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1. INTRODUCTION    
 
    Strong winds produced by warm season 
convection in and around the Kennedy Space 
Center (KSC), Cape Canaveral Air Force Station 
(CCAFS), and Patrick Air Force Base (AFB) pose 
a significant operational hazard to many weather 
sensitive aviation, pre-launch, launch, and post-
launch activities. Consequently, the forecasters at 
the 45th Weather Squadron (45 WS) located at 
CCAFS and Patrick AFB have the responsibility of 
disseminating accurate wind warnings for the 
entire KSC/CCAFS complex and Patrick AFB in 
order to minimize adverse impacts to costly 
equipment and assure human safety (Harms el al. 
1999). Warnings are based on the intensity of the 
winds with warning thresholds at 35 knots and 50 
knots for winds below 300 feet above ground level 
(AGL). Desired lead times are 30 minutes for the 
35 knot wind threshold and 60 minutes for the 50 
knot threshold. Until the summer of 2009, the 
45 WS also issued a convective wind warning for 
60 knot winds with a desired lead time of 60 
minutes. 
    Convective wind warnings, which are issued 
when there is a distinct possibility for damaging 
winds from a downburst, are the second most 
common type of weather advisory issued by the   
45 WS behind lightning (Wheeler and Roeder 
1996) with more than 175 convective warnings per 
year (Roeder 2009). As such, it is essential that 
forecasters have as thorough an understanding as 
possible about the various atmospheric conditions 
that may lead to the occurrence of strong 
convective winds in order to provide as much 
warning as possible to the appropriate parties. As 
the downburst funnel forecasting conceptual 
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model developed by 45 WS shows in Fig. 1, 
predicting convective winds begins with a general 
knowledge of the central Florida convective wind 
climatology. 
   Unlike what is typically the case during the 
winter months in Florida and in the higher latitudes 
at all times of year, the local weather throughout 
the warm-season (May through September) is 
dominated by numerous weak interacting low-level 
boundaries as opposed to stronger synoptic scale 
features. Examples of local low-level boundaries 
responsible for initiating convection in the area 
include, but are not limited to: east and west coast 
sea-breeze fronts, Indian River and Banana River 
breeze fronts, lake breeze fronts, thunderstorm 
outflow boundaries, and the interaction between 
these and other boundaries. 
    Cummings et al. (2007) studied the number of 
convective wind events from May through 
September and found that the greatest quantity of 
convective events occurred during the afternoon 
and evening hours from approximately 1600 UTC 
to 0300 UTC and in the month of August. A 
convective wind event is defined as an event that 
produces a convectively generated wind gust 
recorded by one or more of 36 weather towers 
around the KSC/CCAFS complex. This definition 
assumes all wind speeds, unless otherwise noted. 
Cummings et al. (2007) also examined the 
distribution of the maximum winds with respect to 
the overall synoptic flow regime and found that, in 
general, the average peak convective wind speed 
was greater when the flow regime had a significant 
westerly component and weaker when it had more 
of an easterly component. Lastly, this study 
discovered that the highest frequency of 
convective winds fell in the 20 to 24 knot interval 
and declined steadily above the 35 knot warning 
threshold. Fig. 2 displays a frequency distribution 
of the maximum observed peak wind gusts in 5 



 
Fig. 1. Downburst funnel forecasting conceptual model (Roeder 2009). 

 
knot increments and the associated Gumbel 
probability curve fit to the observed data for the 
924 convective wind events for the warm-season 
months in the 1995 to 2008 study period. 
    After the first step of “climatology” in the 
downburst funnel (Fig. 1), the next step in the 
convective wind forecasting process is the 
“outlook” for the next few hours. These outlook 
techniques are the tools used in the morning to 
forecast the likelihood and intensity of downbursts 
that afternoon. These techniques include skew-T 
analysis, flow regime identification, and identifying 
preexisting boundaries. More specifically, this 
paper will investigate the 1500 UTC CCAFS Skid 
Strip (KXMR) rawinsonde observation (RAOB) 
data to see whether various atmospheric 
parameters suggest that convection and strong 
winds will occur. Note that the 45 WS uses 
asynoptic release times of 1000, 1500, and 2300 
UTC for the local KXMR RAOB during the 
summer. The late morning RAOB (1500 UTC) is 
used to monitor how the planetary boundary layer 
has changed since sunrise to better predict the 
likelihood and intensity of afternoon thunderstorms 
and their associated hazards, including 
downbursts. 
    Intermediate forecasting techniques bridge the 
gap between the morning outlook techniques and 
the nowcasting warning techniques just before the 
downbursts occur. 
    Finally, nowcasting involves primarily examining 
local radar data from the 45 WS WSR-74C at 
Patrick AFB and WSR-88D at Melbourne to 
evaluate when, where, and how strong 
convectively generated winds will be. Other 

research at Plymouth State University is 
examining how to better use the WSR-88D to 
predict downbursts at KSC/CCAFS (Rennie et al. 
2010).  
    Since presently used RAOB based methods do 
not work well for predicting downbursts at 
KSC/CCAFS, our primary goal is to expand the 
verification of previous RAOB indices and 
introduce some new outlook forecasting 
techniques through a rigorous statistical analysis 
of a 15-year climatology of RAOB data, RAOB 
derived thermodynamic variables, and RAOB 
based downburst forecasting indices. More 
concisely, new predictive analytic procedures, 
which use historical data to come up with ways of 
predicting future events, are introduced and tested 
against an independent dataset. Such procedures 
examined include multiple linear regression (MLR), 
logistic regression (LR), multinomial logistic 
regression (MR), classification and regression 
trees (CART), and ensembles of CART using 
several bootstrapping algorithms. It is our hope 
that various new intermediate techniques will 
enable 45 WS forecasters to better tackle what is 
a complex forecasting environment and provide 
better accuracy and lead times. 
 
2. DATA AND METHODOLOGY 
 
2.1 Data 
 
    Data used in this study were obtained from 
several different sources. Raw decoded 1500 UTC 
KXMR RAOB text data from 1 May to 30 



 
 
Fig. 2. Frequency and probability distributions of maximum observed wind speeds from 1995-2008 
(Cummings et al. 2007; Koermer 2009).  
 
September for each year from 1995 to 2009 were 
obtained from Computer Sciences Raytheon 
(CSR) in order to remove the World Meteorological 
Organizationʼs (WMO) procedure of assigning a 
dew point depression of 30° C when the relative 
humidity value was 20% or less on transmitted 
soundings. This correction ensures greater 
accuracy of computed thermodynamic variables 
such as equivalent potential temperature (θe) and 
wet downburst forecasting tools that are based on 
atmospheric moisture content. All of the KXMR 
RAOB data are also available online at the 
Plymouth State University convective wind 
climatology website, which can be found at 
http://vortex.plymouth.edu/conv_winds. 
    Wind speed data were obtained from CSRʼs 
network of 36 weather towers in and around the 
KSC/CCAFS spaceport. Fig. 3 displays a map of 
the weather tower locations and their relationship 
to the surrounding area. A total of 44 weather 
towers existed during this period, but one of the 
quality control requirements used in this research 
required 70% or more data availability. This 
reduced the number of towers available to 36. The 
weather towers measure 5 minute average peak 
wind speed from 12 feet to as high as 497 feet at 
one location at 10 different heights at various 
towers (Case and Bauman 2004). However, in 
accordance with the 45 WS warning requirements, 
only wind data from the ground to 300 feet were 
used in this study.  

    The 1500 UTC sounding was chosen since it is 
most representative of the atmospheric conditions 
a few hours before the time of the majority of 
convective wind events. Additionally, the 45 WS 
uses this sounding to produce a convective wind 
forecast for each day during the warm-season. 
The database also contains a consistent day-to-
day record of 1500 UTC soundings, making it a 
more reliable data source from which to draw 
conclusions. 
   A dataset containing 61 different thermodynamic 
and wet downburst forecasting variables was 
computed for each day. Table 1 lists and briefly 
describes the predictors used in this study. These 
61 predictor variables and the peak wind response 
variable were then read into R, a free and open-
source statistical software environment, in order to 
perform predictive analytic based forecast 
methods.  
 
Table 1. List of 61 predictor variables included in 
the dataset.  

