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1. INTRODUCTION 
 
    Convectively driven wind events are difficult to 
accurately predict, due to their small spatial 
resolution, short lifecycles, and large variability. 
Despite these forecast challenges, there are 
strong operational requirements for their 
prediction. For example, these winds create major 
aviation hazards, because of the strong low level 
wind shear that can be generated. Another 
example is processing space launch vehicles and 
payloads for space launch at the Kennedy Space 
Center (KSC) and Cape Canaveral Air Force 
Station (CCAFS) in Florida.   
    Convective winds are the second most frequent 
weather warning issued at CCAFS/KSC, after 
lightning warnings (Dinon et al. 2008, Ander et al. 
2009). Accurate forecasts, as well as proper lead 
time of these wind gusts, are critical for the safety 
of over 25,000 people, resource protection for over 
$20 billion of facilities, avoiding space launch 
schedule delays, and mission assurance during 
processing of up to multi-billion dollar payloads or 
space launch vehicles in the weeks to months 
before a space launch.       
    Currently, the 45th Weather Squadron (45 WS) 
is responsible for predicting convective winds on 
the CCAFS/KSC complex. The warnings are 
categorized as either  35kt or  50kt from the 
surface to 300 ft above ground level (AGL). Until 
recently, there had also been a requirement for ≥ 
60kt winds. For winds  35 kt, the desired lead 
time in issuing the warning is 30 minutes. On the 
other hand, winds  50 kt have a desired lead 
time of 60 minutes. The previous warning for 
≥ 60 kt also had a desired lead time of 60 minutes.    
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    Over the past few years, much work has been 
performed by Plymouth State University 
researchers to aid the 45 WS in improving their 
forecasting of convective winds. These include 
creating the climatology of convective wind events 
based on five minute average peak wind speeds 
over the wind tower network from 1995-2003 
(Loconto et al. 2006). This climatology significantly 
enhanced the 4-year study (1995-1998) by Sanger 
(1999). More work by Loconto (2006) tested and 
evaluated current forecasting techniques used by 
the 45 WS, as well as suggested new methods of 
forecasting for these winds using both KXMR 
sounding data and KMLB radar data. Related 
research to improve downburst prediction using 
RAOB data is also being conducted (McCue et al. 
2010). In 2007, the climatology was reconstructed 
to include non-warning level convective episodes, 
and the formal definition of a convective event was 
introduced (Cummings et al. 2007).  
    In 2007-2008, Level III NEXRAD data for the 
warning level convective events were added to the 
climatology and events were classified by cell 
strength, cell initiation, cell structure, cell group 
movement, individual cell movement and location 
of maximum peak wind (Dinon et al. 2008). This 
work was continued in 2008-2009, where non-
warning criteria convective events were added to 
the dataset (Ander et al. 2009). In 2009, the 
climatology was expanded to include data for 2008 
and 2009. Currently, the climatology consists of 
fifteen years of data from 1995 through 2009. 
     Over recent years, an attempt has been made 
to create nowcasting techniques using WSR-88D 
data. Stewart (1996) created an equation to help 
determine the maximum downdraft speed of a 
microburst event based on derived WSR-88D 
products. The equation is the following: 
 

 
 



where w is the maximum predicted downdraft 
speed (m s-1) VIL is the cell-based vertically 
integrated liquid (kg m-2), and ET is the echo top 
(kft). 
    In addition, Loconto (2006) set out to create a 
more effective equation to determine the maximum 
peak wind gust based on radar variables from 
KMLB storm structure data. Using a multiple linear 
regression model, the following equation was 
generated:  

 

where GU is the maximum peak wind gust (kt), VIL 
is the cell-based vertically integrated liquid (kg m-

2), MaxZ is the maximum reflectivity (dBZ), and 
Height is the height of the maximum reflectivity 
(kft). 
    Finally, a theory was provided by Loconto 
(2006) to explain the relationship between the 
heights of the maximum reflectivity and the peak 
wind gust. Figure 1 below contains plots of 
maximum reflectivity versus wind gust and also the 
difference between the height of the maximum 
reflectivity and RAOB defined freezing level. 
Positive height differences indicate the highest 
reflectivity is above the freezing level while a 
negative height indicates the highest reflectivity is 
below the freezing level. 
    While there is little correlation of the maximum 
reflectivity with maximum gust, there appeared to 
be a strong relationship with the height of the 
maximum reflectivity above the freezing level. With 
a positive height difference, there is a higher 
probability that hail has formed. Hail can provide 
additional cooling from the latent heat of melting, 
which provides additional negative buoyancy that 
helps sustain the depth and momentum of the 
downdraft to the surface to form the downburst. 
(Srivastava 1985, Proctor 1989). Figure 1 shows in 
general that whenever there is a positive height 
difference the wind gust is greater than the 35 kt 
threshold. 
    While these techniques show positive results, 
the datasets used were small. Since the radar 
climatology has been updated over the years, 
there was a need to re-evaluate these results to 
see if they still prove to be effective or can be 
improved for forecasting convective wind events. 
Additionally, the findings were only based on the 
volume scan at or just before the time of onset. 
We would like to see if information about a 
convective event at volume scans prior to the time 

of onset can be obtained, in order to create a 
longer lead time to issue the proper warnings.  
    Finally, additional statistical techniques are 
applied to the data and tested against an 
independent dataset. Our goal is to maximize the 
True Skill Statistic (TSS) to find the optimum 
compromise between Probability of Detection 
(POD) and Probability of False Alarm (POFA) for 
producing convective winds  35kt. The metric 
POFA is used rather than the equivalent and 
better known False Alarm Ratio to avoid confusion 
between False Alarm Rate and False Alarm Ratio 
(Barnes et al 2009). 
 
