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1. INTRODUCTION

The climate of tropical West Africa, a
subcontinent whose rural economy thrives
predominantly on rain-fed agriculture, has
received tremendous attention following the
persistent and devastating drought that plagued
the Sahel in the early 1970s (Lamb and Peppler
1992; Nicholson and Palao 1993). Efforts have
been made to diagnose this extreme climate
variability using empirical and modeling
techniques, with the aim of understanding the
attributions, and possibly, attempt to find
pragmatic solutions that could inject new lease of
hope to the people of this less developed
subcontinent.

Two major seasons which characterize the
West African monsoon (WAM) during boreal
spring-summer are March-April-May-June (MAMJ)
and June-July-August-September (JJAS). The
MAMJ and JJAS seasons constitute the Gulf of
Guinea Coast (GOGC) and the Sahel precipitation
seasons, respectively. A comparison of the
3-dimensional climate anomaly patterns in
association with the dominant precipitation modes
of the two seasons involving June, the transitional
month, has not been explored. This spurs us to
undertake the study.

The current research is, therefore, intended
to address the unique problem in order to improve
our understanding of climate variability over this
subcontinent. The results may be useful for
modeling studies.

* Corresponding author address: Fredrick H.
M. Semazzi, Department of Marine, Earth, and
Atmospheric Sciences, NC State University,
Raleigh, NC, 27695-8208; email:
fred_semazzi@ncsu.edu

2. DATA, METHODS AND ANALYSIS
2.1 Data

The data used for the research were monthly
gridded  University of Delaware terrestrial
precipitation (Willmott and Robeson 1995),
improved extended reconstructed sea surface
temperature (ERSST; Smith and Reynolds 2004),
and National Centers for Environmental
Prediction/National Center for Atmospheric
Research (NCEP/NCAR)(Kalnay et al. 1996)
reanalysis. These have spatial resolutions of 0.5°
latitude x 0.5° longitude, 2.0° latitude x 2.0°
longitude, and 2.5° latitude x 2.5° global grids,
respectively. The essential climatic ingredients
which were extracted from the reanalysis data
were horizontal winds, vertical velocity (omega),
and geopotential height fields at 1000 and 500
hPa isobaric surfaces.

2.2 Methods and Analysis

The general characterization utilized unfiltered
(raw) data for the analysis, which spanned 1948-
2006, constituting 59 years of continuous data for
the two seasons. Empirical orthogonal function
(EOF) analysis was performed on the precipitation
data over West Africa, out of which the leading
modes, which passed the delta-test (North et al.
1982), were retained. The total precipitation time
coefficients (TPTCs) were decomposed into
positive and negative phases at one standard
deviation to increase the sensitivity of the
experiment.

Anomalies from the horizontal winds, vertical
velocity, geopential height, as well sea surface
temperature (SST) fields bordering the continent
(Mediterranean Sea, Atlantic and Indian Oceans)
were computed and composited (Arguez et al.
2009) with the decomposed precipitation time
coefficients. From the horizontal winds and
precipitation anomaly composites, velocity
potential and its associated divergent winds were
computed (Krishnamurti 1971).



3. RESULTS

3.1 West African Precipitation Variability:
MAMJ vs JJAS

In both MAMJ and JJAS seasons, the four
leading principal components (PCs) of the
unfitered  precipitation data, which were
statistically separate according to North et al.’s
(1982) delta-test and also physically realistic, were
retained. These accounted for 45.22% and
54.70% of the total variances associated with
MAMJ and JJAS, respectively. However, the first
two modes are presented here. In MAMJ season,
the two leading modes explained 26.41% and
8.31%, respectively, of the total variance. In JJAS
season however, the first two modes contributed
to 36.0% and 9.56%, respectively, of the total
variance.