Convective available potential 
energy (CAPE) (J/kg) 

Parcel level of free convection 
(LFC) in hPa 

Downdraft CAPE (DCAPE) 
(J/kg) 

Parcel LFC (m) 

DCAPE wind in knots Equivalent Level (EL) in hPa 
1000-500 hPa thickness (m) EL (m) 
Freezing level (hPa) Buoyancy at EL (J/kg) 
Freezing level  (m) Maximum parcel ascent level 

(hPa) 
Height of the wet-bulb freezing 
level (hPa) 

Maximum parcel ascent level 
(m) 

Height of the wet-bulb freezing Computed storm motion wind 



level (hPa) direction 
Precipitable water (inches) Computed storm motion wind 

speed 
Surface to 500 hPa mean 
relative humidity 

Maximum (θe) in lower layer 
(K) 

Estimated maximum 
temperature (°C) 

Height of the maximum θe (m) 

Surface Lifted Condensation 
Level (LCL) in hPa 

Minimum mid-level θe (K) 

Surface LCL (m) Height of the minimum θe (m)  
Surface LCL temperature (°C) Difference between the 

maximum and minimum θe 
heights (m) 

700-500mb lapse rate (°C/km) Pressure at height of the 
maximum θe (hPa) 

Equivalent potential 
temperature (θe) index (K) 

Pressure at height of the 
minimum θe (hPa) 

Bottom layer in hPa for θe 
index 

Pressure difference between 
height of minimum and 
maximum θe (hPa) 

Top layer in hPa for θe index Wet microburst severity index 
(WMSI)  

Convective condensation level 
(CCL) in hPa 

WMSI using average CAPE 

CCL (m) Microburst downdraft potential 
index (MDPI)  

Mean mixing ratio (g/kg) Modified MDPI1 
Convective temperature (°C) Modified MDPI2 
Cap strength SWEAT index 
Lifted index Energy index 
300 hPa lifted index (LI) Parcel CAPE using 100 hPa 

layer (J/kg) 
700 hPa lifted index (LI) Maximum parcel upward 

vertical velocity (m/s) 
Showalter index Convective inhibition (CINH) 

(J/kg) 
Total-Totals index Parcel Cap Strength 
Vertical-Totals index Parcel LCL (hPa) 
Cross-Totals index Parcel LCL (m) 
K-Index  

 
2.2 Evaluation of Existing Wet Microburst 
Forecasting Indices 
 
    Atkins and Wakimoto (1991) developed an 
outlook forecasting technique used for forecasting 
wet downbursts in a weak synoptic wind 
environment that involves examining the 
atmospheric θe profile. This was done because it 
has been shown in modeling studies that cool, dry 
air in the mid-levels can aid downburst generation 
by being more susceptible to evaporatively 
induced chilling and, therefore, greater negative 
buoyancy (Srivastava 1985, 1987; Proctor 1989). 
The Atkins and Wakimoto (1991) study on wet 
downburst activity over the southeastern United 
States found that the mean difference between the 
surface θe value and the minimum mid-level θe 
value was less than 13 K for days with 

thunderstorms but no downbursts and higher than 
20 K for downburst days. This suggests that θe 
profiles can be used as a tool to differentiate 
between days with a high or low potential for wet 
downbursts. Loconto (2006) extended this logic to 
distinguish between days when winds greater than 
35 knots or less than 35 knots were observed on 
the KSC/CCAFS complex. He discovered that 
days when the winds reached or exceeded the 35 
knot warning criterion possessed a greater θe 
difference between the surface and the mid-levels 
than days where the winds did not reach or 
exceed the 35 knot warning threshold. 
    Based on the results of Atkins and Wakimoto 
(1991), Wheeler and Roeder (1996) derived a 
RAOB based microburst forecasting index, the 
microburst day potential index (MDPI), in an 
attempt to help the 45 WS forecast the likelihood 
of wet microbursts for any given day from the 1500 
UTC KXMR RAOB data. The index they derived 
incorporates finding the difference between the 
maximum θe value in the low-levels of the 
atmosphere and the minimum θe value in the mid-
levels in order to evaluate downdraft development 
potential. Mathematically, MDPI is defined as 
 

,             (1) 

 
where max θe refers to the maximum θe value 
found in the lowest 150-hPa of the atmosphere, 
min θe refers to the minimum θe value between 
650 and 500 hPa, and CT is a locally defined 
critical threshold that  was empirically tuned to be 
30 K for KSC/CCAFS. A MDPI greater than 1 
implies steep θe lapse rates and a higher likelihood 
of wet downbursts with winds in excess of 
35 knots should deep convection form while an 
MDPI of less than 1 signals a reduced risk of 
downbursts (Wheeler 1996). 
    In an attempt to include the effect of the vertical 
θe gradient on the daily potential for microbursts, 
we modified the MDPI (MMDPI) in two ways, each 
incorporating a different measure of the height of 
the maximum low-level θe and the minimum mid-
level θe. Eq. (2) shows that MDPI was modified by 
assimilating the height in meters into the 
denominator while Eq. (3) illustrates that it was 
modified by putting in the pressure level (hPa) that



 
 
Fig. 3. Map of locations of CCAFS/KSC wind towers and KTTS and KXMR. Data from black four-digit 
numeric tower identifiers were used in this study (Koermer 2009). 
 
corresponded to the height of the maximum or 
minimum θe level. Eqs. (2) and (3) are expressed 
as  
 

                  (2) 

 

                  (3). 

 
As with the MDPI, values of greater than 1 indicate 
steeper θe lapse rates and an enhanced potential 
for downbursts while values of less than 1 suggest 
a lower risk of strong convective winds. 
    Another convective wind forecasting index, the 
wet microburst severity index (WMSI), was 
developed by Pryor and Ellrod (2004) in order to 
assess both the potential and severity of wet 
microbursts. Like the MDPI, it combines the 
difference between the low-level θe maximum and 
the mid-level θe minimum, but unlike the MDPI, it 
also incorporates convective available potential 
energy (CAPE), which is used to evaluate updraft 
potential. WMSI can be expressed mathematically 
as 

                 (4). 

 
A WMSI in excess of 50 was found by Pryor 
(2005) to produce wind speeds in excess of 35 
knots. 
    An alternative wet microburst wind speed 
forecasting index derived by Proctor (1989) takes 
into account that wet microbursts are sensitive to 
the height of the melting level, the mean lapse rate 
below the melting level, and the ambient moisture 
content of the atmosphere below this level. More 
concisely, based on the results of his modeling 
studies, the index assumes that wet microburst 
strength increases with higher melting levels, 
steeper lapse rates, and as moisture content 
decreases from the ground to the melting level. 
The index may be written mathematically as 
 

,                 (5) 

 
where Hm is the height of the melting level in 
meters AGL, γ is the lapse rate between the 
ground and the melting level (°C m-1), γ0 is a 
constant equal to 5.5*10-3 °C m-1, Ql is the ambient 



mixing ratio (g kg-1) at 1 km AGL, and Qm is the 
ambient mixing ratio at the melting level (Proctor 
1989). 
    Building off of Proctor (1989), McCann (1994) 
composed the wind index (WINDEX) in order to 
better match observed microburst wind speeds. 
The parameters are the same as in Proctorʼs Index 
except that the ambient mixing ratio is averaged 
over the lowest 1 km AGL to better represent the 
actual low-level moisture setting. Mathematically, 
the WINDEX can be expressed as 
 

,   (6) 
 
where Hm is the height of the melting level in km 
AGL, Ql is the mean mixing ratio from the surface 
to 1 km AGL (g kg-1), Qm is the mixing ratio at the 
melting level, RQ is Ql/12 but not larger than 1, and 
γ is the lapse rate from the surface to the melting 
level (°C km-1) (McCann 1994). 
    While each of these wet microburst wind speed 
forecasting indices show some potential for use in 
the central Florida warm-season environment, they 
have not previously been thoroughly evaluated 
with a large dataset in order to assess their 
strengths, weaknesses, and biases. Additionally, 
since Proctorʼs index, WMSI, and WINDEX were 
not derived based on central Florida warm-season 
climatology, it is suspected that one or more of 
these indices may need to be tailored to better 
accommodate the local atmospheric conditions. 
    In an attempt to evaluate the performance of 
Proctorʼs index and WINDEX, the results of these 
indices were compared against the actual 
convective peak wind speed for days when 
convective winds occurred. More precisely, the 
observed peak wind speeds and predicted wind 
speeds were read into R to compute the mean 
error (ME), mean absolute error (MAE), root mean 
square error (RMSE), and correlation coefficients 
between the predicted and observed wind speeds. 
In addition, a hit rate was calculated by finding the 
percentage of predicted wind speeds that fell 
within 5 knots of the observed wind speed. 
    However, because the MDPI, MMDPI1, 
MMDPI2, and WMSI assess the potential of a 
downburst with winds in excess of 35 knots as 
opposed to the actual wind speed, they were 
verified in a different manner. In order to verify the 
ability of the MDPI, MMDPI1, and MMDPI2 to 
forecast 35 knot or greater wind speeds, observed 
wind speed data were translated into a binary 
response (i.e. to forecast a “yes” or “no”) variable. 

