Transportation Security Administration Improving Consequence Analysis for Large TIH Releases

16th Conference on Air Pollution Meteorology

Jan 19, 2010

Transportation Security Administration

Curtis Schuhmacher TSA Freight Rail HAZMAT Technical Advisor

Risk = Threat x Vulnerability x Consequence

- Tank Car Vulnerability
- Understanding Consequence of a Catastrophic TIH Release
- Reducing Consequences by Increasing Emergency Response Preparedness
- Reducing Consequences by Improving Regulations

Understanding and Reducing TIH Rail Tank Car Vulnerability TSA – DHS Projects

- TIH Material Tank Car Threat Assessment Project FBI, TSA, DHS S&T, DOD, DOT
- Tank Car Vulnerability Assessment Project TSA, DHS S&T, FBI, FRA, DOD
- Rail Car and Stationary Storage Tank Mitigation Technology Integration Project - (.50 caliber AP and small IED) – IP, S&T, TSA, TSL, DOD
- Industry Programs:
 - DOW/UP/UTC Next Generation Tank Car
 - Advanced Tank Car Collaborative Research Program ACC, AAR, CI TFI, RSI

Consequence Modeling

Are the current transport and diffusion models adequate?

- Evidence against the models is circumstantial, not scientific
- Primary evidence is the low number of deaths
- Differences between accidents and model results could arise at any step in the modeling process, not just T&D
- There have been no large Chlorine Tests applicable to this problem
- Recent mid-scale (1 ton) tests have highlighted the unknowns but don't provide a clear direction for future testing

The TSA Technical Approach

- Assemble a team of experts across a range of specialties
- Seek out established experts skeptical of current approach
- Develop relationships with key organizations
- Glean all of the available data from accidental releases
- Identify the key data and modeling gaps
- Develop a series of hypothesis that are useful and plausible
- Lead a testing effort to support/refute the hypothesis
- Document and disseminate the results

Current TSA Focus Areas

Understanding DELAYED Dispersion from the Release Site

Overview of Problem Space

Evacuate or Shelter in Place

Release Factors Quantity Temperature Hole Size Jet Direction Weather Conditions Wind Speed and Direction Temperature Humidity Sunlight Intensity

Predict Area and Duration of Hazardous Effects

Down-wind Movement and Dilution

Interior Hazard

Gravity Flow of Dense Cloud

Effects of Vegetation and Obstructions

Persistence in low areas

Liquid soaking into ground

Hydrate Formation

Vapor and Droplets Entering Soil

Chemical Reactions with Surfaces

DHS S&T CSAC - Modeling of Large Scale Toxic Inhalation Hazard Transport Releases

Source Terms

Removal Mechanisms

Other

- Mass Flow/Empty Rate
- Very Low Wind Speeds
- Stable Stratification
- Mist Cloud Over Source
- Jet Direction
- Impingement
- Air Entrainment
- Droplet Size/Rainout
- Pool Formation

- Chemical Reactions
 - Vegetation
 - Ground/Soil
 - Water
 - Building Materials
 - Atmospheric
- Soil Absorption
- Water Submersion
- Photolysis (+ rxn)

- Toxicity
- Breaching Conditions
- Transport Temperature
- Physical Barriers
- Terrain Effects
- Transition: SEM T&D
- Targeted Accident Data

Observations and Hypotheses

- Lethal effects are in the near field (~500 meters)
- Chlorine vapor and aerosols are dense and initially flow with gravity
- Dispersion models use source terms which are not valid for large release of liquid chlorine
- Large releases, due to slow kinetics of heat absorption, form stable source blankets that persist for minutes to hours
- Each release of a large amount of liquid chlorine is unique and dependent on chlorine temperature, topography, environmental conditions such as temperature, humidity, solar radiation, etc
- No single general scenario will apply, but a "perfect storm" is possible, and the possibility could be enhanced by careful selection of attack site.

April 2010 DPG Field Test

Improved understanding of 2-phase dense gas source term

- Attempt to reproduce large-scale phenomena at a reduced scale
 - Restrict cloud spread with embankment
 - Release in low-wind low-turbulence conditions
- Observations and measurements of Dense Gas /Aerosol cloud
 - Attempt to measure conditions inside cloud
 - Measure evolution and dispersion down-wind
- Evaluation of detection and sampling systems
 - Preparation for follow-on tests

Comparison of 2 TIH materials

- Chlorine
 - 4 Releases, 2 Tons each
- Anhydrous Ammonia

 4 Releases, 2 Tons each Transportation Security Administration

Proposed Test Release Configuration

Testable Results of Impounded Release

- Mist is very dense, 8 to 17 times more dense than air (samplers)
- Mist will flow due to gravity (cameras)
- Mist will pool in low areas (cameras, detectors)
- Mist keeps a very high Chlorine concentration in contact with the ground for long periods. (surface plates)
- Mist temperature below b.p. of Chlorine, -34C (Thermocouples)
- Mist is very stratified and shallow (cameras, samplers)
- Vapor generated by ground heat will cause turbulence within the cloud, mixing it (in-pool anemometers)
- Cold vapor layer will form on top of mist, reducing vertical entrainment (samplers, cameras)
- Air movement over the mist will carry off vapor and provide additional spreading force (cameras, detectors, stand-off)
- Mist acts as a reservoir of released material, buffering and localizing the effects (detectors, stand-off)

Emergency Preparedness

Emergency Response to Catastrophic TIH Material Release – Identified Gaps

- Inadequate understanding by First Responders of the TIH cloud behavior and impact
- Insufficient community outreach
- Inadequate catastrophic release emergency response procedures
- Insufficient emergency response equipment
- Insufficient knowledge by the local emergency response officials of the locations and movements of TIH tank cars
- Insufficient coordination with local public health officials

Participants in Emergency Preparedness Effort

- TSA Jack Aherne
- DOT FRA Bill Schoonover
- DOT PHMSA Tonya Schreiber
- DHS Emergency Services Sector Colleen Mall
- City of Chicago Haz Mat Chief Dan O'Connell
- City of Chicago OEMC -
- Illinois MABA Chief Jay Reardon
- International Association of Fire Chiefs Chief Tim Butters
- FEMA

DHS IP

Next Steps

- Monitor test preparation and conduct
- Coordinate activities of other organizations
- Disseminate and analyze test data
- Develop plans for follow-on testing

TSA - Jack Aherne – Project Lead

Northrop Grumman - Curtis Schuhmacher - Technical Lead

DHS Chemical Security Analysis Center (CSAC) – Dr. Shannon Fox; Dr. Steve Chesler Homeland Security Institute – Dr. Joe Chang **University of Arkansas** - Dr. Tom Spicer Naval Surface Warfare Center, Dahlgren - Tim Bauer **Center for Toxicology and Environmental Health (CTEH) - Dyron Hamlin** Hanna Consultants – Dr. Steve Hanna **Dow Chemical - Kay Koslan** Johns Hopkins Applied Physics Lab – Dr. Dave Lawrence National Center for Medical Intelligence (NCMI) – Dr. John Cockayne **University of Cambridge/MIT – Dr. Rex Britter Metcorps** - Dr. Bruce Hicks U.S. Army NGIC, Charlottesville, VA – Dr. Rick Babarsky Institute for Defense Analyses (IDA) – Dr. Kimberly Papadantonakis; Dr. Jeff Urban **Argonne National Labs – Dr. Dave Brown (NAERG)** Hazard Analysis Consulting - Dr. Ron Koopman **Defense Threat Reduction Agency (DTRA) - Rick Fry** Naval Research Laboratory – Dr. Jay Boris