A visual inspection of the EOF 1 eigenvectors
of the MAMJ season (Fig. 1a) depicts more or less
ubiquitous positive weights over the region, which
is reminiscent of a monopole or non-dipole
structure, appearing to be dominated by Sahel.
The TPTCs of the MAMJ EOF 1 (Fig. 1c) are
dominated by interannual-like oscillations. Further,
it is argued here that even though it does not
typically rain over the Sahel in March-May (MAM),
the transitional month, June, which commences
and ends the major rainy season of the Sahel and
GOGC, respectively, is fully captured by the EOF
analysis. The June precipitation, a striking feature
over the Sahel during the GOGC MAMJ season, is
a manifestation of intraseasonal latitudinal
monsoon shift (monsoon jump) from 5°N to 10°N
(Hagos and Cook 2007), signifying the onset of
the Sahelian rainy season. The eigenvectors of
the MAMJ precipitation EOF 2 (Fig. 1b) are
characterized by positive departure patterns
weighted heavily over the GOGC, which show
anti-phase variations with the Sahelian anomalies.
Their time coefficients portray decadal variability
(Fig. 1d).

In contrast, the JJAS precipitation EOF 1
spatial pattern (Fig. 2a) is the well-known Sahel
mode/continental mode (SM/CM; Polo et al. 2008),
depicting a dipole, in which positively weighted
loadings are centered over the Sahel and negative
loadings (precipitation deficits) over the GOGC
zone. The temporal character of the SM depicts
decadal or interdecadal oscillations (Fig. 2c). The
JJAS EOF 2 spatial mode (Fig. 2b) depicts the

spatial structure characteristic of the GOGC during
which this humid zone receives relatively low
precipitation (Giannini et al. 2005). Its temporal
structures show interannual oscillations (Fig. 2d).

3.2 Anomalous Boreal Spring-Summer
Tropospheric Circulation over West
Africa: MAMJ vs JJAS

The climate anomaly patterns of the two
seasons computed are presented in Figs.3-5.
Positive (negative) events associated with the
anomalous WAM circulations of the seasons are
hereafter denoted by pos# (wet years) and neg#
(dry years), where “#” denotes the mode of the
decomposed precipitation time coefficients used
for the composite analysis. The circulation
structures associated with the first mode are
presented here.

3.2.1 Anomalous Surface Circulation

The key anomalous circulation features
associated with MAMJ pos1 (Fig.3a) may be
described as the involvement of moisture supply
created by contrasting SST anomaly (SSTA)
patterns in the tropical Atlantic Ocean and the
Mediterranean Sea, large-scale low-level cross-
equatorial moisture flux convergence, and low-
level cyclonic flows(Ward 1998; Giannini et al.
2005). Specifically, the mechanism leading to the
ubiquitous positive rainfall anomalies over West
Africa entails interactions among moderately,
strong southwesterly surface winds, Tropical
Atlantic dipole mode (TADM), substantiated by
grid point and linear correlations (SST vs
precipitation), moderately warm Mediterranean
Sea SSTAs, a less developed cold tongue
complex (CTC) in the tropical eastern Atlantic, and
low-level cyclonic flow over West Africa, generated
by diabatic heating, culminating in enhanced moist
convection and precipitation over the region.

The key anomalous circulation features of the
JJAS pos1 events (Fig. 3b) are similar to the
MAMJ pos1 counterparts (Fig.3a). However, the
former differs from the latter, in a depiction of an
advanced form of CTC in the tropical equatorial
Atlantic/southeastern Atlantic, accompanied by
high pressure and strong momentum flux
convergence, driven by intense westerlies or
southwesterlies, which transport substantial
moisture deeper into the Sahel. This s
supplemented by moisture advection from warmer
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FIG.1. Unfiltered spatial patterns and their corresponding time coefficients
of MAMJ rainfall during boreal spring-summer West African season.
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FIG. 2. Asin Fig. 1a, except for JUAS season.



Mediterranean Sea SSTAs. These events deprive
the humid GOGC of substantial precipitation. The
wetness of the Sahel during the JJAS season is
also found to coincide with colder Indian Ocean
SSTAs.

The MAMJ neg1 and JJAS neg1 (Figs. 3c,d)
events are the antitheses of their respective
positive events. The precipitation deficits in both
cases are characterized by obliteration of the
CTCs, negative moisture advection and
momentum fux from land into the Atlantic Ocean,
warmer Indian Ocean SSTAs, reversal of surface
winds, and the development of low-level
anticyclonic flows.