A 0 represented a day with either no convection or 
convection and winds less than 30 knots and a 1 
represented a day where winds in excess of 30 
knots occurred. The 30 knot threshold was chosen 
in order to provide cautious forecasting for 35 knot 
wind warnings. Meanwhile the MDPI, MMDPI1, 
and MMDPI2 data were translated into binary by 
setting any value of these indices that was greater 
than or equal to 1 to 1 and any value less than 1 to 
0. In accordance with Pryor (2005), WMSI was 
translated into binary by equating any value of 50 
or greater into a 1, and anything less into a 0. 
Days without an observed wind speed were 
excluded from the WMSI verification, since WMSI 
provides a wind speed related forecast, not a 
potential for occurrence forecast. 
 
2.3 Verifying Binary Forecasting Aids 
 
    A common method for verifying a two class or 
binary forecasting aid is by means of a 2 by 2 
contingency table, also known as a confusion 
matrix as shown in Wilks (2006). 
 
Table 2. A schematic of a 2 by 2 confusion matrix. 

Confusion Matrix  Observed  
       Yes     No 
Predicted Yes        a       b 
 No        c       d 

 
Several forecasting skill attributes can be 
calculated from the contingency table, including 
accuracy, bias, probability of detection (POD), 
probability of false alarm (POFA – Barnes et al. 
2009), critical success index (CSI), Heidkeʼs skill 
score (HSS), and true skill statistic (TSS) (Wilks 
2006). These relationships are expressed 
mathematically in Eqs. (7)-(13) 
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                                      (13). 

 
Accuracy simply describes how many times a 
forecast was correct for an index. Its value ranges 
from 0 to 1, where 1 represents perfect accuracy 
and 0 no accuracy. Bias measures how well the 
forecast frequency of “yes” events compares to the 
observed “yes” events. It can range from 0 to 
infinity where values less than 1 represent an 
inherent under forecasting problem while values 
greater than 1 signify chronic over forecasting. 
Unbiased forecasting, meanwhile, would be 
characterized by a value of 1. The POD statistic 
merely illustrates what fraction of the observed 
“yes” events was correctly predicted by any given 
index. Its value ranges from 0 to 1, where a 1 
represents perfect performance and a 0 the worst 
possible performance. On the other hand, the 
POFA defines the percentage of “yes” forecasts 
that failed to occur. Like POD, it too ranges from 0 
to 1, but unlike POD, a 0 represents perfect 
performance, and a 1 the worst possible 
performance. Intuitively, since POD has a positive 
orientation and POFA a negative orientation, a 
desirable forecasting index is one that has a high 
POD and a low POFA. CSI addresses the 
correspondence between predicted “yes” events 
and observed “yes” events including those that 
occurred randomly. Values close to 1 are desirable 
while values close to 0 are not. HSS is a statistic 
that evaluates the accuracy of an index with 
respect to random forecasting. Values between 0 
and 1 represent forecasts that are better than 
random forecasting while values from 0 to -1 
represent forecasts that are the same or worse 
than random forecasting, respectively. Lastly, the 
TSS evaluates how well the forecasting index 
separates observed “yes” events from observed 
“no” events. Its value also ranges from -1 to 1, with 
positive values corresponding to forecasts that 
more frequently match the observations and 
negative values representing forecasts that are 
more commonly the opposite of the observations. 
A more detailed treatment of these and other 
indices is provided by Wilks (2006). 

 
2.4 Composite Soundings 
 
     Extending Locontoʼs (2006) study, which 
constructed composite θe profiles for a small 66 
case dataset consisting of 33 warning and 33 non-
warning criteria wind events, composite θe profiles 
were built for the entire 1995 to 2009 dataset in 
order to see if a larger dataset produced a similar 
outcome. In addition, a bigger dataset is more 
representative of the overall climatology and 
provides more statistically reliable results that 
shed light on whether or not the 45 WS can utilize 
vertical θe profiles as a forecasting tool. Composite 
θe profiles were built with a FORTRAN 95 program 
that first classified days based on whether or not 
the recorded peak wind speed reached or 
exceeded 35 knots before constructing separate 
vertical θe profiles for each category by computing 
the average θe in 40-hPa increments from the 
surface to 200 hPa. A similar process was done to 
see if vertical profiles of temperature, dew point, 
wind speed, and wind direction showed any 
difference for each category and potential as a 
means for forecasting 35 knot or stronger 
convective winds. 
 
2.5 Predictive Analytic Techniques 
 
    This section discusses the five predictive 
analytic techniques used to create forecast 
models. The five techniques are: 1) multiple linear 
regression, 2) logistic regression, 3) multinomial 
regression, 4) classification and regression trees, 
and 5) ensembles of classification and regression 
trees via the three bootstrapping algorithms of 
bagging, boosting, and random forests. The 
results of these techniques are in section 3.  
 
2.5.1 Multiple Linear Regression 
 
    Multiple linear regression (MLR) models analyze 
the relationship between a numeric response and 
multiple predictor variables. The relationship is 
expressed as an equation that predicts the 
response as a linear function of each of the 
predictors. Models are built by minimizing the sum 
of the squared residuals for each predictor; a 
process known as ordinary least squares 
estimation.  
    Numerous methods of variable selection were 
tested in order to come up with the most accurate 
and simple MLR models. The models were built 



using a training dataset from the 1995 to 2007 
warm seasons and validated with an independent 
dataset from the 2008 and 2009 warm seasons. 
However, if the two datasets do not follow a similar 
distribution, using a separate dataset to validate 
models can present misleading verification results. 
As such, two simple tests were performed to 
assess whether or not this issue would occur. A 
Kolmogorov-Smirnov test (K-S test) was used to 
test the null hypothesis that the two separate 
datasets were drawn from the same continuous 
distribution while a Quantile-Quantile plot (Q-Q 
plot) was used to graphically compare the 
differences in the distributions by plotting their 
quantiles against each other. Since the results 
from the K-S test gave a p-value of 0.5546 and 
Fig. 4 displays a linear trend that roughly follows 
the line y = x, the null hypothesis that the two 
datasets followed a similar distribution was not 
rejected. Consequently, it was concluded that 
validation of these models with this independent 
dataset was adequate in evaluating the modelʼs 
ability to forecast in a volatile and fickle 
environment. 
    Because the MLR models are trying to predict 
the maximum possible wind speed for days where 
convective winds occur, all data from days where 
there was no convective wind event were excluded 
from model construction and validation. This is 
because the intent of the MLR models is not to 
forecast whether or not convection will occur, but 
rather, to forecast the strongest expected wind 
gust should convection be predicted by one of the 
techniques discussed in the subsequent sections. 
 
2.5.2 Logistic Regression 
 
    Unlike MLR, logistic regression (LR) uses a two-
class categorical response as opposed to a 
numeric one. This was done to build a model that 
predicts the probability that an event will fall into a 
particular class. After model construction, 
probabilities were computed with the independent 
dataset. These probabilities were then translated 
into a binary outcome for model validation with a 
classification threshold that optimized model 
accuracy. 
    In order to see if LR provided more promising 
results, the peak wind response variable was 
translated into a two-class response in one of two 
ways. In the first method, a value of 0 was 
assigned to the response variable for days when 

no convection occurred, and a 1 for days when a 
convective wind gust was recorded regardless of 
strength. This was done in an attempt to build LR 
models that help 45 WS forecasters to gain a 
better idea whether or not the environment is 
conducive for convection. In the second method, 
the response variable was assigned a value of 0 
for a peak wind speed of less than 35 knots and a 
1 for wind speeds of 35 knots or greater. As with 
MLR, any data for non-convective days were 
removed since the purpose of this LR model type 
is to forecast whether or not warning threshold 
winds will occur should the first type of LR model 
predict convection. These LR models were 
considered to see if they would help 45 WS 
meteorologists to better diagnose days where the 
atmospheric conditions are more favorable for 
warning criteria winds in the event that 
thunderstorms form. 
    LR models for the two response variable 
classification methods were built with the training 
data using many of the same variable selection 
techniques utilized in constructing the MLR 
models. Evaluation of model performance was 
also done with the independent data from 2008 
and 2009. As discussed previously, the 2008 and 
2009 seasons were shown to be representative of 
the entire data sample, and thus, appropriate to 
use as independent test data. 
 