2. DATA AND METHODOLOGY 
     
    Using the Plymouth State convective wind 
climatology, events from the years 2003 through 
2009 were extracted and related information 
recorded, including the value of the peak gust (in 
knots), the time of the gust, and the weather tower 
that reported the gust. While stronger gusts from a 
downburst event might occur between the weather 
towers, for the purposes of this research, the peak 
wind gust that was recorded from one of the 36 
weather towers on the CCAFS/KSC complex is 
considered the true value. It should be noted that 
null cases, known as events that met the 
convective event criteria defined by Cummings et 
al (2007), but produced a maximum peak wind 
gust less than 35 knots, were also included in this 
database. 
    In order to compute the predicted version of the 
peak wind gust for comparison, different predictors 
were needed. First, storm structure data from the 
WSR-88D located in Melbourne, FL (KMLB) was 
obtained from the NCDC radar archives that 
corresponded with the times of the peak wind gust. 
Using a great circle distance calculation, the cell 
that was closest to the tower that reported the 
peak wind gust was used. Once the cell was 
located, the following information was taken from 
the storm structure product: 
• vertically integrated liquid (VIL) [kgm-2] 
• echo top [kft] 
• maximum reflectivity [dBZ] 
• height of the maximum reflectivity [kft]. 

 
    Additionally, VIL Density (VILD) can be derived 
from storm structure data. It has been shown that 
VIL Density can be an indicator of the presence of 
hail (Amburn and Wolf, 1997), and therefore a 



 
Figure 1. Max reflectivity minus RAOB freezing level height difference (light blue bars), value of max 
reflectivity versus peak CCAFS/KSC wind gust speed (dark blue line). (from Loconto 2006) 
 
precursor to wet microbursts. VIL Density is 
defined as the following: 
 

 

 
Where VIL is the cell-based vertically integrated 
liquid (kg m-2) and ET is the echo top (m). Units 
of VIL Density are in kg m-3. VILD includes both 
the parameters used in the Stewart (1996) 
technique to estimate the maximum downburst 
gust speed a cell may produce. Thus, VILD may 
be useful not just to predict the occurrence of a 
downburst, but also its intensity, although 
Stewarts technique suggests VIL-2 may be more 
useful in predicting the latter. In order to provide 
lead time to the forecaster, data was taken not 
only at the onset of the peak wind gust, but also 
four volumetric scans prior to the occurrence, 
which is typically 16-25 minutes. 
    In addition to the storm structure data, 
previous work showed that low-level boundary 
interactions might be useful in forecasting 
downbursts at CCAFS/KSC (Dinon et al 2008, 
Ander et al 2009). Data on these boundary 
interactions were also collected to continue 

exploring this possible forecast technique. Low 
level boundary interactions at CCAFS/KSC 
during the summer are classified into four 
categories: sea breeze front (SBF), outflow 
boundary (OFB), both SBF and OFB, or no SBF 
or OFB.  
    Due to the general lack of synoptic triggering 
mechanisms during the warm season, 
mesoscale interactions play a dominant role in 
the formation of convective cells at CCAFS/KSC. 
Figure 2 below displays the percentage of 
occurrences of both warning (gust speed  
35kt) and non-warning (gust speed < 35kt) 
convective cells based on their cell initiation. For 
warning cases, a boundary interaction occurred 
nearly 70 percent of the time. For non-warning 
cases, there was no mesoscale boundary 
almost 65 percent of the time. Because of this 
important distinction between warning and non-
warning criteria, this variable is considered as a 
predictor. 
    Once the data were collected, the previous 
methods defined by Stewart (1996) and Loconto 
(2006) were tested to see if they were still valid 
with a larger dataset, as well as a longer lead-
time. To evaluate the radar gust equations, the 
root mean square error (RMSE), and mean  



 
Figure 2. Cell Initiation with mesoscale boundaries with warning level cases in red and non-warning level 
cases in blue. Initiation is shown on the x-axis and percentage of occurrence on the y-axis. From Ander et 
al (2009) 
 
absolute error (MAE) are calculated to determine 
forecast error. The number of hits, defined as a 
correctly predicted gust with an accuracy of ± 5 
kt, is also determined.  
    In order to test the relationship between the 
height of the maximum reflectivity and peak wind 
gust, plots similar to Figure 1 are shown for all 
five volumetric scans. In addition, a 2X2 
contingency table is constructed to determine 
forecast performance of this technique.    Finally, 
new methods for improving nowcasting of 
convective winds are introduced using 
Classification And Regression Trees (CART) 
(Breiman et al 1984). CART can be used to 
provide objective forecasts without the use of a 
specific parametric form of the relationship 
between the response and the predictors. CART 
uses combinations of cluster analysis and 
discriminate analysis to optimally stratify the 
data into objective categories and provide 
yes/no decision branches to categorize future 
events into the most likely category. For 
example, to develop a downburst forecast tool, 
one might categorize the events into < 35 kt and 
≥ 35 kt categories, then let CART select the best 
order of variables and yes/no decision 

thresholds to forecast < 35 kt and ≥ 35 kt events 
in the future.  
    Using a database with predictors and a 
response CART divides the sample into 
homogeneous groups with similar values of the 
response. This process is also known as 
“splitting”. The samples are split according to 
splitting rules based on the values of the 
predictors. Different algorithms will search the 
dataset and maximize the significance or purity 
of a response in a group to determine where and 
when a split will occur. This process continues 
until each subset of the database attains 
complete homogeneity, or a stopping criterion is 
reached. 
    The advantages of using CART are that it can 
handle large datasets, does not need variable 
selection to be run before hand, and does not 
assume normality of the data or make other 
parametric assumptions. Additionally, it can 
handle outliers and nonlinear relationships. 
Operationally, CART also has the advantages of 
being easy to implement, easy to train, and easy 
to automate. A disadvantage of CART is that it 
tends to over fit the model with too many leaves 
and end nodes. This can be resolved by 
applying a process called pruning, where the 