3.2.2 Velocity potential, divergence,
precipitation, vertical velocity, and
geopotential height anomalies

Figures 4 and 5 show the positive and
negative events associated with the anomalous
velocity potential and divergent circulations at 500
hPa (middle) and surface levels. It is observed that
the centers of action of the middle (surface) level
divergence (convergence) of the MAMJ pos1 is
located roughly over Libya between latitude 20°-
30°N of northern Africa (Figs. 4a,b). The
associated vertical motions of the MAMJ pos1
events reveal relatively weak, anomalous ascent
and descent, located over Sahel and the GOGC,
respectively, and these are out-of-phase with the
divergent circulation centers of action, neither do
they synchronize with the MAMJ precipitation EOF
1 field. The 500 hPa geopotential height
anomalies show positive center (ridge) over mid-
Sahel, which is out-of- phase with the negative
center (trough) over the GOGC. This anti-phase
relationship does not seem to synchronize well
with the positive monopole precipitation field.

In contrast, the anomalous middle (surface)
level divergence (convergence) of the JJAS pos1
events is centered over the Sahel (Figs.5a,b),
whose anomalous ascent (descent) is centered
over the Sahel ( GOGC ), and thus, shows
consistency with the JJAS divergent circulation
field and the JUAS SM/CM. The 500 hPa
geopotential height field shows stronger negative
anomalies over the Sahel than the GOGC, thus,
helping to explain the more intense pluvial
conditions over the Sahel (Fontaine et al.1995).

During the MAMJ neg1 events, the middle
(surface) level convergence (divergence) is
centered over Chad-Sudan region (Figs. 4c,d),
which is a shift from the Libya center of action of

the MAMJ pos1 events. However, the vertical
motion field, which is dominated by anomalous
subsidence, coincides with precipitation deficit
observed in Fig. 3c. An examination of the JUAS
neg1 events indicate that the anomalous surface
level divergent field is overlain by middle level
convergence centered over the Sahel (Figs. 5c,d).
These fields are associated with strong anomalous
subsidence and weak ascent over the Sahel and
GOGC, respectively, which are also in coherence
with JJAS neg1 precipitation field (Fig. 3d). In both
seasons, the precipitation deficits observed are
associated with positive 500 hPa geopotential
height anomalies.

4. CONCLUSIONS

The study has demonstrated that JJAS
precipitation fields generally show coincidence
with the anomalous divergent circulation,
geopotential height and vertical velocity
anomaly fields. The MAMJ precipitation fields
on the other hand, generally, were at variance
with the anomalous divergent circulations.
However, precipitation in both seasons appear
to be linked to contrasting SST patterns in the
Mediterranean Sea, Atlantic and Indian
Oceans, as well as atmospheric wind
anomalies.

The anomalous divergent circulations of
the two seasons implicitly suggest that
precipitation over Sahel and the GOGC
appear to be driven by two competing
mechanisms. These are momentum flux
divergence/convergence(Sahel) and horizontal
advection (GOGC).



a. Unfiltered Mar-Jun precip., SST, and sfc
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d. Unfiltered Jun-Sep. precip., SST, and sfc
winds composites (dry years: negl)
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FIG. 3. Unfiltered tropospheric circulation anomaly composites associated with positive
(negative) events of MAMJ and JJAS WAM at the surface level. Positive (negative)

numbers denote positive (negative) phases of the decomposed precipitation time

coefficients. The color bar denotes SST anomalies. Precipitation field over West Africa, has the
following color notations: blue=very wet; green= wet; brown = very dry; yellow = dry; white=
almost dry.



a. Unfiltered Mar-Jun 500 hPa vel.
potential, divergent winds, and precip.

c. Unfiltered Mar-Jun 500 hPa vel.
potential, divergent winds, and precip.
composites (dry years: negl))
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b. Unfiltered Mar-Jun vel. potential,
divergent winds, and precip. composites at
the sfc (wet years: pos1)
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d. Unfiltered Mar-Jun vel. potential,
divergent winds, and precip. composites at
the sfc (dry years: negl)
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a. Unfiltered Jun-Sep 500 hPa vel. c. Unfiltered Jun-Sep 500 hPa vel.
potential, divergent winds, and precip.

X potential, divergent winds, and precip.
composites (wet years: pos])

composites (dry years: negl)
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b. Unfiltered Jun-Sep vel. potential, d. Unfiltered Jun-Sep vel. potential,
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