2.5.3 Multinomial Regression  
  
    In an attempt to avoid having to use two 
separate LR models to make daily forecasts, 
multinomial logistic regression (MR) models were 
built and tested. MR models produce a probability 
that an event will fall into one of three or more 
classes, as opposed to just two. The class with the 
highest probability is then chosen as the 
forecasted outcome. In this case, the response 
variable was categorized into three classes where 
non-convective days were assigned a value of 0, 
days with convection and winds less than 35 knots 
a 1, and days with convection and winds greater 
than or equal than 35 knots a 2. As with other 
types of regression, several variable selection 
techniques were used to find the model that 
performed best with the independent data. Models 
were selected based on their ability to forecast 
accurately using cross-validation. Finally, the 
performances of the best performing LR and MR 



 
Fig. 4. Q-Q plot of dependent (1995-2007) and independent (2008-2009) observed peak wind speeds. 

 
models were compared to see whether using two 
LR models or a single MR model provided better 
results. 
    Regression models have the advantage that the 
equations can be easily programmed to output a 
daily forecast value based on 1500 UTC RAOB 
data, but have the disadvantage that they require 
exhaustive and complex methods of variable 
selection that demand considerable trial and error. 
    Validating three class forecasts such as those 
produced by MR models can be done with a 3 by 3 
contingency table (confusion matrix) like the one 
shown below (Wilks 2006).  
 
Table 3. A schematic of a 3 by 3 confusion matrix. 

Confusion 
Matrix 

 Observed   

  o1 o2 o3 
Predicted y1 y1, o1 y1, o2 y1, o3 
 y2 y2, o1 y2, o2 y2, o3 
 y3 y3, o1 y3, o2 y3, o3 

 
In the above table, yi represent the forecasted 
values while oj signify the observed values. From 
this, a modified version of accuracy, HSS and TSS 
can be computed as well as a new statistic, the 

Gandin-Murphy Skill Score (GMSS) (Wilks 2006; 
Gandin and Murphy 1992). The expressions for 
these performance metrics are shown in Eqs. (14)-
(16) 
 

               (14) 

 

                (15) 

 

,                            (16) 

  
where 
  
 



       (17) 

 
and 
 

                   (18). 

 
Finally,  
 

                                       (19). 

 
The above formulae include terms for the joint 
distribution of forecasts and observations, p(yi,oj), 
the marginal distributions of the forecasts, p(yi), 
and the marginal distributions of the observations, 
p(oj). In calculating GMSS, scoring weights are 
computed where Si,j is the scoring weight for 
incorrect forecasts and Sj,j is the scoring weight for 
correct forecasts. D(j) represents the odds ratios 
and r a dummy summation index (Wilks 2006). As 
with the two-class response, HSS estimates how 
the forecasting index compares to random 
forecasting while the TSS evaluates how well the 
index differentiates different types of forecasts 
from one another. GMSS is another skill score that 
differentiates between single and multiple-category 
forecast misses. Its value ranges from 0 to 1 with 
1 representing perfect forecasting and 0 signifying 
random forecasting (Gandin and Murphy 1992). 
The advantage to using GMSS is that forecasts 
that are off by two or more categories are scored 
as worse forecasts than adjacent-category misses. 
In other words, “near miss” forecasts are 
penalized less by GMSS. HSS and TSS, on the 
other hand, only depend on the proportion of 
forecasts correct (Gandin and Murphy 1992; Wilks 
2006). 
 
2.5.4 Classification and Regression Trees 
(CART) 
 
    Classification and regression tree (CART) 
(Breiman et al. 1984) forecasting methods, on the 
on the other hand, overcome the issue of model 
variable selection since all of the predictor 

variables are used in growing the trees. 
Furthermore, they have the advantage that they 
are usually easy to use and automate. Growing 
the trees begins by splitting the observations 
based on how well the predictor variablesʼ values 
can separate the observations into distinct groups 
in terms of the homogeneity of the response. The 
predictor and its associated value that produces 
the most purely split groups is chosen for the first 
node of a tree. This process iterates until some 
suitable stopping point is reached. However, 
because trees can become overly complex when 
using all of the predictors, a means of pruning 
each tree is required. Normally this can be 
accomplished by specifying the complexity 
parameter or the maximum number of nodes that 
a tree has. These attributes were chosen so that 
the best performing trees were grown. Other 
disadvantages to CART are the reasons why 
some variables and thresholds were chosen may 
not be easily understandable and the performance 
metrics are sometimes not as familiar as with 
more common techniques. 
    Three tree growing algorithms were tested in 
the statistical program R in order to see which one 
produced the best performing classification and 
regression trees. Classification trees make use of 
a categorical response while regression trees 
utilize a numerical one. Both tree types were 
grown, validated, and tested with the same 
datasets and dependent variable types as the 
regression models. 
 
2.5.5 Ensemble CART Using Bootstrapping 
 
    Finally, bootstrapping algorithms were tried in 
order to see if using an ensemble of CART models 
provided better results. In its most simple form, 
bootstrapping involves the creation of multiple 
learning samples of the data by repeated random 
sampling with replacement. Bootstrapping can be 
applied with CART to develop three separate 
algorithms.  
    The first algorithm tested was the bagging 
algorithm (Breiman 1996; Peters et al. 2002), also 
known as the bootstrap aggregation algorithm. In 
essence, this algorithm uses bootstrapping to 
create multiple versions of a classifier such as 
classification or regression trees, each grown upon 
a bootstrapped sample, before aggregating these 
to produce a predicted result. For regression trees, 
the algorithm employs a simple process that 
begins with taking a bootstrap sample from the 



original dataset before fitting a tree to this data. A 
prediction is then made from the resulting tree. 
These steps are performed a large number of 
times (normally 50-1000) and the predictions from 
each tree are averaged to produce a final result. In 
the instance of classification trees, the process is 
the same except that the final prediction is chosen 
by a popular vote of each of the predicted 
outcomes from the collection of trees instead of 
averaging the predictions from the all of the trees. 
The basic idea behind bagging is that by 
averaging the predictions over multiple samples, 
the variability of the prediction is reduced while its 
unbiased nature is simultaneously preserved.  
    The random forests (Breiman 2001; Liaw and 
Wiener 2009) algorithm is similar to bagging 
except that it chooses a random subset of 
predictor variables instead of using all of them. 
The number of randomly chosen predictors is 
usually fixed. By inserting randomness in this 
manner, the correlations between predictions 
generated by individual trees are reduced. This 
subsequently lowers the variance of the prediction 
error. Furthermore, by using fewer predictors in 
each tree, a significant computational savings is 
made.   
    Boosting (Freund and Schapire 1996; Culp et al. 
2006) is a tool that classifies binary response 
variables (due to a limitation in the boosting 
algorithm in R, it can only handle a binary 
response) with multiple classification trees. The 
basic idea behind the algorithm is to combine 
predictions from a group of weak classifiers in 
such a manner that the averaged predictions make 
a stronger classifier. The algorithm begins by 
growing a tree on a learning sample and predicting 
a class for an observation. If correctly classified, 
the observation receives less weight; if not, it gets 
more. Trees are repeatedly grown on the 
reweighted samples with incorrectly classified 
observations getting larger weights than the 
correctly identified ones. Consequently, cases that 
are difficult to classify receive ever-increasing 
weight, thereby increasing their chance of being 
correctly classified by the classifier. The final 
classification is produced by a weighted vote of the 
iteratively produced classifiers after the loop 
reaches a user specified stopping criterion. 
    Since the bagging and random forest algorithms 
can handle a non-binary categorical response, the 
wind speed was fed into the algorithms as either a 
numeric value, a two-class binary response as 
was done for two types of LR models, or a three-

class response as it was for the MR models. 
Experimentation was done in order to see which 
method yielded the most promising result.  
    Validation of the bootstrapping models is done 
differently because it does not require using an 
independent dataset. Instead, model verification is 
done with data not selected for any of the 
bootstrap samples, sometimes referred to as the 
out-of-bag (OOB) data. These data are used to 
calculate the OOB error, which can be either a 
misclassification error in the case of a categorical 
dependent variable or a RMSE in the case of a 
numeric one. Other common statistical 
performance metrics can be computed from the 
OOB data as well. 
    Bootstrapping methods have the advantage that 
they counter the problem that individual trees can 
be poor predictors and difficult to interpret, 
especially if theyʼre large. They also mitigate the 
issue of excessive variance in the predicted 
outputs produced by single trees. Furthermore, 
since verification is done using data not used in 
any of the bootstrap samples, no independent 
dataset is needed, implying that an entire dataset 
can be used in model construction. As with CART, 
bootstrapping models do not need to undergo 
exhaustive trial and error variable selection 
methods. Finally, they can be easily automated 
with a computer script to produce real-time 
forecasts. Bootstrapping methods have the 
disadvantage that they can be computationally 
expensive, particularly when using a large dataset, 
and that the reason for the final forecast will not be 
known, since it has been dispersed across many 
variables and thresholds.  
 
3. RESULTS 
 
    The results from all the forecast models 
explained in the previous section are discussed 
here.  
 