model will remove leaves that are deemed 
insignificant. In addition, the performance 
metrics associated with CART are often not as 
easy to interpret as those with more familiar 
metrics. Operationally, CART has the 
disadvantage that the reasons for the various 
decision branch variables and thresholds may 
not be clear. Studies have shown that weather 
forecasters are more likely to use techniques 
they understand, even if another less clear 
technique can provide better performance. 
    CART is not a single technique; there are 
many different approaches to create a CART, 
each of which can give different solutions for the 
same data. Therefore, it is good practice to 
develop CARTs for the same application via 
different approaches and compare their results, 
or even combine the approaches in the final 
forecast tool to create an “ensemble” of CARTs 
for more robust results. For this research five 
different tree algorithms are invoked on this 
dataset. The algorithms, which are implemented 
through the R Statistical environment (R 
Development Core Team 2009), are rpart, ctree, 
bagging, boosting, and random forests. A brief 
description of each algorithm is noted in the 
results section. 
    Before the algorithms are run, the dataset is 
partitioned into training and test subsets. The 
CART models are built, using a training set, the 
data between 2003 and 2007. The data from 
2008 and 2009 are used as an independent test 
set to test the validity of the model. Using this, 
the probability of detection (POD), probability of 
false alarm (POFA), and true skill score (TSS) 
are calculated for each of the five CART models 
and compared to each other. 
    POD is the probability that convective wind 
events occur when forecast to occur. POD 
varied from 0.0 to 1.0 with 1.0 being best. The 
POFA is the probability that the convective wind 
event did not occur when forecast to occur. 
POFA varied from 0.0 to 1.0, with 0.0 being 
best. For an ideal forecast, the POD should be 
high and the POFA should be low. Perfect 
forecasting has both POD = 1.0 and POFA= 0.0. 
    TSS determines the model performance 
relative to random forecasting. The values of 
TSS can range between -1.0 and 1.0. A value of 
1.0 is perfect forecasting, where a 0.0 is the 
same performance as random forecasting. A 
TSS less than 0.0 indicates the model performs 
worse than random forecasting (Wilks 2005). In 

general, a TSS above 0.3 is necessary for useful 
forecasting in real-world applications. 
 
3. RESULTS 
 
    This section provides an evaluation of the two 
previous forecast methods and the five new 
CART methods. A discussion of the results 
follows in section 4. 
 
3.1 Number of Cases 
 
    Table 1 displays the number of events that 
contained available WSR-88D data for each 
volumetric scan for the years 2003 through 
2009. This includes events that produced winds 
< 35 kt as well as ≥ 35 kt. Overall, there were 
377 cases used in this study. Note that the 
number of available data for earlier volumetric 
scans decreases. This occurred for one of two 
possible reasons. First, the cell might not have 
existed yet. The second and more probable 
reason could have been due to the corruption of 
the data. Some files obtained from NCDC were 
corrupted, and no data were present. There 
were times when the cell existed on all five 
volumetric scans, but did not have complete 
data.  
 

Table 1. Number of cases where available 
data were present for all scans 

Onset 377 

Scan1 322 

Scan2 280 

Scan3 264 

Scan4 250 
 
3.2 Evaluation of Previous Methods 
 
    This section provides an evaluation of the 
previous two forecast methods: 1) radar gust 
equations, and 2) maximum reflectivity above 
freezing level. 
 
3.2.1 Radar Gust Equations 
 
    Tables 2 and 3 show the RMSE, MAE, and 
number of hits for the ET/VIL relationship 
generated by Stewart (1996) and the Radar 
Gust Equation developed by Loconto (2006), 



respectively. These values were calculated 
using the larger dataset from 2003-2009, as well 
as four volumetric scans prior to the onset of the 
peak wind gust. 
    The equation developed by Loconto appears 
to provide smaller error values than the ET/VIL 
relationship. Locontoʼs relationship has errors 
that are generally two knots lower than 
Stewartʼs. Additionally, Locontoʼs equation 
appears to be more accurate within five knots, 
providing a higher hit rate.  
    Even though Locontoʼs equation proves to 
have better performance, both methods perform 
poorly. RMSE values vary between 12 and 14 
knots for all volumetric scans, and MAE values 
range between 9 and 11 knots. This large error 
range could make it difficult to distinguish 
between warning and non-warning cells. 
Additionally, hit rates for both methods at all 
volume scans are less than 34 percent. 
Therefore, the validity of these equations comes 
into question, and they may not be as useful as 
once thought. 
 
Table 2. Forecast errors for ET/VIL relationship 

(Stewart 1996) for all five volumetric scans. 
 RMSE MAE HITS % HITS 

Onset 14.03 11.23 97 26 
Scan1 14.22 11.40 82 25 
Scan2 13.72 10.86 80 29 
Scan3 13.94 11.14 71 27 
Scan4 13.89 11.22 68 27 

 
Table 3. Same as Table 2, but with Loconto 

Radar Gust Equation (Loconto 2006). 
 RMSE MAE HITS % HITS 

Onset 12.72 10.03 125 33 
Scan1 12.73 10.03 95 30 
Scan2 12.75 9.93 85 30 
Scan3 12.12 9.60 89 34 
Scan4 12.11 9.52 83 33 

