to on that plot.  
Nevertheless, these plots are a highly useful diagnostic 
feature.  A shotgun pattern indicates poor identifiability 
– a wide range of values could work for that parameter.  
Conversely, the appearance of a structured and 
peaked distribution on the dotty plot for a given 
parameter suggests good identifiability – irrespective of 
the values of the other parameters, high global 
likelihood values (i.e., good constrained multiobjective 
fits) arise for particular values of that parameter.  In this 
case, UBC Watershed Model parameter P0RREP (a 
rainfall representation factor, which linearly adjusts 
rainfall amounts observed at a given meteorological 
station) shows fairly good identifiability.  Parameter 
P0ISTK (interflow time constant for snowmelt, in days) 
shows murky structure: there is no clearly correct 
value, and equifinality is therefore in play, but some 
parts of the feasible parameter space can indeed be 
ruled out.  The dotty plot for parameter P0GRADL 
(precipitation gradient factor, in % per 100 m elevation 
increase, for elevations below a threshold value 
E0LMID) shows no structure in this example: 
equifinality is in this case in full swing.  Overall, of the 
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21 free parameters in this calibration, only 3 showed 
clear structure; 4 showed murky structure; and 14 
showed no apparent structure.  The results hence 
suggest widespread parameter indeterminism and 
therefore parameter uncertainty, duly transmitted into the 
prediction uncertainty apparent in Figure 3.   

It is perhaps worth pointing out that if the 
minimum and maximum limits to the feasible parameter 
space are pre-defined to lie very close to each other, i.e., 
the specified feasible range for a given parameter is very 
narrow, an appearance of lack of structure is 
unavoidable but may not speak to gross equifinality.  
This is not an issue with the results discussed above, 
however, as the limits of the uniform prior distributions 
were set far apart for each parameter in order to fully 
explore the parameter space. 

The source of this parameter indeterminism 
was tentatively explored by calculating a linear cross-
correlation matrix between the values of the free 
parameters across behavioural sets.  Results are 
illustrated in Figure 5.  There are some clear trade-offs 
between certain parameters.  One example is the strong 
negative correlation between P0RREP (the rainfall 
adjustment discussed above) and P0GRADM (like 
P0GRADL discussed above, but for a higher elevation 
range): as one increases, the other decreases.  On the 
other hand, some other parameters which exhibited poor 
identifiability in the first-generation Absynthe application 
to Alouette do not show correlations with other 
parameters.  An example is P0PERC (groundwater 
percolation in mm/day).   In such a case, parameter 
indeterminism presumably arises instead from a 
straightforward insensitivity of the model performance to 
the value taken on by that parameter.  Bear in mind, of 
course, that specific findings will vary from basin to 
basin, and also that only linear associations are 
considered in this matrix. 

Some parameter trade-offs may also be 
imposed or catalyzed by the imposition of the non-
pathology constraint.  Recall that this constraint mainly 
relates to the physically plausible ordering of values 
across parameters.  Thus, if one of the parameters upon 
which a constraint is placed takes on a certain value, 
then that must limit the range available to another 
parameter related by the same constraint (within a given 
parameter set).  Some potential examples are illustrated 
in Figure 6.  These “bubble plots” provide an alternative 
to conventional dotty plots, permitting illustration of (and 
thus facilitating comparison between) multiple 
parameters on a single graph.  The parameters included 
on Figure 6 are all time constants for various terrestrial 
hydrologic pathways, with units of days, and are all 
related to each other explicitly through the imposed non-
pathology constraint (see Section 4.2.2).  As one 
proceeds from left to right across this figure, the 
parameters correspond to physical processes that 
should normally be progressively slower (the details 
need not be delved into here), and this is reflected in the 
pathology screening.  We can see from the figure that 
this leads (as expected) to a grouping of values: the 
identified time constants for P0FRTK, for example, are 
generally lower than those for P0GLTK, though having 

identical feasible ranges.  This is accompanied by a 
large positive correlation coefficient (Figure 5): within 
the ensemble, as one goes up, the other will often also 
go up, because a parameter set containing P0FRTK > 
P0GLTK is deemed pathological and is rejected for 
inclusion in the ensemble. 