3.1 Performance of Existing Wet Microburst 
Forecasting Indices and Suggested 
Improvements 
 
    Evaluation of Proctorʼs index and WINDEX with 
1500 UTC KXMR RAOB data from 1995 to 2009 
revealed that neither of these indices predicted 
peak wind speeds with much accuracy. The 
performance of the aforementioned wet downburst 
forecasting indices are summarized in Table 4. 
 



Table 4. Performance metrics of WINDEX and 
Proctorʼs Index. 

 WINDEX Proctor 
RMSE 25.25 11.06 
MAE 22.17 8.930 
ME 21.54 1.380 
Hit Rate 0.085 0.339 
Correlation 0.105 0.143 

 
    As table 4 illustrates, Proctorʼs index is the 
better performer of the two indices with an 
observed wind speed falling within 5 knots of the 
forecast just under 34% of the time. In addition, it 
also has the lower RMSE, MAE, and ME. The 
WINDEX over predicts wind speed since its ME 
value is significantly positive. Correlation 
coefficients for these two indices illustrate little 
correspondence between the predicted and actual 
wind speeds.  
    Translating Proctorʼs index, WMSI, WINDEX, 
and the observed wind speeds into binary 
variables (any value of Proctorʼs index or WINDEX 
greater than 35 was set to 1 and less than 35 to 0) 
and performing the subsequent verification yielded 
the results displayed in Table 5.  
 
Table 5. Binary forecasting verification of wet 
microburst forecasting indices. 

 WINDEX WMSI Proctor 
Bias 2.459 1.093 1.000 
Accuracy 0.408 0.534 0.564 
POD 0.978 0.448 0.446 
POFA 0.602 0.589 0.554 
CSI 0.394 0.272 0.287 
HSS 0.012 0.037 0.087 
TSS 0.015 0.038 0.087 

 
    Table 5 also indicates that Proctorʼs index, 
WMSI, and WINDEX do not have much 
forecasting capability since they do not display 
desirable performance metrics. The extreme over 
forecasting problem associated with the WINDEX 
is also evidenced here with its bias in excess of 2. 
Although WMSI and Proctorʼs index are not 
significantly biased, they each have a POFA that 
is greater than the POD. Moreover, all of these 
indices do not perform much better than random 
forecasting and have little ability to differentiate 
between days with or without warning criteria wind 
speeds. In general, an HSS or TSS of at least 0.3 
is usually considered as a need for a forecast 
technique to be even marginally useful in real-
world operations. 

    In attempt to correct for the intrinsic over 
forecasting issue associated with the WINDEX, it 
was modified to better accommodate the higher 
mixing ratios typically found in the central Florida 
warm-season environment. Since the ratio Ql/12, 
which is represented in the term RQ, cannot be 
greater than 1 (recall that Ql is the mean mixing 
ratio in g kg-1 from the surface to 1 km AGL), this 
implies that the mean low-level mixing ratio must 
be less than 12 g kg-1. Computation of this ratio for 
the KXMR RAOB dataset found that the ratio 
averaged well in excess of 1, illustrating the need 
for this ratio to be adjusted. After some trial and 
error, it was decided to increase the constant in 
the denominator from 12 to 18. In addition, the 
constant of 30 was raised to 35 to better account 
for the steep low-level lapse rates found in the 
dataset. The modified WINDEX (MWINDEX) can 
be written as 
 

,     (20) 
 
where all of the variables are as defined in Eq. (6) 
except that RQ is Ql/18 instead of Ql/12. 
    Verification of the MWINDEX found an RMSE of 
12.49, an MAE of 10.06, an ME of -0.018, a hit 
rate of 0.302, and a correlation coefficient of 
0.132. Setting the peak wind speed and 
MWINDEX as binary variables yielded a bias of 
0.996, an accuracy of 0.573, a POD of 0.460, a 
POFA of 0.538, a CSI of 0.300, a HSS of 0.108, 
and a TSS of 0.108. While not overly promising, 
these numbers do suggest some improvement in 
the ability of the MWINDEX to forecast for central 
Floridaʼs warm-season convective wind 
environment since it corrects the chronic over 
forecasting issue found with the WINDEX. It is 
speculated that using this index with an afternoon 
sounding to forecast wind speed in more of a 
nowcasting situation may yield some promise 
since conditions are likely to change markedly 
between consecutive soundings. 
    As Table 6 indicates, verification of the MDPI, 
MMDPI1, and MMDPI2 found that they performed 
worse by most measures than Proctorʼs index, 
WMSI, and WINDEX.  
 
Table 6. Performance metrics of MDPI, MMDPI1, 
and MMDPI2. 

 MDPI MMDPI1 MMDPI2 
Bias 1.529 0.468 0.652 
Accuracy 0.610 0.720 0.695 
POD 0.366 0.090 0.125 



POFA 0.761 0.808 0.808 
CSI 0.169 0.065 0.082 
HSS 0.036 -0.019 -0.024 
TSS 0.043 -0.015 -0.021 

 
    The rather high bias indicates that the MDPI 
forecasts 30 knot or greater wind speed days too 
frequently, while the biases of well below 1 for the 
MMDPI1 and MMDPI2 show that neither of these 
indices forecasts them with enough regularity. The 
relatively high accuracy values of these three 
indices are overshadowed by the low POD and 
high POFA values, suggesting that the higher 
accuracy may be due to chance forecasts that 
verified as opposed to sound forecasts that 
verified. Additionally, none of these indices 
perform better than random forecasting and have 
little or no ability to differentiate between days with 
weak or no convective winds and warning criteria 
winds. 
    Finally, a modification to Proctorʼs index was 
implemented in order to better represent the low-
level moisture profile of the atmosphere. Since Eq. 
(5) indicates that only the 1 km mixing ratio (Ql) is 
employed in calculating the index, the mean 
mixing ratio from the surface to 1 km AGL was 
used instead. This modification of Proctorʼs index 
is expressed as 
 

,               (21) 

 
where the terms are as defined above and in Eq. 
(5). After some empirical tuning, a constant of 3.5 
was adopted in order to account for the slightly 
higher values of Ql found with mean mixing ratio 
profiles in the lowest 1 km of the atmosphere. 
    Evaluation of the modified index yielded an 
RMSE of 10.98, a MAE of 8.87, a ME of 1.02, a hit 
rate of 0.353, and a correlation coefficient of 
0.151. Binary validation of this index gave a bias 
of 0.968, an accuracy of 0.573, a POD of 0.441, a 
POFA of 0.544, a HSS of 0.100, and a TSS of 
0.099. As such, despite our best efforts to improve 
Proctorʼs index, the modified version of this index 
still does not show much potential for use as 
evidenced by its poor performance metrics.  
    In sum, the overall performance of the wet 
microburst forecasting indices studied is not 
impressive when using 1500 UTC KXMR RAOB 
data. As such, it is advised that 45 WS forecasters 

exercise caution when using any of these tools to 
predict wet microburst wind speeds. 
 
3.2 Composite Soundings 
 
3.2.1 Composite θe Profiles  
 
    The composite θe profiles for convective days 
shown in Fig. 5 reveal a layer of lower θe values in 
the mid-levels for the days where winds of 35 
knots or greater were observed than for the days 
when winds of less than 35 knots were observed. 
More precisely, θe values of less than 330 K 
between 750 hPa and 550 hPa were typical of the 
stronger convective wind days.  
    Given the apparent difference seen in the mid-
level θe values, a quantitative evaluation was done 
with the 1995 through 2009 θe data in order to 
assess whether the daily θe profiles have some 
potential in forecasting wind strength. Evaluation 
was done by computing the difference between 
the maximum low-level θe and the minimum mid-
level θe (∆θe) for each day and comparing these 
values to the average ∆θe for all convective days, 
regardless of the observed wind speeds. This 
average was found to be 23.5 K. Based on the 
idea that greater ∆θe values imply stronger 
convective winds, if the daily ∆θe value was found 
to be larger than the 23.5 K threshold, a warning 
level wind was forecasted; if not, no warning level 
wind was forecasted. Table 7 illustrates the 
performance metrics of using a ∆θe value of 
23.5 K. 
 
Table 7. Performance of using the daily ∆θe value 
to forecast warning versus non-warning winds. 

 ∆θe Performance Metrics 
Bias 1.853 
Accuracy 0.477 
POD 0.754 
POFA 0.593 
CSI 0.359 
HSS 0.048 
TSS 0.056 

 
    Contrary to the results of Loconto (2006) and 
Atkins and Wakimoto (1991), which found that 
larger ∆θe values commonly coincided with 
stronger microbursts, the above performance 
metrics indicate that using the daily ∆θe value to 
differentiate between warning and non-warning 
convective wind speeds is not recommended. 