 
3.2.2 Maximum Reflectivity above Freezing 
Level 
 
    Figures 3 to 7 below indicate the averaged 
height difference and averaged maximum 
reflectivity versus peak wind gust. Whenever 
there is a positive height difference, the 
maximum reflectivity is above the freezing level. 
Two major points can be made. First, whenever 

there is a positive height difference, the wind 
gust tends to be greater than 35 knots. It needs 
to be noted that the relationship is not perfect, 
since some wind gust values have an averaged 
height difference less than zero, yet are greater 
than 35 knots.  
    Another point can be made here that was not 
apparent from Locontoʼs previous analysis. As 
the wind gust increases, the maximum 
reflectivity increases as well, whereas no 
relationship could be made from Figure 1. The 
coefficients of determination confirm that there 
may be a linear relationship between the two.  
    It appears that whenever there is a positive 
height difference, a warning should be issued. 
However, it is important to note that these are 
averaged height differences. The averages may 
be skewed by outliers and can severely 
misrepresent the results. In order to account for 
this, contingency tables were constructed, and 
the POD, POFA, and TSS were calculated.  
    The results, which are shown in Table 4, 
appear to be poor. The probability of detection is 
very low, ranging between 24 and 41 percent. 
While the probability of false alarm is also 
relatively small, they increase dramatically with 
each volume scan. In addition some scans, for 
example scan1, have higher POFA than POD. 
The TSS values range between 0.10 and 0.20, 
which means that this method of forecasting for 
peak wind gusts is only slightly better than 
random forecasting. A TSS > 0.30 is usually 
considered to be necessary for useful 
operational forecasting. Because of the poor 
performance metrics, the assumption that a 
positive height difference will produce a gust 
greater than 35 kt is no longer a certainty. 
 
Table 4. POD, POFA, and TSS calculated for all 

volumetric scans of the freezing level 
relationship 

 POD POFA TSS 
Onset 0.24 0.26 0.17 
Scan1 0.30 0.32 0.18 
Scan2 0.41 0.36 0.20 
Scan3 0.38 0.39 0.17 
Scan4 0.33 0.45 0.10 

 
3.3 Introduction of CART Methods 
 
    This section provides an evaluation of the five 
CART methods used to create forecast models 



 
Figure 3. Max reflectivity minus RAOB freezing level height difference, value of max reflectivity versus 
peak CCAFS/ KSC wind gust speed using updated dataset from 2003-2009 for onset of maximum peak 
wind. 
 

 
Figure 4. Same as Figure 3, but for first volumetric scan prior to onset. 
 



 
Figure 5. Same as Figure 3, but for second volumetric scan prior to onset. 
 
 
 

 
Figure 6. Same as Figure 3, but for third volumetric scan prior to onset. 



 
Figure 7. Same as Figure 3, but for fourth volumetric scan prior to onset. 
 
of warning/non-warning convective winds. The 
five methods are 1) recursive binary partitioning 
and regression trees, 2) conditional inference 
trees, 3) bootstrap aggregation, 4) boosting, and 
5) random forests. 
 
3.3.1 Recursive Binary Partitioning and 
Regression Trees (rpart) 
 
    The rpart algorithm (Therneau and Atkinson 
1997) is the basic CART producer in the R 
statistical environment. The algorithm 
recursively partitions (splits) the sample into 
smaller subgroups that are more homogeneous 
with respect to the response (purity). Splitting 
rules based on values of the predictors are used 
to assign observations to subgroups. At the first 
step the sample is split into two subgroups. On 
the next step the process is repeated on each of 
the subgroups resulting from the previous step. 
At each step possible splits are evaluated by 
calculating the purity of the response in the 
subgroups determined by that candidate split. 
The split chosen is the one that yields the 
greatest increase in purity of the response. This 
recursive partitioning of the data set continues 
until a stopping criterion is met. The final model 
is called a tree due to the fact that a graphical 

depiction of this process has a branching form 
similar to a tree. Settings can be adjusted by the 
user, including the number of possible splits, the 
minimum number of observations in a subgroup, 
as well as the depth of the tree. In addition, the 
rpart algorithm provides a cost complexity 
parameter (cp). This parameter is important for 
tree pruning, as CART models tend to become 
too large for operational use. The cost 
complexity parameter combines a measure of 
how well the tree fits the data with a penalty for 
over fitting. Minimizing this value will prevent the 
classification tree from growing too large.      
    Using the training set of data from 2003-2007, 
trees were generated using the default settings 
in the rpart algorithm. However, the final tree 
was determined by cross validation through the 
cp parameter. Table 5 below compares the 
POD, POFA, and TSS for all five volumetric 
scans together for comparison. These values 
were calculated using the independent test set 
of data from 2008-2009.  
    With the exception of the fourth volumetric 
scan, all scans have produced a tree has a POD 
≥ 50 percent, and even the fourth volume scan 
had POD close to that value (48 percent). The 
POFA is also less than 50 percent, ranging 



between 31 percent and 42 percent. Values of 
the true skill score range between 26 and 37 
percent. This indicates that all of the models are 
better than random forecasting, but not by much 
and are just barely useful for operational 
forecasting.  
 

Table 5. Performance metrics for rpart 
algorithm. 

 POD POFA TSS 
Onset 0.69 0.35 0.37 
Scan1 0.53 0.32 0.29 
Scan2 0.56 0.36 0.26 
Scan3 0.76 0.42 0.26 
Scan4 0.48 0.31 0.32 

     
    In terms of the optimal model to use, the third 
volumetric scan seems best. It is able to 
correctly identify events 76 percent of the time, 
while holding a modest false alarm ratio and true 
skill score. Scan2 has the same TSS as Scan3, 
but Scan3 provides more lead time. An 
argument could be made for onset, with a 
relatively high POD and better POFA and TSS 
than scan3. This also makes better physical 
sense, since forecasts should improve as the 
event draws closer in time. However, warning at 
onset is not operationally useful, since it does 
not allow enough time to issue a warning, 
because a peak wind gust will have occurred or 
will be occurring at that time. With the third 
volumetric scan, a lead time of approximately 15 
minutes could be achieved. However, all this is 
moot for development of an operational forecast 
technique since even the best of these TSS with 
positive lead time (Scan1 or earlier) is < 0.3 and 
not operationally useful or at best only 
marginally useful. 
    Figure 8 displays the tree generated from the 
rpart algorithm for the third volumetric scan. It 
tests the VIL, VIL density, and boundary 
interactions of the cell starting with the vertically 
integrated liquid. For each split, if it passes the 
criteria, it will continue down the left side of the 
node. So if the cell has a VIL higher than 23.5 
kgm-2, then a convective event is predicted to 
occur. If not, it checks if a cell was initiated with 
any kind of boundary interaction (either sea 
breeze front, outflow boundary, or both). If it has, 
then it checks the VIL density of the cell, and if 
not, a peak wind gust will not occur. 
 