Some other potential impacts of these moving 
constraints were explored by re-running the Absynthe 
optimization for Alouette exactly as before, but omitting 
screening for pathological parameter sets.  In general, 
one might conjecture a continuum of potential effects, 
having the following two end members.  (i) At one 
extreme, if physically pathological parameter sets are 
inherently incapable of yielding behavioural 
hydrographs, turning off the pathology screening 
should slow down the Abysnthe run time, because 
more CPU time would be wasted on exploring barren 
parts of the parameter space.  (ii) At the other extreme, 
if pathological sets are equally capable of yielding 
behavioural hydrographs, then many of the parameter 
sets identified in a conventional, non-screened run 
would show physically incorrect mutual relationships.  
Results are given in Table 2.  In this particular case, 
the findings lean strongly toward scenario (ii).  Indeed, 
if these constraints are not explicitly imposed as part of 
the optimization procedure, the vast majority (over 
90%) of the parameter sets that would be accepted as 
behavioural in a conventional GLUE sense are 
physically unrealistic. 
 
5.2 Final results 
 

Calibrations have also been completed on 
seven more basins and sub-basins with at least five 
others in various stages of completion.  Unlike the 
benchtesting Alouette results discussed above, these 
were in general performed using a match to Apr 1 
SWE as part of the behavioural criteria and lowest 
permissible snow-free band as a hard constraint, in 
addition to updated meteorological, hydrometric, and 
land surface data, as well as composite stations, and 
are intended for operational forecasting use.  Further, 
Alouette has been finalized using this second-
generation version of Absynthe, the updated data 
sources, and the composite stations.  Aside from 
Alouette, the completed and soon-to-be completed 
basins mainly include the larger, snow and glacial melt 
dominated watersheds on the Columbia, Kootenay and 
Peace Rivers of the BC Interior.  The remaining 
watersheds to be completed in the future will mainly 
include the smaller rainfall-dominated basins of the 
Lower Mainland and Vancouver Island, as well as the 
Bridge River system. 

Of the watersheds completed thus far, 
Alouette is a pluvial, rainfall-dominated basin with a 
relatively small snowmelt contribution.  The Columbia 
River upstream of Mica Dam is split into two sub-
basins: Donald upstream of the Columbia River at 
Donald Water Survey of Canada gauge and Mica 
Local, downstream of the gauge.  These two sub-
basins, along with Duncan and Revelstoke are 
glacionival basins with a significant amount of glacial 
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contribution to flow in the late summer months.  Special 
attention was given to these watersheds to ensure that 
the glacial contribution was reasonably simulated on an 
annual basis.  The other three completed watersheds 
are largely nival (snowmelt-dominated), with very little 
glacial contribution.   

Overall, the new calibrations have performed 
substantially better than the previous calibration, 
completed in 2001.  Table 3 provides a statistical 
comparison of the results of both calibrations over their 
total periods (including both calibration and verification 
periods).  Direct comparison between the two 
calibrations is challenging mainly due to non-overlapping 
time periods for the two calibrations, the varying length 
of the calibration period for the 2001 calibrations and the 
absence of verification runs for many of the 2001 
calibrations.  Those 2001 calibrations that did not include 
a verification period, and were calibrated over the entire 
record length evidently available at that time, are 
differentiated with an asterisk in Table 3.  Although not 
presented here, the results are much better for the new 
calibration periods and even further exceed those from 
the old calibration. 

In most cases the daily Nash-Sutcliffe efficiency 
and yearly percent volume error are comparable 
between the two sets of calibrations.  Where the new set 
of calibrations has in particular provided significant 
improvement is in terms of the average monthly biases, 
and for some basins also in terms of annual volume R2.   
The new calibrations also appear to provide a more 
reasonable amount of annual glacial contribution when 
compared to approximate calculations based on very 
limited glacier mass balance data. 

Table 4 shows the percentage of observations 
that fall within the Absynthe ensemble inclusion 
envelope.  For all calibrations, that value is about 70%, 
fairly typical for applications of GLUE-based optimization 
and uncertainty estimation technologies (see Section 5.1 
above).  Though variable from basin to basin, the 
distributions of confidence bounds around the correct 
value appear at least roughly symmetrical. 
 