 
 

Fig. 5. Composite 1500 UTC KXMR θe profiles for warning (red) and non-warning (blue) days. Profiles 
contain data from 1995 to 2009. 
 
3.2.2. Composite Temperature, Dew Point, and 
Wind Profiles 
     
    The composite soundings shown in Figs. 6-8 
show that there is a negligible difference between 
the temperature and dew point profiles for days 
with thunderstorms and weak winds and days with 
thunderstorms and strong winds. However, as 
anticipated, the non-convective temperature and 
dew point profiles appear to be slightly cooler and 
drier than either of the convective soundings. 
However, it is the wind barbs in each of these 
soundings that display the greatest amount of 
variance with a tendency toward a somewhat 
stronger and more west-southwesterly wind profile 
with the strong convective wind days, especially 
below 700 hPa. Weak convective wind days 
showed a somewhat fainter westerly wind 
component below 700 hPa, while the non-
convective days actually displayed a bit of an 
easterly wind component in the low-levels. These 
results are also similar to the results of the 
Cummings et al. (2007) study. 
    Despite these findings, it is probably not the 
southwesterly flow that is causing more or stronger 
downbursts directly. Rather, the southwesterly flow 
is a flow regime that corresponds to a greater 
number of thunderstorms (Lambert and Roeder 

2008) and possibly more intense thunderstorms as 
well. This is due to the southwesterly flow slowing 
the inland penetration of the east coast sea breeze 
front off of the Atlantic Ocean and increasing the 
convergence at the east coast sea breeze front. 
Greater convergence can, in turn lead to more and 
stronger thunderstorms over KSC/CCAFS. In 
addition, the southwest flow accelerates the inland 
motion of the west coast sea breeze front off of the 
Gulf of Mexico, which can result in a collision of 
west and east coast sea breeze fronts on the 
eastern shore of the Florida peninsula. Outflow 
boundaries from prior convection can also 
enhance the forward motion of the eastward 
moving west coast sea breeze front and result in 
even greater convergence as it collides with the 
east coast sea breeze front. As such, the greater 
number of thunderstorms and strong 
thunderstorms can lead to a larger quantity of 
downbursts and more intense downbursts, 
especially if due to low-level boundary interactions 
(Ander et al. 2009; Dinon et al. 2008). 
    Since the low-level wind direction profile 
displays the greatest stratification between the 
convective classes, it was quantitatively analyzed 
in order to find whether or not it could be employed 
as a forecasting tool. Averaging the wind direction 
from the surface to 700 hPa for each day and



 
 
Fig. 6. Composite 1500 UTC KXMR temperature (red) and dew point (dashed blue) soundings alongside 
with wind barbs (knots) for non-convective days. Soundings contain data from 1995 to 2009. 
 
comparing the averaged value with one of two 
thresholds achieved this. One threshold was 
determined by calculating the mean surface to 700 
hPa wind direction for all of the days in the dataset 
while the other was computed by averaging the 
same data from the convective days only. The first 
wind direction threshold came out to 198.9°; the 
second was found to be 217.2°. Any daily mean 
wind direction that was found to be greater (larger 
westerly component) than the first threshold was 
predicted as a convective day while any day that 
had more of a westerly component than the 
second threshold was predicted as a day where 
warning level winds would occur. Verification with 
observed wind data yielded the results in Table 8. 
 
Table 8. Performance metrics of two wind 
direction thresholds.  

 Convective vs. Non-
convective 

Warning vs. 
Non-warning 

Bias 1.341 1.418 
Accuracy 0.627 0.566 
POD 0.677 0.678 
POFA 0.496 0.522 
CSI 0.406 0.389 
HSS 0.257 0.156 
TSS 0.274 0.166 

 

    Although not impressive, Table 8 shows that 
using the mean low-level wind direction to 
differentiate between convective and non-
convective days yielded better results than using it 
to do so for warning and non-warning wind days. 
As such, there does some seem to be some 
limited potential in using it as a criterion with which 
to diagnose which days are more likely to produce 
convection, but not necessarily for forecasting 
which days are more likely to produce warning or 
non-warning winds. This is the case since 
convection and perhaps strong downburst winds 
are favored when the flow displays more of a 
westerly component. 
    From a physical standpoint, this makes sense 
because convection is favored on the east coast of 
Florida during westerly and southwesterly wind 
regimes. In addition to the processes mentioned 
previously, warmer and moister air from the 
interior of the peninsula will be advected toward 
the east coast, enhancing the instability and 
energy available for convection. The slightly 
greater ambient wind speeds may also reflect the 
presence of a stronger synoptic flow on warning 
criteria convective wind days, suggesting that 
some momentum transfer from the mid-levels may 
be contributing to increased wind velocities near 
the surface in these cases. Lastly, a southwesterly 
synoptic flow may imply the presence of an 



 
 

Fig. 7. Composite 1500 UTC KXMR temperature (red) and dew point (dashed blue) soundings alongside 
with wind barbs (knots) for convective days and observed winds less than 35 knots. Soundings contain 
data from 1995 to 2009. 

 
approaching frontal boundary or upper level 
trough, both of which are locations favored for 
large-scale ascent and thunderstorm formation. 
 
3.3 Formulation and Evaluation of Predictive 
Multiple Linear Regression Models 
 
    After several variable selection techniques were 
employed to build simple MLR models in R, each 
was evaluated to choose the one that best 
predicted potential wind speeds from among the 
61 RAOB derived predictor variables. The 
objective of the variable selection methods was to 
include only the predictor variables that best 
forecasted wind speed in order to develop the 
most accurate, simple, and easy to use MLR 
model possible. In addition, predictor variable 
elimination was done to remove variables that did 
not successfully forecast peak microburst wind 
speeds. 
    A multitude of variable selection methods were 
tested against a MLR model with all 61 predictor 
variables embedded into it in order to assess 
which variable selection technique performed best. 
After some trial and error, the best performing 
MLR model was found by eliminating non-
statistically significant predictor variables via a chi-
square test that computed a p-value for each 
predictor. The chi-square test was done repeatedly 
to remove variables one by one until all of the 

remaining predictor variables in the MLR model 
had a p-value of less than 0.1. This p-value was 
chosen since it is generally regarded as a common 
threshold for an indicator of statistical significance. 
Verification results for each of the two MLR 
models with the 2008 and 2009 independent data 
are displayed in Table 9. 
 
Table 9. Performance of MLR wind models with all 
predictors and the simplified version after variable 
selection was done. 

 All Predictors 
MLR Model 

Simplified 
MLR Model 

RMSE 11.09 10.87 
MAE 9.069 8.844 
ME 1.096 0.933 
Hit Rate 0.318 0.336 
Correlation 0.308 0.317 

 
    While far from ideal, MLR models show some 
modest improvement over some of the wet 
downburst forecasting indices as indicated by 
higher correlation coefficients and lower error 
values. The advantage to MLR models over some 
of the wet downburst forecasting indices is that 
they are constructed from data that directly 
represents the local climatology. Furthermore, they 
contain many more predictors that can be used to 
predict convective wind speeds than the wet 
downburst forecasting indices discussed 



 
 

Fig. 8. Composite 1500 UTC KXMR temperature (red) and dew point (dashed blue) soundings alongside 
with wind barbs (knots) for convective days and observed winds greater than 35 knots. Soundings contain 
data from 1995 to 2009.
 
previously. On the other hand, the primary 
disadvantage of MLR models is that they still 
cannot adequately handle the amount of chaos 
involved in forecasting convectively induced winds, 
leading to undesirably high forecast errors. 
 
3.4 Formulation and Evaluation of Logistic 
Regression Models 
 
3.4.1 Using Logistic Regression Models to 
Differentiate Non-convective and Convective 
Days 
 
    As with MLR, several variable selection 
techniques were tried in order to find the best 
performing LR model with the fewest number of 
predictors in an attempt to better forecast which 
days are more conducive to convection. Again, a 
multitude of variable selection techniques were 
evaluated against a model with all 61 predictors 
included to find which method produced the best 
model. Comparison of several binary performance 
metrics revealed that the best model variable 
selection technique involved using Akaikeʼs 
Information Criterion (AIC). Basically, AIC is a 
measure of how well the model fits the data and is 
used as a tool for model selection. AIC can be written 
as 
 

,                                         (22) 

 
where k is the number of predictors in the model 
and L is the maximized value of the likelihood 
function for the model (Akaike 1974). The 
objective of using this method is to compare 
multiple models with different combinations of 
predictors until the model with the lowest AIC 
value is found. In other words, the goal is to 
minimize AIC by striking a balance between the 
goodness of the modelʼs fit, which is represented 
in the log-likelihood value, and a penalty term that 
increases with the number of parameters in the 
model (Wilks 2006). Model evaluation with the 
independent data and the resulting performance 
metrics of both the simplified model and the model 
with all of the predictors are displayed in Table 10. 
 
