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1. INTRODUCTION 

This paper describes the results of a project 
supported by the Defense Threat Reduction Agency 
(DTRA) to provide meteorological datasets that meet 
specific Atmospheric Transport and Dispersion (ATD) 
modeling requirements. ATD modeling applications 
require weather data that is both representative and 
physically realistic, being composed of basic state 
parameters that are mutually consistent from a dynamic 
and thermodynamic standpoint. Additional requirements 
for this project include for the data to be available at any 
global location and for time periods that satisfy the 
particular problem at hand. The modeling system 
known as the Hazard Prediction and Assessment 
Capability (HPAC) was developed for use by 
emergency planners for a variety of ATD applications. It 
is distributed with two types of climatology data to 
support long-range ATD planning and incidents for 
which no other weather information is available. The 
first type is called probabilistic data, which consists of 
means and variances for winds, temperature, and 
relative humidity, and is best used to obtain probabilistic 
results. These files consist of data for twelve 24-hour 
periods, each representative of an “average day” for 
each month of the year. The second type is modal data 
that describes “typical” conditions, and is best suited for 
quasi-deterministic forecasts. Modal files consist of 3-
dimensional fields of wind, temperature, and moisture 
derived from the NCEP/NCAR global reanalysis (Kalnay 
et al. 1996). However, despite its name, the modal data 
are not representative of modes in the statistical sense; 
rather, the data have been arbitrarily selected from the 
15th and 16th of each month of the year 1990. While 
the modal data satisfies the “physically consistent” 
criterion, its arbitrary nature disqualifies this modal data 
from meeting the “representative” criterion. A truly 
representative typical day would be the result of a 
search through a historical record of meteorological 
conditions to identify values of parameters—or 
combinations of parameters—that occur with the 
greatest frequency. During this project, we developed a 
solution for providing typical day meteorological data for 
DTRA that meet these criteria by coupling innovative 
search techniques with long-range historical archives of 
meteorological data in an effort to recreate a selected 
historical event identified as representative of typical for 
any region and season.  

The choice of typical day definition can have a 
significant effect on downstream applications such as 
HPAC. Figure 1 is an example showing the result of 
using two different definitions of typical day to provide 
meteorological input for an HPAC simulation of a 
hypothetical Sarin release. One run is based on data 
from the typical day identified by an early version of the 
search algorithm for this Pennsylvania location in June 
(10 June 2000); the other run is based on the typical 
day modal data provided with the version 4.0 HPAC 
distribution (15 June 1990). In this case, the differences 
in the two meteorological conditions translate into 
dramatically different HPAC solutions. 

 

Figure 1. Sarin total surface dosage 4 hours after 
initial release at 04Z for the dominant mode 
algorithm (labeled with the date 10 June 2000) 
and the current HPAC typical day conditions 
(labeled with the date 15 June 1990). 

In Section 2 we describe the Typical Day algorithm 
and the data used during its development. Section 3 
presents the results of tests to demonstrate the integrity 
of the algorithm to perform consistently under a variety 
of conditions. A summary and some conclusions are 
provided in Section 4. 

2. ALGORITHM AND DATA 

Our solution for providing typical day 
meteorological data involves the application of tailored 
search techniques to long-range historical archives for 
the selection of specific dates that identify typical 
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conditions for a region and season. The definition of 
typical is somewhat ambiguous, but is loosely 
established as a set of conditions, of relevance to the 
defined problem space, that are most likely to occur at 
the defined location during the defined season. It should 
be noted that the more parameters included in an 
algorithm to define typical, the less likely it will be for 
any particular combination of those parameters to 
occur. Therefore there is a tradeoff between selecting 
events that occur very frequently but are loosely defined 
(e.g. prevailing wind direction is from the southwest) vs. 
selecting events based on more precise condition sets 
of relevance to the ATD problem but that occur less 
frequently overall. During the initial phase of the project 
we investigated numerous approaches to this problem 
and established a prototype system that allowed 
multiple schemes for identifying and producing “typical” 
weather to be studied and demonstrated to DTRA. 

2.1. Typical Day Baseline Algorithm 

Given the desire to focus on the dominant mode of 
a parameter rather than its mean in establishing 
“typical,” an algorithm based on the successive analysis 
of univariate histograms was selected as showing the 
most skill. During early stages, this algorithm was 
developed, implemented, and tested for two separate 
locations (in Pennsylvania and Afghanistan), and for 
four months in different seasons (March, June, 
September, and December). The algorithm makes use 
of four quantities derived from the NCEP/NCAR gridded 
reanalysis data: vector average wind direction, average 
wind speed, and the minimum and maximum 
Richardson number (during a 24-hour period) of the 
lowest layer. These parameters were specifically 
selected for their relevance to the ATD problem. It 
should be noted that the same algorithm can be applied 
with different parameter selections to yield 
representative typical day meteorological conditions for 
other problem domains. 