3.3.2 Conditional Inference Trees (ctree) 
     
    The ctree algorithm (Hothorn et al 2006) uses 
conditional inference in an attempt to prevent 
over fitting of the tree. While the rpart algorithm 
does not use hypothesis testing to build the tree, 
the ctree algorithm does. For each split in 
question, p-values are generated for each 
candidate predictor. If the lowest p-value is 
below the standard statistically significant 
threshold of 0.05, then that candidate predictor 
has the strongest association. The null can then 
be rejected in favor of the alternative, and a split 
is performed. The tree is grown until no more 
nodes have a statistically significant relationship.  
    Using the ctree algorithm, trees are generated 
for all volume scans using the default settings. 
Table 6 displays performance of each model 
when the tree is tested against the independent 
dataset. It appears that the models at later 
volume scans (scan3 and scan4) have poor 
performance, with very low probability of 
detections, high probability of false alarms, and 
low true skill scores. The most recent three 
scans on the other hand, do provide higher 
performance. The setback is that they are closer 
to the onset of peak wind gust on the 
CCAFS/KSC complex and so provide less lead 
time. However the second volumetric scan, 
approximately 10 minutes prior to onset, can 
predict an occurrence approximately 75 percent 
of the time, while still holding a moderate 
probability of false alarm and true skill score (35 
and 36 percent, respectively). 
 

Table 6. Performance metrics for ctree 
algorithm. 

 POD POFA TSS 
Onset 0.67 0.32 0.40 
Scan1 0.63 0.31 0.36 
Scan2 0.75 0.35 0.36 
Scan3 0.31 0.43 0.13 
Scan4 0.30 0.22 0.24 

     
    The tree built for the second volumetric scan 
is shown in Figure 9. For each node, the p-value 
is given to determine the significance of the split. 
Additionally, once the end node is reached, the 
probability of the wind gust occurrence is 
displayed, as well as the number of cases that 
fell into the criteria when the model was 
constructed.



 
Figure 8. Tree generated from rpart algorithm for third volumetric scan (approximately 12-15 minutes 
prior to the onset of peak wind gust). a = cell initiated by neither SBF nor OFB. 
 
 
 
 
 
 
 
 

 
Figure 9. Tree generated from ctree algorithm for second volumetric scan prior to onset. P-values for the 
significance of split is displyed for each node, as well as the probabilities of strong wind gust occurrence 
at each end node. 



    For this model, the tree begins by checking 
the VIL, and then the boundary interactions. If 
the VIL is high enough, there will be a good 
chance a strong wind gust will occur on the 
CCAFS/KSC complex. The probabilities 
increase when the cell was initiated by a strong 
boundary interaction. On the other hand, if the 
VIL is not high enough, a strong wind gust can 
only occur if the boundary interactions are strong 
enough. This all makes good physical sense. It 
is interesting to note that both rpart and ctree 
picked VIL as the first predictor with very similar 
thresholds of 23.5 kgm-3 and 21 kgm-3, 
respectively. The fact that two somewhat 
independent techniques yielded very similar 
results increases confidence in those first 
branches. 
 
3.3.3 Bootstrap Aggregation (bagging) 
     
    The next three algorithms use a technique 
called bootstrapping (Wilks 2005). 
Bootstrapping, in its simplest terms, provides 
multiple re-samples of data. Using the original 
dataset, random sampling with replacement is 
performed to create a subset of the data. It is 
important to note that some data is repeated in 
the different subsets, so the results are not fully 
independent of each other. The statistical 
method is then applied to each dataset, and 
multiple values are then produced for statistical 
inference. Bootstrapping has the ability to 
reduce the variance of predictions made by 
models for the original dataset, but can be 
computationally intensive, especially with large 
datasets. 
    Bootstrap aggregation, or bagging (Breiman 
1996), uses the above technique to create 
multiple re-samples and produce multiple 
classification trees, one for each bootstrap 
sample. While different trees can provide 
different classifications, the final classification is 
determined by popular vote. For example, if 100 
trees are generated, and the end node of 90 
trees is 0, while 10 are 1, then popular vote 
dictates the final classification will be 0.  By 
creating an ensemble of classification tree 
forecasts, presumably the final forecast is more 
robust than any single tree. 
    By default, the bagging algorithm creates 100 
trees using rpart. The settings of the bagging 
algorithm, as well as the rpart algorithm which 
makes the trees, are unchanged. Using the 

independent dataset, classifications of 0 and 1 
are created by running through the trees and 
then popular vote determines the final 
classification. The POD, POFA, and TSS can 
then be calculated and is seen in Table 7.  
    Overall the results indicate marginal utility for 
operational forecasting. The exception to this is 
the third volumetric scan, with a POD of 41 
percent, a POFA of 29 percent and a TSS of 26 
percent. The other scans however do have TSS 
> 0.3, POD values above 60 percent, and POFA 
values between 22 and 35 percent.  
    The fourth volumetric scan appears to provide 
one of the better results. Using this model, 
convective winds above 35 knots will be 
predicted 61 percent of the time, with a 
probability of false alarm of only 22 percent. 
With a 48 percent true skill score, this method is 