Table 10. Performance of LR models 
differentiating between non-convective and 
convective days.  

 All Predictors 
LR Model 

Simplified LR 
Model 

Bias 0.862 0.845 
Accuracy 0.653 0.654 
POD 0.550 0.545 
POFA 0.362 0.355 
CSI 0.420 0.420 
HSS 0.292 0.295 
TSS 0.289 0.291 

 



    Model performance indicates that this approach 
to diagnosing which days have a greater potential 
to produce convection must be approached with 
caution. However, it does show limited promise 
since it is considerably better than both present 
forecasting methods and random forecasting. 
Even though the improvement of the simplified LR 
model is only slight, having a reduced number of 
predictor variables makes it easier to work with. 
 
3.4.2 Using Logistic Regression Models to 
Differentiate Non-Warning and Warning 
Criteria Wind Days 
 
    After using the previous LR model to forecast 
whether a day has potential to produce a 
convective event, another LR model was 
developed in an attempt to forecast whether or not 
a day with convection is likely to produce a 
warning or non-warning level wind gust. After 
evaluating several variable removal methods with 
the independent data, performance measures 
found that removing the non-statistically significant 
predictors, once again, provided the best results in 
this case. The results of the simplified LR model 
and the full LR model are shown in Table 11.  
 
Table 11. Performance of LR models 
differentiating between non-warning and warning 
convective wind days. 

 All Predictors 
LR Model 

Simplified LR 
Model 

Bias 0.714 1.100 
Accuracy 0.633 0.700 
POD 0.449 0.720 
POFA 0.371 0.345 
CSI 0.355 0.522 
HSS 0.239 0.400 
TSS 0.232 0.403 

 
    These results indicate that translating the 
response variable into a binary category and 
removing the noise in the response provides better 
forecasting results than forecasting the wind speed 
directly as was done with the MLR models. 
Although not terrific, the results do suggest that 
using a simple LR model does provide some 
promise in helping 45 WS meteorologists to better 
diagnose which convective days are more likely to 
produce a warning level wind velocity. 
 
3.5 Formulation and Evaluation of Multinomial 
Regression Models.  

    In order to avoid having to use two LR models, 
a single MR model was developed using many of 
the same variable selection methods. Comparing 
the results of several variable selection techniques 
with a full model that contained all of the 
parameters found that, unlike the two types of LR 
models that each used different subsets of 
predictors, the full model provided the best results. 
In addition, the performance metrics of the 
simplified models were considerably worse than 
that of the full model. The independent data 
validation results of the full MR model are 
illustrated in Table 12.  
 
Table 12. Performance of MR model. 

 All Predictors MR 
Model 

Accuracy 0.575 
HSS 0.210 
TSS 0.188 
GMSS 0.272 

 
    The relatively poor performance of the MR 
model suggests that 45 WS should not use this 
approach for convective wind forecasting. Instead, 
it is recommended that two LR models be used 
due to their higher accuracy and better 
performance with respect to chance forecasting. 
The reason for the weak performance of this 
model is not well understood, but is speculated 
that different factors lead to determining whether 
convection will occur on any given day than those 
factors that determine the strength of a wind gust. 
In more succinct terms, combining the parameters 
that predict the outcome of two separate events 
into a single model is quite possibly the culprit 
behind the weakness of the MR models. 
 
3.6 Development and Validation of CART 
Models 
 
    Since MLR, LR, and MR models displayed only 
mediocre results at best, CART models were built 
with the training dataset and evaluated with the 
independent dataset to see if they showed more 
promise. As with the linear regression models, the 
CART models attempted to forecast either the 
potential downburst wind speed, whether a day will 
produce convection, or whether a convective day 
is likely to produce a warning level wind gust. An 
example regression tree that was grown by R is 
displayed in Fig. 9. Any cases that meet the 



 
Fig. 9. Regression tree used to predict wind speed. The numbers at the end of each node represent a 
predicted wind speed in knots. SMspd is the computed storm motion wind speed, SMdir is the computed 
storm motion wind direction, LCL_m is the lifted condensation level in meters, and Sweat is the SWEAT 
index.  
 
condition go to the left, while cases that do not go 
to the right. This continues down the tree until a 
terminal node is reached, which, in this instance, 
provides the forecasted wind gust velocity. 
Verification statistics of this regression tree are 
displayed in Table 13.  
 
Table 13. Performance of the best regression tree 
algorithm tested in R. 

 Regression Tree 
RMSE 11.127 
MAE 8.975 
ME 0.579 
Hit Rate 0.308 
Correlation 0.267 

 
    Unfortunately, as these results show, the 
performance of the regression tree is actually 
slightly worse than the best MLR model. This is 
likely due to the discrete forecasts produced by the 
regression tree since this introduces much 
variance and error. As such, it is not 
recommended that regression trees be used to 
forecast convective wind speed.  
    Using a classification tree to forecast both 
whether or not convection will occur and, if so, 
whether the winds will reach warning strength 
yielded more promising results. The classification 
tree used to forecast whether a day will produce 
convection (referred to as classification tree type 

1) is displayed in Fig. 10, while the tree used to 
determine if the wind strength will obtain warning 
threshold (referred to as classification tree type 2) 
is displayed in Fig. 11. Table 14 shows the results 
from the two types of classification trees. 
 
Table 14. Performance metrics of classification 
trees types 1 and 2. Type 1 predicts whether or 
not convection will occur. Type 2 predicts whether 
or not downburst winds will reach or exceed the 
warning threshold should Type 1 forecast 
convection. 

 Classification 
Tree Type 1 

Classification 
Tree Type 2 

Bias 0.922 1.02 
Accuracy 0.728 0.700 
POD 0.629 0.680 
POFA 0.318 0.333 
CSI 0.486 0.504 
HSS 0.431 0.396 
TSS 0.426 0.397 

 
    Considering the accuracy values in the vicinity 
of 70% and the otherwise solid performance 
metrics, it is recommended that both of these 
classification tree types be used over both linear 
regression models and regression trees. 
    Finally, a three-category classification tree was 
grown in order to compare the feasibility of using 
this with both of the two-category classification 



 
Fig. 10. Classification tree used to forecast whether convection would occur on any given day. A 0 
corresponds to a forecast of no convection, while a 1 corresponds to a forecast of convection. SMdir is as 
defined in Fig. 9, rh is the surface to 500 hPa mean relative humidity, SI is the Showalter index, and LI is 
the lifted index. 

 
trees and the MR model. The resulting 
classification tree is illustrated in Fig. 12 and its 
performance metrics are displayed in Table 15. 
 
Table 15. Performance metrics of three-category 
classification tree. 

 Three Category Classification Tree 
Accuracy 0.579 
HSS 0.244 
TSS 0.226 
GMSS 0.307 

 
    Similar to the MR model, using a three-class 
response variable dramatically decreased the 
predictive ability of the classification tree. It is, 
once again, thought that this may have to do with 
merging parameters that are used to predict two 
separate types of events into one. Consequently, it 
is suggested that 45 WS forecasters use the two 
types of classification trees to make forecasts as 
opposed to either the regression tree or a three-
class classification tree. 
 
3.7 Construction and Validation of Ensemble 
CART Models Using Bootstrapping  
 

    Several ensemble CART models using several 
bootstrapping algorithms were tested with the 
dependent variable as either a numeric, two-class, 
or three-class response and were compared to 
both regression and CART models. Both the 
random forests and bagging algorithms (recall that 
boosting can only be used with a binary response 
due to a limitation in the boosting algorithm) were 
implemented by growing 500 regression trees to 
predict the actual peak wind speed in knots since 
this number of trees provided the best results. 
Keep in mind that these performance metrics were 
computed with data not selected for any of the 
bootstrap samples, or the out-of-bag (OOB) data. 
Even with this method of model verification, the 
performance of both the bootstrapping models was 
much better than both MLR models and regression 
trees, as indicated by Table 16. 
 
Table 16. Out-of bag (OOB) performance metrics 
of the bagging and random forests bootstrapping 
algorithms with a numeric response. 

