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1. Introduction 

 
Determining the source characteristics of a 

contaminant is an important issue in homeland and 
defense security in order to accurately predict 
subsequent atmospheric transport and dispersion 
(AT&D).  In previous work, we have utilized the field 
approach to obtaining the contaminant source 
information.  There, the source information is obtained 
by matching observed surface concentration values with 
predicted surface concentrations from a dispersion 
model that has the source information as an input via a 
Genetic Algorithm (GA) (Haupt 2005; Allen et al. 2007, 
2008; Long et al. 2010, Rodriguez et al. 2010).  In other 
work, we investigated the implications of Lagrangian 
and Eulerian frameworks on the AT&D problem 
(Annunzio et al., 2010).  There, it is determined that the 
Lagrangian framework has advantages over the 
Eulerian framework when it is possible to describe the 
concentration data by an entity.  Here, we apply this 
Lagrangian/entity approach to the source term 
estimation (STE) problem.  This approach is also 
utilized in other work where parcel trajectories are 
traced back to the source location; however, this 
method requires ample meteorological wind and 
concentration data (Young et al. 2009).  The Lagrangian 
method developed here does not require wind data 
because the relevant wind information is diagnosed 
from the concentration observations.  Two separate 
methods are developed: a strictly Lagrangian method 
for an instantaneous release and a mixed 
Eulerian/Lagrangian approach for a continuous release.  
The methods described here approximate the 
concentration by a single entity in a single entity field 
approximation (SEFA).  For this formulation, we analyze 
the state of a contaminant plume and a time series of 
contaminant puff states to find the plume/puff source 
location.  The components of the state are the 
puff/plume axis and spread; we focus on these 
components because the contaminant source is located 
at the point on the puff/plume axis where the spread 
equals zero.  Many Eulerian techniques exist for STE, 
most of which match surface concentration observations 
with 
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surface concentration predictions (Rao 2007).  Our 
Lagrangian approach for instantaneous, single sources 
is advantageous because for this scenario it is not 
necessary to match the concentration field with 
predictions of the concentration field to obtain the 
source information.   

For a continuous release, contaminants appear 
to remain stationary with respect to the sensor grid, and 
thus, a Lagrangian formulation is difficult for a 
contaminant plume.  Therefore, a mixed Eulerian-
Lagrangian approach is adopted for a continuous 
release: this approach is mixed Eulerian-Lagrangian 
because surface concentration observations are 
matched with surface concentration predictions to 
determine a Lagrangian quantity, the spread.  A further 
advantage of our techniques for single sources is that 
meteorological data are not required to accurately 
estimate the source location.   

 
2. Methods 
 

In this section we develop the Lagrangian 
based source term estimation algorithms for both an 
instantaneous and continuous release. 

 
a. Instantaneous release 
 

To determine the source location for an 
instantaneous release, the evolution of the puff state 
must follow a dynamical system.  Here, we assume a 
simple dynamical system given by  

 oop ttuxx                                (1a)                              

 oop ttvyy                                 (1b)                     

 boi ttaS                                      (1c)         

where x  and y describe the position of the puff 

centroid at a time t , ot  is the initial release time, 

u and v represents the mean zonal and meridional 

velocity of the contaminant puff, iS is the puff spread, 

and a and b are constants that are inputs to the power 

law equation (1c) that describes the puff spread.  
Without a time series of surface concentration 
observations, none of the variables are known; 

however, it is possible to determine px , py , and S  

from these concentration observations.  The puff 



centroid, represented by px and py is determined from 

a concentration weighted location 








x

x

N

i

i

N

i

igi

p

C

xC

x

1

1

,

                         (2a)                                                              








y

y

N

i

i

N

i

igi

p

C

yC

y

1

1

,

                        (2b) 

where igx , , igy , is the horizontal location of a grid point 

in the x , y plane, xN and yN represents the number 

of grid points in each direction, and iC is the 

concentration values at the i
th
 grid point.  This 

calculation is computed at discrete times when 
concentration observations are available, and from 
these calculations there is a time series of the puff 
centroid location.  Further, with knowledge of the puff 
centroid, determination of the puff spread is possible.  
The puff spread is calculated through a concentration 
weighted sum.  
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where  2
1

22 )()( jpjp yyxxr   is the Euclidian 

distance from the puff centroid to a grid point, and 

gN describes the number of grid points.  From these 

calculations, a time series of the puff spread is 
available.  The puff spread is assumed to be a power 
law function the depends on the unknown variables a , 

b , and ot .  Because the power law function is 

nonlinear, optimization is required to determine these 
variables.  The optimization used for the fit is a Genetic 
Algorithm (GA), a robust optimization technique that 
mimics the natural selection process (Haupt and Haupt 
2004, Haupt 2005).  The GA minimizes a cost function 
given by 
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and this fit provides a best estimate of the contaminant 
release time, ot .  