 
Table 7. Performance metrics for  

bagging algorithm. 
 POD POFA TSS 

Onset 0.61 0.35 0.32 
Scan1 0.63 0.32 0.34 
Scan2 0.69 0.35 0.32 
Scan3 0.41 0.29 0.26 
Scan4 0.61 0.22 0.48 

     
much better than random forecasting. On top of 
the promising performance, this model can 
provide approximately 20 minutes of lead time to 
the forecaster, which is very important. 
    The skill increasing for longer lead-times may 
seem counter-intuitive since skill usually 
increases closer in time to the event. Note that 
the same pattern occurs in some of the 
subsequent CART models increasing confidence 
that the pattern is valid. However, it is important 
to define the event rigorously. In this case, the 
event is the time of maximum gust at or near the 
surface. But the radar is measuring conditions in 
the convective cells, where the downdraft 
begins, not the downburst that forms once the 
downdraft reaches the surface. Allowing time for 
the downdraft to form, reach the surface, and  
reach the tower where the maximum gust speed 
is recorded, lead-times of 15-20 minutes may be 
reasonable. The time to reach the ground and 
the time for the downdraft to form, may be 
estimated as follows. Using a typical downburst 
producing downdraft height of 575 hPa, as 
implied by the Microburst-Day Potential Index 



Table 8. Variable importance for all six predictors in the bagging algorithm for all volumetric scans. 
Variable of highest importance noted in red and second highest importance noted in blue. 

 TOP VIL MAXREF HEIGHT VILD BOUNDARY 
Onset 26.13 15.77 12.61 4.50 4.50 36.49 
Scan1 16.14 27.80 11.66 6.28 6.28 31.84 
Scan2 15.27 30.54 4.93 3.94 12.32 33.00 
Scan3 21.62 20.72 6.31 2.25 22.97 26.13 
Scan4 31.76 9.87 13.30 7.73 7.73 29.61 

 
(Wheeler and Roeder, 1996), which has an 
average height of 4,750 m in July (Range 
Reference Atmosphere, 2006), the middle of the 
local convection season, and a typical 
downburst speed of around 28 kt (14 m/s) from 
the CCAFS/KSC downburst climatology (Ander 
et al. 2009, Dinon et al. 2008, and Loconto et al 
2006), a typical downdraft takes 5.7 minutes to 
reach the ground. Given the typical size of a 
downburst and the typical spacing of the 
weather towers at CCAFS/KSC, the tower with 
the maximum gust speed will typically be 1,000-
2,000 m from where the downdraft hits the 
ground, which implies a time of 1-2 minutes. It is 
reasonable to assume that it takes several 
minutes for the downdraft to form after the 
convective cell reaches its maximum intensity.  
Altogether radar lead-times of 15-20 minutes 
may be reasonable for downbursts at 
CCAFS/KSC.  It would be interesting to extend 
the analysis to even earlier volume-scans to see 
if the TSS begins to drop, as expected. 
     Since bagging produces an ensemble of 100 
different classification tees, showing a figure of 
the tree and discussing the variables and 
decision branches, as done for the first two 
classification trees, is not practical. However the 
algorithm can provide variable importance. This 
value dictates the relative importance of each 
variable in the classification task. In other words 
it takes into account how many times the 
predictor is used for splitting. The higher the 
value is, the more important that predictor is to 
the model. 
   Table 8 provides the variable importance for 
the bagging algorithm. The variable with the 
highest importance is noted in red and second 
highest in blue. It can be shown that the 
boundary interactions have the highest 
importance in most of the models. The exception 
is the fourth volumetric scan, with the echo top 
only having a slightly higher importance. Even 
then, the boundary variable was a close second 

and the difference between the two variables 
may not have been statistically significant. The 
height parameter appears to have the weakest 
importance in all five models generated. 
 
3.3.4 Boosting 

 
    The boosting algorithm (Freund and Schapire 
1996) will create multiple classification trees 
based on re-sampled datasets, however instead 
of randomly sampling the data, the original 
dataset is weighted. These weights, which are 
adjusted after each iteration, will become a 
factor when classes are identified. Classes that 
were correctly identified during the previous step 
are given a lower weight, and ones that are 
incorrectly classified are given higher weight. 
Final classifications are then determined not by 
popular vote, but rather a weighted vote of the 
iteratively produced classifiers. 
   Similar to the bagging algorithm, 100 trees are 
generated (using rpart defaults) and tested 
against the independent dataset. The results 
can be seen in Table 9. In general the boosting 
algorithm provides positive performance. 
Probability of detection values range between 58 
and 66 percent, and all of the probability of false 
alarms are lower than one third. True skill scores 
vary between 37 and 48 percent, and are higher 
at earlier volumetric scans. 
 

Table 9. Performance metrics for  
boosting algorithm. 

 POD POFA TSS 
Onset 0.61 0.31 0.37 
Scan1 0.58 0.23 0.41 
Scan2 0.63 0.29 0.38 
Scan3 0.66 0.24 0.47 
Scan4 0.61 0.22 0.48 

 
    As for which scan provides the best 
performance, it appears that both the third and 



Table 10. Variable importance for all six predictors in the boosting algorithm for all volumetric scans. 
Variable of highest importance noted in red and second highest importance noted in blue. 

 TOP VIL MAXREF HEIGHT VILD BOUNDARY 
Onset 24.75 11.17 16.50 11.17 11.17 25.24 
Scan1 27.67 15.05 14.08 10.68 11.65 20.87 
Scan2 16.97 20.64 5.05 17.89 15.60 23.85 
Scan3 33.63 10.18 3.10 8.85 23.89 20.35 
Scan4 27.83 7.55 13.20 14.62 18.40 18.40 

 
fourth volumetric scans are adequate. For both 
models, probability of detection values are 
above 60 percent, probability of false alarms are 
less than 25 percent, and true scores are nearly 
50 percent. Similar to the bagging algorithm, 
better performance appears at earlier volumetric 
scans, which can provide longer lead times to 
the forecaster. 
    As with bagging, boosting produces an 
ensemble of 100 different classification trees, so 
showing a figure of the tree and discussing the 
variables and decision branches, as done for the 
first two classification trees, is not practical. The 
variable importance of each predictor in the 
boosting algorithm can be seen in Table 10. 
Unlike the bagging algorithm, the boundary 
interactions do not pay the most significant role 
in the generation of these models. In fact, most 
of the time, the echo top has the dominant 
importance. 
  