 Bagging Random Forests 
RMSE 9.788 9.914 
MAE 7.644 7.742 
ME 0.119 0.214 
Hit Rate 0.409 0.389 



Correlation 0.421 0.395 
 
    Both of these algorithms produced similar 
results with bagging being the slightly better of the 
two. However, even with the improved 
performance, there is still too much inconsistency 
in the predicted wind speeds in order to accurately 
predict their strengths from the 1500 UTC KXMR 
RAOB data. As such, it is not advised that 
ensemble CART models be used to forecast a 
peak wind gust either. 
    Treating the response as a two-class variable in 
the ensemble CART models produced the most 
promising results by far in this study. Within the 
boosting algorithm, 100 individual 256-split trees 
were grown since this yielded the strongest 
results. For the bagging and random forests 
algorithms, once again, 500 trees were grown. 
However, of the three algorithms evaluated, 
boosting had the best performance, with a nearly 
perfect forecasting track record. Table 17 
summarizes the OOB convection versus non-
convection forecasting ability of each the 
bootstrapping algorithms while Table 18 does 
likewise for the warning versus non-warning wind 
speeds.  
 
Table 17. OOB performance metrics of convection 
versus non-convection bootstrapping models.  

 Bagging Random 
Forests 

Boosting 

Bias 0.927 0.924 0.986 
Accuracy 0.724 0.711 0.987 
POD 0.632 0.615 0.978 
POFA 0.319 0.334 0.009 
CSI 0.488 0.470 0.969 
HSS 0.425 0.400 0.974 
TSS 0.421 0.395 0.972 

 
Table 18. OOB performance metrics of warning 
versus non-warning bootstrapping models. 

 Bagging Random 
Forests 

Boosting 

Bias 0.912 0.703 0.996 
Accuracy 0.667 0.651 0.998 
POD 0.538 0.414 0.996 
POFA 0.410 0.411 0.000 
CSI 0.392 0.321 0.996 
HSS 0.295 0.233 0.997 
TSS 0.290 0.222 0.996 

 
    Using the boosting algorithm on a separate 
dataset from 2008 and 2009 also yielded similar 

performance metrics, adding credibility to the 
above results. It is surmised that the superior 
performance of the boosting model is due to the 
weighting scheme that corrects hard to classify 
observations. The nearly perfect performance of 
the boosting models indicates that this is the best 
forecasting approach to predicting whether or not 
convection will occur and whether the winds will 
reach or exceed the 35 knot threshold. This 
performance is surprisingly high and verification 
with new independent data would help to further 
validate the success of this model.  
    Lastly, two three-class bootstrapping models 
were built with the bagging and random forest 
algorithms. Their results are shown in Table 19.  
 
Table 19. OOB performance metrics of two three-
class bootstrapping models. 

 Bagging Random Forests 
Accuracy 0.639 0.628 
HSS 0.314 0.253 
TSS 0.290 0.222 
GMSS 0.356 0.253 

 
    Although better than both classification trees 
and MR models, these results do not show much 
promise for these forecasting methods. To that 
end, it is not recommended that the 45 WS 
meteorologists utilize any of the three-class 
response models examined in this study. 
 
4. FUTURE WORK  
 
    The following suggestions are ways to extend 
and improve this research in future work. Since the 
boosting ensemble CART model showed 
surprising forecast skill, it should be verified again 
with new independent data. In addition, the 
conversion of ensemble CART models to 
probability forecasts should be explored based on 
the percent of total forecasts. For example, if 375 
out of 500 CART forecasts predicted that warning 
level downbursts would occur, the overall forecast 
might correspond to a 75% probability forecast. 
This simplest “percent of votes” should be 
considered first before looking for more complex 
conversions of number of votes to probability 
forecast. 
    Also, since RAOB based techniques tend to be 
broad area tools, extending the area of verification 
beyond KSC/CCAFS to include much of central 
Florida should be considered since downbursts 
occurring in central Florida may not be detected by 



 
Fig. 11. Classification tree used to forecast whether convective winds will reach warning threshold should 
convection occur on any given day. A 0 corresponds to a forecast of non-warning level winds, while a 1 
corresponds to a forecast of warning level winds. ZMNTHem is the height of the minimum mid-level θe 
value and wbz_mb is the height of the wet bulb freezing level in mb. All other variables are as defined in 
Figs. 9 and 10. 
 
the weather towers. Storm reports and surface 
observations from locations throughout central 
Florida could also be used to increase the 
verification area to be more representative of 
RAOB forecast tools.  
    It is also thought that using an ensemble of the 
regression, CART, and ensemble CART models to 
make forecasts may provide better results than 
many of the results discussed. Finally, it is 
recommended that many of the above techniques 
be tested with Geostationary Operational 
Environmental Satellite (GOES) sounder data to 
see how using GOES data compares with the 
1500 UTC RAOB data since, unlike the RAOB 
data, it is available on an hourly basis. 
 
5. SUMMARY AND CONCLUSIONS 
 
    The principle objective of this study was to 
develop ways of improving warm-season 
convective wind forecasting on central Floridaʼs 
Space Coast using a 15 year climatology (1995-
2009) of 1500 UTC RAOB data from the CCAFS 
Skid Strip and 5 minute averaged peak wind from 
the 36 weather towers selected from the network. 
This was done by first evaluating present wet 
microburst forecasting indices, two of which were 
then modified based on their weaknesses. 

Composite θe soundings were also constructed in 
order to see if the vertical θe gradient could be 
used as a convective wind forecasting tool. 
Likewise, composite soundings of temperature and 
dew point were built alongside with wind profiles in 
an attempt to see if any of these parameters could 
be used. In addition, new predictive analytic 
techniques such as MLR, LR, MR, CART, and 
ensemble CART models using bootstrapping were 
used to formulate new statistical forecasting 
models. 
    Evaluation of numerous existing wet microburst 
forecasting indices found that none of them did 
overly well in predicting peak convective wind in 
the central Florida warm-season environment. 
Although Proctorʼs index was the best performer 
among the present indices, it still did not do too 
well. Modification of this index to include a better 
representation of the low-level moisture profile 
yielded modest improvements. Since the heavily 
used WINDEX seriously over predicted wind 
speed, it was tailored to better match the 
exceedingly high mixing ratios typically found in 
the dataset. Even though this provided better 
results, it is not recommended that any of these 
indices be used to forecast the intensity of 
convective winds since they contain too few 
parameters. 



 
Fig. 12. Classification tree used to forecast whether convection will occur on any given day and, if so, 
whether convective winds will reach warning threshold. A 0 corresponds to a forecast no convection, a 1 
corresponds to a forecast of non-warning level winds, and a 2 corresponds to a forecast of warning level 
winds. KI refers to the K index, MXTHe.K is the maximum θe value in K, and ZMXTHem is the height of 
the maximum low-level θe value. All other parameters are as defined in Figs. 9-11. 
    
    Construction of composite θe soundings found 
that the mid-levels were generally colder and drier 
on days with warning level winds indicating that a 
greater vertical θe gradient implies a higher 
likelihood for stronger winds. However, 
quantitative validation of this suggested that it 
should not be used as a forecasting tool. 
Meanwhile, it was found from the wind direction 
profiles that convective days had a tendency to 
occur on days with more of a westerly or 
southwesterly wind regime. Again, quantitative 
verification found that using low-level wind 
direction to make convective wind forecasts also 
had limited performance. 
    Testing and verification of several linear 
regression techniques found that MLR models did 
not do a particularly good job at forecasting peak 
wind gusts. On the other hand, LR models did a 
better job at forecasting both convective days and 
whether the convective days had a potential to 
produce warning level wind speeds. Performance 
declined with MR models, indicating that using two 
LR models is the best way to predict convective 
winds. 
    In general, CART methods yielded similar 
results to the regression models. Regression trees 
performed somewhat worse than MLR models 
while two-class classification trees did a bit better 

than LR models. In a manner that is consistent 
with the performance of the MR models, using a 
three-category response in a classification tree 
produced rather disappointing results. Once again, 
it is suggested that using a binary response 
classification tree is the best of the approaches 
considered in this research. 
    It was found that ensemble CART forecasting 
methods using bootstrapping algorithms yielded 
the best results of those studied. Random forests 
and bagging produced mediocre results for 
predicting peak wind gust, but improved 
considerably when using it to forecast for a two-
class response. The boosting algorithm had the 
best performance metrics by far in this study, 
indicating that it is probably the best statistical 
model to use of those investigated in this research. 
    Forecasting convective winds in the central 
Florida warm-season environment is far too 
complex of a problem to tackle with just RAOB 
data since many factors determining the scope 
and intensity of thunderstorm induced winds are 
simply not resolvable with this type of data. 
Furthermore, other evidence suggests that local 
low-level boundary interactions (Ander et al. 2009; 
Dinon et al. 2008) play a significant role in 
downburst formation at KSC/CCAFS. A single 
location RAOB will not be able to detect such low-



level boundaries and use them in local downburst 
prediction. However, RAOB techniques are meant 
to be used as general outlook techniques (Fig. 1) 
and are not intended to provide detailed warnings.  
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