The wind quantities are averaged over a 24-hr 
period to capture one diurnal cycle (four synoptic times 
in the NCEP/NCAR reanalysis), and over the vertical 
levels between the surface and approximately 3 km 
above ground. The vertically averaged wind direction is 
computed as the direction of the pressure-weighted 
average wind vector, computed as follows: 
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The average wind speed is computed analogously, 

with V in (1) replaced by |V|. 
The bulk Richardson number is computed over the 

lowest available layer, i.e., from the surface to next 
available level, requiring a minimum layer depth of at 
least Δpmin = 30 hPa (corresponding to approximately 
300 m) as a measure of low-level stability. Because this 
parameter depends critically on the diurnal cycle, 
temporal averaging over the entire 24-hour period is 
inappropriate for this variable. Instead, the maximum 
and minimum values over the 24-hour period are 
selected. Because the Richardson number can span a 
wide range of values and can be strongly skewed, a 
variable transformation is performed to result in a more 
regular histogram: 

 

 RoRoRiiR 1,maxln  (2) 

 
where Ro is an adjustable parameter. We used Ro = -5 
in most of our algorithm testing and in the examples 
shown here. The algorithm was applied to the 
NCEP/NCAR reanalysis data set using 25 years of data 
from 1979 through 2003, which yields 750 days of data 
for the June and September analysis (755 for March 
and December). 

The number of bins for the computation of sample 
histograms is pre-selected based on the sample size. 
The dominant mode is identified as the bin with 
maximum density. To avoid selecting spurious isolated 
maxima from potentially noisy sample histograms, all 
bins within a given tolerance (we used 20%) of the 
maximum density value are initially considered as 
potential dominant modes. The dominant mode is then 
defined as the bin that contains the largest fraction of 
the sample population as surrounding bins are added.  
The sample sub-selection performed for each one-
dimensional histogram starts with the bin identified as 
the dominant mode of the histogram.  The sample is 
then enlarged by adding surrounding bins of the 
histograms

1
, based on one (or both) of the following 

criteria: 

 the fraction of the population represented by the 
selected histogram bins must exceed a specified 
minimum value, but should not exceed a specified 
maximum value, and 

 the range of the parameter values of the selected 
histogram bins must exceed a specified minimum 
value, but should not exceed a specified maximum 
value. 

In all the results shown here, and the production 
implementation of the algorithm, we used the first 
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No bins are added once the end of the data range 

is encountered, except in the case of wind direction, for 
which the histograms are circular. 



criterion only, requiring a minimum fraction of 1/3, and a 
maximum fraction of 2/3. 

The definition of typical or representative is 
ultimately based on a measure of distance between the 
meteorological state for the day in question and the 
central values of the dominant mode. For a multivariate 
analysis such as ours, the choice of scaling and 
distance metrics thus becomes an integral part of the 
algorithm. For the histogram analysis based on the pre-
selected variables, distances from the dominant mode 
were based on a normalized Cartesian distance d 
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where the summation extends over all variables (e.g.,   
for wind direction, minimum Ri’, maximum Ri’, and wind 
speed), the xi are the values of these quantities for the 
day in question, the mi are the corresponding dominant 
mode central values, and the si are the scales for these 
variables. We used the inter-quartile range over the 
entire sample as the scale for each variable, but 
required scales at least as large as the histogram 
resolution in the analysis presented in the production 
implementation of the algorithm. 

2.2. Data 

We extracted pressure-level data from a 25-year 
(1979-2003) collection of NCEP/NCAR at the locations 
illustrated in Figure 2. These locations were selected 
because they include tropical, sub-tropical, mid-latitude, 
continental, and maritime regions, and locations at high 
elevation as well as near sea level. By selecting 
locations that cover a wide range of meteorological 
conditions, we were able to “stress” the code to reveal 
vulnerabilities in the baseline algorithm.  

 

Figure 2. Locations selected to test the Typical 
Day algorithm before implementation into the 
production architecture. Locations marked with a 
'+' and are followed by the site elevation (m; 
contour interval is 1000 m). 

Data was collected for the months of March, June, 
September, and December in order to provide 
representative conditions for each season. Additional 
data was collected for the months of January May, July, 

and November to enable us to test two different 
contiguous 3-month periods (i.e., November-December-
January and May-June-July). 