6. CONCLUSIONS 
 
 A watershed model parameter optimization and 
uncertainty estimation technique was developed and 
applied to several river basins in British Columbia, 
Canada, which are variously rainfall-, snowmelt-, and/or 
glaciermelt-influenced.  The Absynthe technique is 
based on the proven generalized likelihood uncertainty 
estimation (GLUE) approach, but includes a number of 
important modifications: (i) multiple objectives; (ii) 
moving constraints to eliminate the possibility of 
“pathological” parameter sets, a concept introduced in 
our work to denote sets of parameter values which are 
physically reasonable individually but not collectively; 
and (iii) a hard constraint on the lowest elevation band 
that must be snow-free at least one day per year, which 
helps guide the de facto internal meteorological model 
toward physically correct solutions, particularly with 
respect to the split between glacier- vs. snowpack-
sourced summer meltwaters.   

Detailed benchtesting application of the first-
generation Absynthe application to one catchment 
suggested good performance.  Production-line 
applications in various different hydroclimatic 
environments led to further changes and improvements 
to the technique, and these second-generation 
Absynthe calibrations are producing parameter sets 
that will be used operationally.  In addition,  it is 
planned that the parameter set ensembles will be used  
in conjunction with NWP weather ensembles (for daily 
forecasting) and ESP climate traces and/or stochastic 
weather generators (for seasonal forecasting) to 
generate fully probabilistic forecasts. 

The key advantages of the Absynthe method 
are that it (i) effectively provided some useful insights 
into the properties and performance of the watershed 
model, (ii) it yields good hydrologic predictions, where 
“good” is defined on a multi-objective statistical basis, 
and (iii) it accomplishes this statistical performance 
while ensuring physical hydrologic plausibility.  The 
assurance of physical reasonableness is an important 
asset that distinguishes this method from many other 
optimization and uncertainty estimation techniques. 

The main disadvantages stem from the purely 
random search method employed by this GLUE-based 
method.  Specifically, the technique tends to be very 
slow to converge on good parameter sets.  By the 
same token, for given specified behavioural criteria, 
feasible parameter ranges, and run times or ensemble 
sizes, it is difficult to ascertain whether the best-
performing parts of the feasible parameter space have 
been sampled.  
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Table 1  Preliminary comparison of model performance, existing (manual) and Absynthe calibrations.   
 
 Current RFS (manual 

calibration) 
Best (by global 
likelihood function) 
Absynthe ensemble 
member 

Best (by daily Nash-
Sutcliffe) Absynthe 
ensemble member 

Nash-Sutcliffe efficiency, 
daily mean flow rate 

0.73 0.70 0.74 

Maximum monthly volume 
bias 

128% 47% 80% 

Nash-Sutcliffe efficiency, 
annual flow volume 

0.81 0.79 0.78 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2  Benchtesting Absynthe optimization for Alouette, with and without moving (rank-based) constraints 
 
 Screening on Screening off 
Run time (hrs) 14.9 15.7 
% of generated sets that are non-pathological 2.4 n/a 
% of generated sets accepted 0.2 7.2 
% of accepted sets that are pathological n/a 96.0 
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Table 3  Results from production-line calibration of BC Hydro forecast watersheds to date.  Results are shown for 
both the current (2009) calibration, performed using Absynthe in conjunction with updated data sources and 
composite meteorological stations, as well as the previous (2001) calibration which served as the basis of the 
operational RFS and which the new results are intended to replace. 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2001 1984-1998 0.73 -20 -7 -9 -1 3 5 18 58 127 27 -6 -10 1.0 0.82
2009 1987-2007 0.80 -18 -1 -3 8 22 8 11 36 26 7 -3 -15 0.4 0.81
2001 1984-1994* 0.76 -36 -29 2 -11 -7 8 -5 9 22 8 0 -13 -0.7 0.17
2009 1970-2007 0.89 9 14 12 7 6 4 1 -3 6 7 7 4 4.1 0.65
2001 1965-1998* 0.95 20 9 -18 -29 -4 3 -4 4 1 9 21 27 0.9 0.74
2009 1989-2007 0.95 -4 -6 -9 6 -1 3 1 -6 -5 2 13 6 -0.4 0.79
2001 1987-1999* 0.87 -21 0 -14 -24 -13 9 2 -15 -7 12 5 -10 -3.7 0.74
2009 1967-2007 0.92 -2 9 -3 5 4 1 1 0 1 14 8 -1 2.1 0.70
2001 1965-1998* 0.92 17 9 7 -16 -5 4 -3 1 -11 8 25 35 0.4 0.68
2009 1972-1989 0.92 3 -1 6 7 7 6 2 -9 -10 10 13 15 1.9 0.74
2001 1981-1997* 0.82 -14 -5 -18 -12 -1 0 -7 15 28 1 -25 -22 -1.6 0.07
2009 1980-2004 0.82 1 25 18 13 5 -3 2 9 8 -5 -11 -21 2.0 0.31
2001 1984-1994* 0.91 21 45 0 -24 -1 3 -6 7 4 4 -4 23 0.6 0.37
2009 1984-2007 0.92 3 2 7 -2 -1 4 -3 2 7 6 -9 -5 0.2 0.80
2001 1985-1998 0.88 20 43 27 -12 -1 2 2 15 23 12 0 -1 4.3 0.66
2009 1974-2007 0.86 13 4 2 0 7 5 2 17 18 13 7 2 6.0 0.50