 From the time series of the puff centroid, we 
can calculate the mean puff translation velocity and 
direction (or puff axis) in the dynamical system (1a)-(1c).   
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where tN represents the number of puff centroid 

observations.  After this calculation, only two unknowns 
remain in the dynamical system (1), namely the two 
dimensional source location.  To calculate the source 
location, we can easily invert equations (1a) and (1b).  
This inversion requires input from the first puff centroid 
observation. 

)( 11 oo ttuxx                           (6a) 

 oo ttvyy  11                          (6b)                                                          

 
b. Plume 

For a continuous release, we take a more 
parametric, mixed Eulerian/Lagrangian approach to 
obtaining the source information.  The plume axis is 
determined from the concentration data while the plume 
spread is obtained by matching the concentration field.  
The first crucial step in this method is time averaging the 
contaminant concentration field.  The averaging period 
is determined as the time from when the contaminant 
first enters the sensor domain until the contaminant 
exits the sensor domain.  The next step in determining 
the entity state is fitting the plume axis. This is 
accomplished with a concentration weighted least 
squares fit 



  0

2

1












































gN

i

gg baxxC
a

            (7a)                                                    

  0

2

1












































gN

i

gg baxxC
b

              (7b)                                 

The concentration weighted least squares fit is 
used so that the location of the plume axis is heavily 
weighted by the highest concentration values.  The 
concentration weighted approach has one drawback in 
that it does not account for horizontal and vertical 
diffusion that decreases concentration values on the 
plume axis downwind from the source.  However, 
because the plume spread and atmospheric turbulence 
statistics are unknown, it is not possible to accurately 
include the effects of atmospheric diffusion for this fit.   
The effective plume axis provides information on the 
influencing wind because the plume axis lies parallel to 
the mean direction of contaminant travel.  With the 
information on the mean plume axis, it is now possible 
to determine the contaminant spread.  Taking a similar 
approach to that used for the instantaneous case, we 
assume that the plume spread follows a power law  

 doc xxcS ''                           (8)                         

 Where 'x represents points that lie on the plume axis, 

'ox  is the unknown source location that lies on the 

plume axis, and c and d are constants to be determined.  
Unlike the instantaneous release, we cannot compute a 
time series of the spread or calculate values of S as a 
function of x.  Therefore, these three unknowns must be 

determined from the concentration field.  This is 

possible if cS is an input to a dispersion model and the 

unknown variables are determined by matching the 
concentration observations with predictions of surface 
concentration observations.  For this work, the 
dispersion model used is the Gaussian dispersion 
model written as  
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The process of matching the data is accomplished by 
minimizing the difference between the concentration 
observations and the concentration forecasts with a 
Genetic Algorithm (GA) similar to Haupt (2005), Allen et 

al (2007 and 2008), and Long et al (2010).  The GA 
optimization process is discussed in those works, and 
thus, a discussion is omitted here.  The implementation 
of a GA is not crucial for this work, however, this 
optimization technique is chosen because of its 
robustness compared to other optimization techniques 
(Haupt and Haupt 2004).    

 
3. Results 

 
To test these algorithms, we used trial data from 

the FUSION Field Trial 2007 (FFT 07) dataset.  FFT 07 
was a field experiment where surface contaminant 
concentration observations were recorded from 
continuous and instantaneous contaminant releases.  
These data, as well as meteorological observations 
taken during the contaminant release, are available for 
researchers to test their source term estimation 
algorithms.  For each trial, 100 concentration sensors 
recorded data on the contaminant, 40 meteorological 
sensors recorded wind data, and 3 towers were 
available to calculate turbulence statistics.  We tested 
these algorithms on trials 15 and 71, which are single 
release plume and puff situations respectively.  For both 
trials, we used none of the meteorological data, 
because the relevant meteorological information is 
inferred by the algorithms.  Further, we randomly 
removed sensors from the 100 sensors available to test 
our algorithms when less data are available.  We 
perform this process in 100 separate Monte Carlo 
simulations   