3. RESULTS 

3.1. Baseline Algorithm Evaluation and Results 

The baseline histogram algorithm outlined in 
Section 2.1  was run for the locations shown in Figure 
2, and several quantitative measures of algorithm 
performance were documented. Graphical histograms 
provided an economical way to verify whether or not the 
algorithm behaved as expected. Only data from the 
Brazil location for the month of September is presented 
in the following discussion, although we note this 
example was representative of the other locations and 
seasons evaluated. 

The histogram sequence for Brazil in September is 
shown in Figure 3. The algorithm was provided with 
input data from an initial sample of 750 September 
days. The upper left plot is the graphical result for the 
averaged wind direction histogram test. The mode (the 
most frequently occurring value) is indicated with a red 
line and is also labeled above the plot (90). The number 
that follows the labeled mode after the colon (287) 
represents the number of days, or sub-selections, from 
the original 750 that were passed on to the next 
histogram test. The green lines indicate the range of 
wind direction encompassed by the sub-selections. The 
next two histogram tests that follow are for the 
transformed Richardson number (2), with 122 and 76 
sub-selections, respectively. In the lower-right plot, 43 
days remain after the averaged wind speed histogram 
test. 

While the metric d in (3) provides an objective 

measure of the baseline algorithm performance, it is 
also reassuring to observe the result in terms of 
common meteorological variables. Toward that end, 
vertical profiles of wind direction, wind speed, and 
temperature at the four times available in the 
NCEP/NCAR data set, are shown in Figure 4 for the 
highest-ranked typical day identified by the baseline 
algorithm (25 September 1985). For comparison, 
vertical profiles are also shown for the dataset currently 
serving as “Typical Day” provided with HPAC (15 
September 1990). For this particular case, the two 
typical days reveal differences that could be important 
for ATD: for the dominant mode algorithm, 
representative conditions are light winds from the east 
and a minimal diurnal cycle of low-level static stability, 
whereas the HPAC typical day has weak southerly 
winds and indicates a strong nocturnal inversion. 

 



 

Figure 3. Dominant mode histograms for Brazil for all September months (25) during the period 1979-
2003. Variables used in the baseline algorithm are averaged daily wind direction (upper left), the 24-hour 
minimum in the Richardson number (upper right), the 24- hour maximum in the Richardson number (lower 
left), and the averaged daily wind speed (lower right). The red line indicates the mode selected by the 
algorithm, which is also labeled at the top of each histogram along with the number of sub-selections. The 
green dashed line indicates the width of the sub-selection. 



 

Figure 4. Vertical profiles of wind direction (degrees; top), wind speed (ms-1; middle), and temperature (K; 
bottom) for the typical day identified by the dominant mode algorithm (25 September 1985; left), and the 
HPAC typical day (15 September 1990; right), for the Brazil location. For wind direction and speed, 
vertical lines indicate the vertically and temporally averaged value. 



The baseline typical day algorithm operates on a 
31-day sample selected from a desired month of the 
year, leading to the result that there will be 12 typical 
days defined for a given location. In this regard the 
sample of days is effectively “centered” at mid-month 
(about the 15th of the month). While there were some 
differences in typical day results when historical 
samples are defined with respect to time periods other 
than monthly samples (not shown), the typical 
meteorological conditions as defined by the centroid 
values of the selected variables are robust. The 
resulting typical day selections were also found to be 
relatively robust, although some cases were found in 
which the selection of days was more sensitive. 

In the final step, the algorithm sorts the surviving 
typical day selections—in this case, 43—based on each 
day’s normalized distance from the computed centroid 
[d in (3)]. To gain an appreciation of the relative sizes of 
the values of d, the data is presented graphically in 
Figure 5. Notice the difference between d for each of 
the top-10 days selected by the baseline algorithm and 
that for the original typical day definition provided with 
the HPAC v4.01 application (labeled “19900915” in the 
figure). This difference is an indication that the days 
selected by the histogram algorithm are much closer to 
the mode than the arbitrary 15th day of the month, and 
therefore better represent the most frequent, or typical 
meteorological conditions at this desired location and 
time. 
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Figure 5. Illustration of the normalized distance 
from the centroid to each of the top-10 typical 
September days selected by the histogram 
algorithm (yellow), and from the centroid to the 
current HPAC definition of Typical Day 
(September 15, 1990; blue) for the Brazil location 
during the 1979-2003 period. 

