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1. INTRODUCTION* 
 
1.1 Objective and Overview 
 
 The aim of this study is to improve simulations 
of soil moisture and temperature, and 
consequently boundary layer states and 
processes, by assimilating soil moisture estimates 
from the Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-
E) into a coupled land surface-mesoscale model.  
We use the Land Information System (LIS) to run 
the Simulator for Hydrology and Energy Exchange 
at the Land Surface (SHEELS) land surface model 
with and without data assimilation of AMSR-E soil 
moisture observations.  We validate the results 
with in situ soil moisture measurements, and also 
test the data assimilation for simulations with 
enhanced and reduced rain forcing, comparing the 
results with a benchmark model run.   

 
1.2 SHEELS 

 
SHEELS is a distributed land surface 

hydrology model with a heritage from the 1980’s 
Biosphere-Atmosphere Transfer Scheme.  It 
includes a flexible vertical layer configuration 
designed to facilitate microwave data assimilation.  
SHEELS is described in Martinez et al. (2001) and 
in Crosson et al. (2002). 

 
1.3 LIS 

 
LIS is a land surface modeling and data 

assimilation framework for running land surface 
models (Kumar et al. 2006, 2007).  It is highly 
customizable at run-time, facilitating modeling 
experiments and intercomparisons.  Its modular 
structure allows users to specify a land surface 
model, base forcing (meteorological fields),  
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supplemental forcing (e.g. precipitation), and other 
parameters including land cover, soil type, 
greenness fraction, and topography.  LIS can be 
run coupled with the Weather Research and 
Forecasting (WRF) meteorological model and 
includes the capability to perform data assimilation 
through an Ensemble Kalman Filter. 
 For this study, we have integrated SHEELS 
into LIS and used LIS to run SHEELS and perform 
data assimilation experiments.  SHEELS was run 
offline, i.e. not coupled with a mesoscale model.   
 
1.4 AMSR-E 
 

AMSR-E is a conically scanning passive 
microwave radiometer that measures horizontally 
and vertically polarized brightness temperatures at 
6 frequencies ranging from 6.9- to 89.0-GHz.  It 
resides on the sun-synchronous, polar-orbiting 
Earth Observing System Aqua satellite at an 
altitude of 705 km.  The instrument scans with a 
swath width of 1445 km.   

We used the Level-2B soil moisture retrieval 
from AMSR-E, available from the National Snow 
and Ice Data Center, which has been regridded to 
a 25-km resolution (Njoku 2007).  The algorithm 
uses the 10.7-GHz and 18.7-GHz channels due to 
extensive radio frequency interference in the 6.9-
GHZ channel.  The resulting product gives the 
volumetric water fraction near the surface, 
corresponding to roughly the top 2-3 cm of soil 
(Njoku 2003). 
 
1.5 Ensemble Kalman Filter Assimilation 
 

These ASMR-E soil moisture retrievals (which 
are the “observations” in the context of data 
assimilation) were assimilated using an Ensemble 
Kalman Filter (EnKF).  Kalman filtering is a data 
assimilation method that combines a forecast 
(background) with observations to generate an 
improved estimate of a model variable.  A Kalman 
Filter calculates an optimal weighting between the 
background and the observation.  The EnKF uses 
the spread of the ensemble members to represent 
the forecast error covariance.  We used an 



ensemble with 16 members, each with random 
perturbations of three forcing variables (incident 
longwave and shortwave radiation, and rainfall), 
14 state variables (14 layers of soil moisture), and 
one observation variable (AMSR-E soil moisture). 
 