Daily Nash-
Sutcliffe

Sugar

Parsnip

Yearly % 
Volume Error

Yearly 
R 2

Mica Local

Donald

Monthly % Volume ErrorBasin Calibration Total 
Period

Arrow

Alouette

Revelstoke

Duncan

 
 
 
 
 
 
 
 
 
 
 
Table 4  Inclusion statistics for Absynthe envelope, defined as the minimum and maximum predicted values of daily 
flow for a given day drawing from 100 GLUE ensemble members. 
 

Basin
% observations within 

envelope
% observations below 

envelope
% observations above 

envelope
Alouette 65.8 23.0 11.2
Mica Local 69.9 13.5 16.7
Donald 71.3 8.9 19.8
Revelstoke 73.2 13.0 13.8
Duncan 71.9 8.4 19.7
Sugar 70.0 13.0 16.9
Parsnip 69.7 16.5 13.8
Arrow 68.3 16.2 15.5  
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Figure 1  Streamflow regimes in British Columbia 
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Figure 2  Flow chart for second-generation Abysnthe parameter optimization and  
uncertainty estimation algorithm 

1. Sample parameter set from uniform prior distributions for each individual parameter 1. Sample parameter set from uniform prior distributions for each individual parameter 

2. Moving constraints: screen the parameter set for pathological behaviour 2. Moving constraints: screen the parameter set for pathological behaviour 

3. If parameter set is non-pathological, pass to UBCWM & run; otherwise return to 1.3. If parameter set is non-pathological, pass to UBCWM & run; otherwise return to 1.

4(b). Assess whether parameter set is behavioural on basis of multi-objective criteria4(b). Assess whether parameter set is behavioural on basis of multi-objective criteria

5. Accept or reject parameter set5. Accept or reject parameter set

6. Return to 1. in a Monte Carlo procedure until specified number of behavioural sets 
is identified (or max number of UBCWM calls occurs)

6. Return to 1. in a Monte Carlo procedure until specified number of behavioural sets 
is identified (or max number of UBCWM calls occurs)

4(a). Fixed constraint: assess if parameter set meets snow-free elevation criterion4(a). Fixed constraint: assess if parameter set meets snow-free elevation criterion
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Figure 3  Alouette, 1989-90 water year, data (blue) and Abysnthe ensemble hydrographs (grey). 
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Figure 4  Example dotty plots for benchtesting Alouette optimization.  Red dots indicate the specified 
limits of the noninformative Bayesian priors.  
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Figure 5 Correlation matrix between 21 free UBC Watershed Model parameters across 100 behavioural 
and non-pathological parameter sets identified in preliminary Absynthe optimization using Alouette as a 
proving ground.  Correlation coefficients ≥ 0.30 are highlighted in red. 
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Figure 6  Bubble plots for terrestrial hydrologic time constants as estimated in Alouette benchtesting of 
the first-generation Absynthe software.  Red dots indicate the pre-specified feasible ranges for each of 
the parameters shown. 