Instantaneous release results for 80, 60, 40, and 20 
sensors are shown in figures 1, 2, 3 and 4 respectively.   
Figure1 shows that our algorithm can consistently 
determine the puff axis and spread, and hence 
accurately estimate the source location of the 
contaminant when 80 sensors report concentration data.  
As more data are removed, it becomes more difficult to 
determine the puff axis and spread yielding less 
accurate source terms estimates exemplified by figures 
2 and 3.  When only 20 sensors report surface 
concentration data, the source term estimates are even 
less accurate as expected.  This is indicated in figure 4: 
the inability to locate the contaminant source is due to 
the difficulty in computing the puff axis and spread.  This 
inability to determine these variables is because of 
insufficient data.  For the 20 sensor cases, a median of 
only 2 sensors sense the contaminant puff throughout 
the entire simulation making it difficult for any algorithm 
to determine the unknown variables.  

  Figures 5 through 8 display results for the 
continuous release when 80, 60, 40 and 20 sensors are 
available to sense the plume.  Results for the 80 sensor



cases are very promising; the mean source estimate 
error of the 100 simulations is 55.4 m.  This is seen in 
figure 5 with the cluster of source estimates near the 
actual source location.  Similar to the instantaneous 
release, as the sensor density decreases for the 
continuous release, the errors in source location 
estimates increase.  In figures 6 and 7, the cluster of 
estimates near the origin expands, and we also have 
several estimates that diverge to the far edge of our 
search domain.  With less sensor data, it becomes more 
difficult to accurately determine the plume axis and 
spread, and hence, less accurate source location 
estimates.  Despite less data, the mean source location 
error is 118.5 m and 165.2 m for the 60 and 40 sensor 
simulations respectively and the median error is 57.9 m 
and 88.5 m.  Figure 8 shows results when only 20 
concentration sensors are available.  For this scenario it 
is increasingly more difficult to determine the plume axis 
and spread, because only a median of 2 sensors report 
contaminant concentrations.    

 
4. Conclusions  

 

Our results show that when sufficient concentration 
data is available to compute the plume/puff axis and 
spread, we are able to determine the source of 
continuous and instantaneous releases.  As the sensor 
density decreases, it becomes more difficult to 
determine these variables.  For these scenarios, it is 
possible that only one or two sensors actually report 
contaminant concentrations, making it very difficult to 
find the source location of the contaminant.  It is worthy 
of note, that accurate source term estimates are still 
possible when only few sensors report contaminant 
data.  Accurate estimates are possible if these few 
sensors are located such that information is available on 
the plume/puff axis and spread, however, not every 
sensor configuration will provide this necessary 
information. 

 This algorithm was compared with other source 
term estimation algorithms by submitting results for FFT 
07 case data.  The FFT 07 case data has less wind and 
concentration data than the trials, and the cases we 
tested had 16 concentration sensors.  The source term 
of the contaminant was unknown for the cases, and 
results were submitted for validation; several 
researchers submitted results from their source term 
estimation algorithms.  The results of the case data 
show that for simulations with a single puff or plume 
release, our algorithms, on average, can estimate the 
source location better than most competing algorithms 
(Platt and Deriggi 2010). 

In future work we will extend this model to a multi-
entity field approximation (MEFA).  A MEFA is 
appropriate when more than one contaminant release 
occurs or when the turbulence or flow obstacles cause 
an entity to split.   
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6. Figures 

 

 

 

Figure 1: Source location estimates (green) and the actual source location (red) when 80 sensors are available to 

sense a contaminant puff 



 

Figure 2: Source location estimates (green) and the actual source location (red) when 60 sensors are available to 

sense a contaminant puff 



 

Figure 3: Source location estimates (green) and the actual source location (red) when 40 sensors are available to 

sense a contaminant puff 



 

Figure 4: Source location estimates (green) and the actual source location (red) when 80 sensors are available to 

sense a contaminant puff 

 

 

 



 

Figure 5: Source location estimates (green) and the actual source location (red) when 80 sensors are available to 

sense a contaminant plume 



 

Figure 6: Source location estimates (green) and the actual source location (red) when 60 sensors are available to 

sense a contaminant plume 



 

Figure 7: Source location estimates (green) and the actual source location (red) when 40 sensors are available to 

sense a contaminant plume 



 

Figure 8: Source location estimates (green) and the actual source location (red) when 20 sensors are available to 

sense a contaminant plume 

 

 

 