 
2.  EXPERIMENT SETUP 
 

The SHEELS ‘spin up’ simulation was 
performed in as uncoupled run with North 
American Land Data Assimilation System 
(NLDAS) base forcing (surface meteorological 
variables and downwelling radiation) and Stage IV 
precipitation estimates (radar estimates adjusted 
with daily rain gauge totals) from 1 January 2002 
through 9 June 2003.  We performed several 
model simulations for 19-29 June 2003 with and 
without data assimilation.  All simulations use 
NLDAS forcing, State Soil Geographic Database 
soil types, University of Maryland land use 
classification, Leaf Area Index from the Advanced 
Very High Resolution Radiometer and greenness 
fraction from the National Centers for 
Environmental Prediction.  To test the data 
assimilation, a simulation with the unmodified 
Stage IV precipitation was considered the 
benchmark run.  Additionally, two pairs of runs 
with 50% too much and 50% too little precipitation 
were performed, each with a control run and a 
data assimilation run.  These simulations are 
summarized in Table 1. 

 
Table 1.  Summary of model simulations. 
Run Name Precipitation Data 

Assimilation 
S4 Stage IV No 
0.5C 0.5 x Stage IV No 
0.5DA 0.5 x Stage IV Yes 
1.5C 1.5 x Stage IV No 
1.5DA 1.5 x Stage IV Yes 

 
Simulations were performed over a central 

U.S. domain extending from northern Texas to 
Nebraska, as shown in figures below.  This region 
was selected because it presents a wide range of 
hydrometeorological and vegetation conditions, 
facilitating evaluation of the data assimilation 
scheme and its sensitivity to vegetation type and 
amount.   

A Cumulative Distribution Function (CDF)-
matching technique (Reichle and Koster 2004) 
was applied to scale the observations into a 
model-equivalent range of values (Figure 1).  This 
has two effects.  First, it removes any 
climatological biases between the model and 

observations.  This is the main goal of bias 
corrections that are routinely applied to satellite 
observations in NWP models (e.g. Harris and Kelly 
2001).  Second, it increases the dynamic range of 
the AMSR-E soil moisture observations to match 
that of the model, increasing their potential impact.  
Simulations made without this correction showed a 
pronounced dry bias (not shown). 

 

 
Figure 1.  CDF-matching bias correction applied to 
AMSR-E observed volumetric soil moisture.  The 
x-axis gives the initial observation and the y-axis 
gives the corrected observation.  The 1:1 line (i.e. 
no correction) is shown for comparison.  
 
3.  RESULTS 
 
3.1 Spatial soil moisture patterns  
 

Figure 2 shows spatial maps of three 
quantities relevant to the data assimilation for the 
1.5DA run at 0800 UTC 12 June 2003.  The time 
was chosen to occur just after an AMSR-E 
overpass.  Panel (a) shows the excess 12-h rain 
accumulation (approximately since the previous 
overpass) relative to the S4 run, showing areas 
which are too wet in the 1.5DA run.  Panel (b) 
shows the soil water innovation (bias-corrected 
AMSR-E observation minus model soil water) for 
the 1.5DA run.  In general, where the 1.5DA run 
was too wet, the innovation is negative as 
expected, although there are small regions with 
the opposite sign.  Areas in white either have 
small innovation values, are outside the swath, or 
are flagged as missing (unable to be retrieved) 
due to active precipitation.   
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Figure 2.  Results for the 1.5DA simulation at 0800 
UTC 12 June 2003: (a) Excess 12-h rain 
accumulation relative to S4 run; (b) Soil moisture 
innovation, i.e. bias-corrected AMSR-E 
observation minus 1.5DA simulated soil moisture; 
(c) 1-h increment in top layer (1.67 cm) soil water 
fraction.  Points marked in Figure 2a denote 
locations of time series in Figures 3-5. 

Panel (c) shows the subsequent 1-h soil water 
increment for the top model layer (0-1.67 cm) after 
data assimilation.  This value also includes the 
effect of physical processes other than 
precipitation during this 1-h period, but their effect 
should generally be small relative to the increment 
from data assimilation. This pattern is well-
correlated with the previous panel, demonstrating  
that the data assimilation changes the model soil 
moisture to better match the AMSR-E 
observations. 
 