3.2. Compact Typical Day Datasets 

During execution of the baseline algorithm on the 
full historical dataset, the centroid in the four-
dimensional space of the spatio-temporally averaged 
variables is identified by the central values of the 
dominant mode histogram bins. In addition, the 
subsample of days contained within these dominant 

modes is ordered by normalized distance from this 
centroid, and the closest one is identified as the typical 
day from the historical sample. However, since by 
definition the typical day is characterized by frequently 
occurring atmospheric conditions, it is to be expected 
that a similarly typical day can be found in the 
corresponding month of other years, if not every year. 
For this reason, a typical day dataset can be made to 
include only a subset of years in the gridded dataset. To 
determine the minimum acceptable number of years, 
we examined the distribution of the normalized distance 
from the typical day centroid for different combinations 
of 1, 2, and multi-year datasets. 

We considered all possible subsamples of 
consecutive 1, 2, or multi-year datasets (we restricted 
this analysis to consecutive years because this allows 
for longer-period simulations when near the beginning 
or end of the year). For each location and month, we 
determined the number of typical days (i.e. days that fall 
within the required proximity of the centroid) in all 
single- and multi-year subsets. The number of 
instances in which no typical days were found within a 
subset was tallied separately for 1, 2, and multi-year 
datasets. We first considered only days within the same 
calendar month as in the historical sample as candidate 
typical days. Using this criterion, we found that a 
minimum of 4 years are needed to ensure that a typical 
day can be found for each month, location, and 
consecutive 4-year dataset. When an expanded 
matching period of 61 days (+/- 30 days from the 16th 
of the month) was considered, we observed that a 
three-year dataset was sufficient to ensure a typical day 
can be found for all instances of location, month, and 
dataset. 

Assuming the data we selected for this exercise 
are representative, the expected probability of 
encountering no instances of a typical day for a dataset 
of given length is shown in Figure 6. For the 31-day 
matching period used in the baseline algorithm, the 
results indicate that a dataset of 4-year length will likely 
always yield a typical day; the probability of 
encountering a zero typical day instance is still <1% for 
the 3-year dataset, but increases rapidly to 0.9% and 
2.0% for the 2- and 1-year datasets, respectively. The 
61-day matching period provides even better odds of 
providing a typical day, with the 3-year dataset more 
likely to yield a typical day than its 31-day counterpart.  
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Figure 6. Graphical representation of the 
probability of encountering zero typical day 
instances as a function of typical day dataset 
length for the 31-day (blue) and 61-day (magenta) 
matching periods. 

One last examination of the applicability of the 
compact TD dataset involved all the gridpoints in the 
2.5° × 2.5° NCEP/NCAR Global Reanalysis. It focused 
on the result of restricting the filtered typical day to the 
three-year period 1989-1991, rather than choosing the 
top-ranked date from the entire 25-year sample 1979-
2003. We computed the rank of the filtered typical day 
(for each location and month) within the corresponding 
25-year sample. The rank was determined for each day 
in the 25-year sample list by ordering the dates in 
ascending order of normalized distance from the 
centroid. For this ranking, all dates within the final 
selection were considered first, followed by all dates 
outside the final selection. A corresponding percentile 
was computed by multiplying the rank by 100, divided 
by the size of the whole sample. 

The percentiles were computed for all grid 
locations and all months (of the total 126,144 typical 
days, 9395 (7.4%) of the metrics were unavailable 
because of processing problems). Overall, for the vast 
majority of cases, the filtered typical day is very near 
the top-ranked dates for the entire sample: for more 
than 99% of the analyzed typical days, the filtered date 
is within the top-ranked 5% of the entire sample.  The 
median percentile is 0.77%, with a slightly higher mean 
(1.17%) due to isolated cases with higher percentiles. In 
the worst case, the filtered typical day was still within 
the top 33% of the entire sample (see the attached 
histogram plot for full details).  Stratification of these 
statistics by month and geographical region (we 
considered 30-degree latitude bands in the North and 
South Hemisphere) revealed no systematic patterns of 
particularly low or high percentile values. Maximum 
percentile values show the greatest variation, but these 
represent an insignificant fraction of the sample.  For 
each month and region, there was at least one point in 

which the top-ranked date fell within the filtered years.  
Individual mean and median values are all quite close 
to those for the grand total of all locations and months. 

4. SUMMARY AND CONCLUSIONS 

We developed a Typical Day algorithm and tested 
an implementation on NCEP/NCAR Global Reanalysis 
data. During tests of the dominant mode baseline 
algorithm, we observed considerable skill in the 
algorithm’s ability to identify representative typical day 
weather conditions of relevance to the ATD problem. 
Furthermore, the algorithm is particularly well suited to 
the job of producing a global HPAC typical day dataset 
because it can be executed in a fully automated 
environment without a human-in-the-loop, and performs 
equally well at for any location and season.  
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