3.3.5 Random Forests 
 
    One of the issues of the bagging and boosting 
algorithms is that the generated trees are 
correlated with each other. This may cause the 
unnecessary use of extra trees. The random 
forest algorithm (Breiman 2001) will create trees 
that have less correlation with each other, with 
hopes of a greater reduction in prediction 
variance. The process is similar to bagging and 
boosting in that it then determines classification 
by a popular vote over the ensemble of trees. It 
is different from the bagging and boosting 
algorithms in that 500 rpart trees are the default 
instead of 100. Similar to the previous tree 
algorithms, the default settings are not changed. 
    Table 11 displays the model performance 
when tested against the independent dataset. 
Like all of the other models, the results show 
some utility for operational forecasting. 
Probability of detection values are fair, ranging 
between 56 and 60 percent, while at the same 

time maintaining small probability of false 
alarms, which range between 28 and 35 
percent. True skill scores range between 34 and 
39 percent, meaning that they are about one 
third better than simple random guessing. 
 

Table 11. Performance metrics for  
random forest algorithm. 
 POD POFA TSS 

Onset 0.59 0.29 0.39 
Scan1 0.60 0.31 0.34 
Scan2 0.56 0.28 0.35 
Scan3 0.59 0.32 0.34 
Scan4 0.57 0.35 0.34 

 
   Because of the small variability in the 
performance metrics for all volumetric scans (4 
percent for POD, 7 percent for POFA, and 5 
percent for TSS), any of the random forest 
models could be used to forecast convective 
winds on the CCAFS/KSC complex. However 
since the idea is to provide adequate lead times 
to the forecaster, logic dictates that the fourth 
volumetric scan will provide the best model. 
Approximately twenty minutes out, a wind gust 
greater than 35 knots will be accurately detected 
57 percent of the time, while holding a POFA of 
35 percent and a true skill score of 34 percent. 
    As with bagging and boosting, random forests 
produce an ensemble of different classification 
trees, so showing a figure of the tree and 
discussing the variables and decision branches, 
as done for the first two classification trees, is 
not practical. It can be noted that the variable 
importance values (displayed in Table 12) are 
evenly distributed throughout all five models. 
The boundary interactions, which were highly 
important in the bagging and boosting 
algorithms, do not appear to have any 
importance here. In fact, the height parameter, 
which is often disregarded in most of the 
previous models, has a higher importance than 



Table 12. Variable importance for all six predictors in the random forest algorithm for all volumetric scans. 
Variable of highest importance noted in red and second highest importance noted in blue. 

 TOP VIL MAXREF HEIGHT VILD BOUNDARY 
Onset 28.58 22.51 18.44 18.84 23.02 17.78 
Scan1 23.78 22.39 17.66 16.76 21.11 14.57 
Scan2 21.16 21.39 12.42 16.12 18.46 14.97 
Scan3 22.39 18.54 12.96 13.26 18.00 12.65 
Scan4 20.31 15.35 13.83 16.12 17.12 12.16 

 
the boundary interactions. It appears that for all 
models, the echo top has the most significance, 
however the cells VIL comes in a close second. 
 
4. DISCUSSION 
   
    After analyzing previous methods to forecast 
convective winds using WSR-88D technology 
with a larger dataset and longer lead time, it 
appears that they do not perform as well as 
initial results indicated. For both the ET/VIL 
relationship and Locontoʼs Radar Gust Equation, 
error values were no lower than 9 knots and the 
hit rates were no higher than 35 percent. The 
ability to differentiate between downbursts less 
than 35 kt and greater than 35 kt has been 
identified as important to 45 WS operations 
based on the previous climatology of distribution 
of convective wind speeds. (Figure 10). This is 
close to the peak in frequency distribution of 
downburst speeds and so the decision between 
issuing a warning for ≥ 35 kt or not issuing a 
warning is the most frequent convective wind 
warning faced by 45 WS. The warning decision 
between ≥ 50 kt and just ≥ 35 kt occurs much 
less frequently. It is very rare for a ≥ 50 Kt 
warning or no warning decision to occur.  An 
error of 9 knots could inaccurately place the 
wind above or below 35kt or 50kt thresholds, 
which could generate not only false alarms, but 
also warnings that weren’t issued which should 
have been.  
    In addition, it appears that the relationship 
between the peak wind gust and the height of 
the maximum reflectivity has less validity. While 
the updated plots look highly similar to those 
constructed in previous analysis, POD values 
were too low and the POFA values too high to 
warrant any confidence. There is some potential 
for the reflectivity relationship, as there appears 
to be a strong linear correlation with the peak 
wind gust, but it was not looked into any further 
in this study. 

   The CART based statistical techniques 
introduced in this paper all appear to provide 
promise to better nowcast convective winds on 
the CCAFS/KSC complex. Almost all of the 
methods at all volumetric scans have POD 
values greater than 50 percent and POFA 
values less than 50 percent. TSS values varied, 
but because they have positive values instead of 
negative, they are all better than simple random 
forecasting. Most had TSS around 30% or less, 
indicating only marginal use in operational 
forecasting.  However, one of the CART 
techniques, boosting (see section 3.3.4), had 
TSS approaching 50%, near the threshold for 
good utility in operational forecasting. 
    It is important to note that each CART 
algorithm is unique and handles datasets 
differently. Some methods are more efficient and 
can be easily understood by the user. Others 
are computationally intensive yet provide better 
performance in terms of model fit and predictive 
accuracy. Forecasters may prefer simplicity to 
slightly higher accuracy. However, through 
technological advances, these models can be 
automated quickly and efficiently. 
    It may not be appropriate at this time to 
choose which model is the best fit to be put into 
operation. While overall performance appears to 
be promising, these models should be tested 
during warm season forecasting operations to 
determine in “real time” how well they actually 
perform. 
 