3.2 Time Series vs. Benchmark Run 
 

Time series for 9-19 June 2003 of fractional 
soil moisture at 5 cm depth for the five simulations 
are plotted in Figure 3, at two points (panels a and 
b, marked as points A and B in Figure 2a) and for 
the areal mean of the domain south of 37º N in 
panel c.  This sub-domain was chosen because 
much of this area received rain from the same 
storms during the time period. 

The S4 run (red curve) was used as a 
benchmark case against which the control and DA 
cases results were compared.  The 0.5C and 1.5C 
runs (blue and green solid curves) have 50% too 
little and too much rain forcing and are otherwise 
identical to S4.  Ideally, the 0.5DA and 1.5DA runs 
(blue and green dashed curves) would be closer to 
the S4 run than their non-assimilation 
counterparts. This is true in general for Figure 3b, 
and some of the time for Figure 3a.  This 
relationship will not always hold since the Stage IV 
rainfall estimates and AMSR-E soil moisture 
retrievals both contain some error  There is a 
notable tendency for both DA runs to converge for 
each case, suggesting that the model values are 
being driven toward the observations.    

Figure 4 shows a time series of 5 cm soil 
temperature departure from S4 at two points, and 
the average of the southern sub-domain (south of 
37º N).  Drier cases have a higher diurnal range, 
as expected.  In general, data assimilation brought 
the temperatures closer to the S4 run, although 
over-correction is seen at times.  We also see the 
tendency of the DA runs to converge with 
integration time following the assimilations. 
 
3.3 Time series vs. in situ observations 
 
We also compared the modeled soil moisture and 
temperature with hourly in situ measurements 
from the Little Washita Experimental Watershed 
network (‘ARS Micronet’) in southwestern 
Oklahoma (http://ars.mesonet.org/).  Time series 
of Micronet measurements of 5-cm soil moisture,  
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Figure 3.  Time series of 5-cm soil fractional water 
content at two points: (a) 100º W, 40º N, (b) 96.8º 
W, 35º N, and (c) for the mean of all locations in 
the domain south of 37N.
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Figure 4.  5-cm soil temperature anomalies with 
respect to Stage IV simulation.  Selected points 
are the same as in Fig. 3. 
 
 

 
along with the modeled values for all five runs, are 
plotted in Figure 5 for Micronet sites 111 and 149 
(located at points X and Y in Figure 2a), and for 
the average of 12 sites.  Site 149 (panel b) had the 
best results, with DA run values matching the 
measurements quite well.  However, soil moisture 
in the DA runs is overestimated in general 
compared to the benchmark S4 run and  
the Micronet observations.  
 
4.  CONCLUSIONS AND FUTURE RESEARCH 
 

We have verified that the increments in our 
data assimilation simulations have the correct 
spatial characteristics, and that soil moisture 
differences among the DA simulations are smaller  

 
than those of similar non-DA runs.  Validation 
against observations at the Little Washita Micronet 
sites yields mixed results.  We plan to perform 
more extensive validation of soil moisture and 
temperature simulations against in situ soil 
moisture observations from other stations within 
our domain for both summer and winter cases. 

We also plan to run SHEELS coupled with the 
WRF numerical weather prediction model and 
evaluate the forecast changes due to data 
assimilation by comparison against surface 
weather observations.  The ultimate goal is to 
evaluate the utility of AMSR-E DA in estimating 
boundary layer states (temperature, humidity, 
wind) and surface fluxes, and to determine the 
landscape and hydrometeorological conditions  
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Figure 5.  Time series of 5-cm soil fractional water 
content at two points in the Little Washita 
Micronet: (a) site 111, (b) site 149, and (c) for the 
mean of 12 stations.  

 
under which assimilation is most (and least) 
helpful. 

Finally, we believe that the CDF-matching bias 
correction technique could be improved by 
deriving separate curves for different vegetation 
types and times of day.  Currently, a single lookup 
table is used for all points.  We will test these 
changes to see if they yield significant 
improvement. 
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