5. FUTURE WORK 
 
    It was noted in section 3.2.2 that there might 
be a linear correlation between the maximum 
reflectivity of the cell to the maximum peak gust. 
This suggests creating a new reflectivity 
threshold that would distinguish cells between 
warning and non-warning criteria. For example, 
a modified method might be to forecast ≥ 35kt if 
the maximum reflectivity is above the freezing



 
Figure 10. Frequency distribution of maximum convective peak wind observations by 5-knot increments, 
with a Gumbel probability curve fit to the observed data for the 924 convective periods for the warm-
season (May-Sep) months in the 14-year (1995-2008) study period. 
 
level and the maximum reflectivity is ≥ X dBZ, 
where ʻXʼ would be tuned empirically to 
maximize TSS. Also, if the threshold between 
the height of the maximum reflectivity and 
freezing level were changed from 35 to 45 kt, 
there may be an improvement in model 
performance. Another approach might be to 
apply binary logistic regression combining if 
maximum reflectivity is above a to-be-
determined threshold and above the freezing 
level to produce a probability forecast. The 
performance of the two approaches could be 
compared to pick the best approach. In addition, 
the amount of height of maximum reflectivity 
above freezing level could also be analyzed, as 
apposed to a yes/no threshold that it is above 
the freezing level. 
     It should be emphasized that all five tree 
algorithms in the R statistical environment were 
run using default parameters. The exception to 
this is the cost complexity parameter in the rpart 
function. It might be helpful to adjust these 
settings to see if model performance can be 
improved. Some of these settings include 
maximum number of nodes, minimum number of 
observations within a node, and number of 
bootstraps that are applied to a dataset. 

    For the bootstrapping algorithms (bagging, 
boosting, random forests) an ensemble of trees 
are generated, and a final classification is 
determined by popular vote. It might be useful to 
create probability forecasts from these 
classifications. For example, if 90 classifications 
out of 100 are placed under the ʻyesʼ category, 
then there might be a 90 percent probability of 
occurrence. The percentage of votes in favor of 
a warning may not correspond directly to the 
probability forecast, so a conversion technique 
may need to be developed. In addition, the 
voting threshold for yes forecasts could be 
restructured to improve model performance. 
Instead of assuming that 50 percent of ʻyesʼ 
classifications determine the final classification, 
this percentage could be increased or decreased 
to maximize TSS, in essence applying a bias 
correction.  
    The 45 WS has recently installed a new 
polarimetric Doppler system approximately 23 
nautical miles southwest of the CCAFS/KSC 
complex (Roeder et al. 2009). It is currently 
being tested with operational implementation 
projected for February 2010. Polarimetric radars 
provide both vertically and horizontally polarized 
wavelengths to infer the size, species, and 



quantity of the hydrometeors. These data should 
provide valuable new information for predicting 
downbursts and may provide a large leap 
forward in this important forecast challenge. If 
polarimetric radars provide a higher forecast 
performance for downbursts, then forecast tools 
would need to be constructed. Variables such as 
the reflectivity depolarization ratio (ZDR) and the 
differential propagation phase (φDP) could be 
used as predictors along with other polarimetric 
and traditional radar signatures, and statistical 
models, such as the ones described in this 
paper, could be developed. 
    Also, most of this work only considered the 
reflectivity-derived parameters. It would be 
useful to look at the radial velocity parameters 
as well. It has been shown that mid level radial 
convergence leads to strong convective wind 
speeds (Roberts and Wilson 1989) and was 
used as one of the forecast parameters in the 
Damaging Downburst Prediction and Detection 
Algorithm developed for the NEXRAD WSR-88D 
radars (Smith et al 2004). It would be worthwhile 
to determine if this signature is observed not 
only on the CCAFS/KSC complex, but also a few 
volumetric scans prior to the onset of peak 
winds. 
    A tool used to predict the onset of downbursts 
in east central Florida using timelines of 
WSR-88D cell trends was developed by the 
Applied Meteorology Unit (Wheeler, 1998). 
While that technique showed promise it was 
developed on a relatively small sample size. 
Further testing and fine tuning of that technique 
may be worthwhile. 
    Finally, previous research has indicated that 
Storm Top (Sullivan, 1999) is better than Echo 
Top in the Echo Top/VIL Maximum Gust 
technique (Stewart, 1996). Storm Top should be 
considered as a possible variable in future radar 
downburst gust equations. 
 
6. SUMMARY 
 
    This paper attempted to evaluate previous 
WSR-88D to forecast convective winds on the 
CCAFS/KSC complex. Using an updated 
dataset with earlier lead times, it was shown that 
these methods do not provide adequate results. 
RMSE and MAE for the two predictive gust 
equations ranged between 11-13 knots and 9-11 
knots, respectively. In addition, the relationship 
between the peak wind gust and the height of 

the maximum reflectivity has been rendered 
ineffective. 
    Five CART algorithms were developed on test 
data and verified on independent test data. 
Results showed that all of the models were 
better than random forecasting and could serve 
to provide beneficial forecast information to 
operational forecasters. While some are more 
computationally efficient than others, automation 
could be used to quickly generate guidance from 
the most complicated methods. 
    Much more detailed data, analyses, and many 
of these and additional references for these 
studies are available online at the following URL: 
 

http://vortex.plymouth.edu/conv_winds/ 
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