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1. Motivation  

Traditional methods to retrieve the depth of the 

convective boundary layer, iz , include measurements from 

lidar, sodar, radiosondes, and instruments mounted on 
aircraft, balloon, etc  (Stull 1988).  In terms of man-power 
and cost, these methods are expensive.  Therefore, it would 
be convenient if cheap and more efficient method was 

available to determine iz .  In the convective boundary layer, 

the largest eddies or the boundary layer spanning eddies 
(BLSE) extend from the surface to the stably stratified 
capping inversion layer.  Therefore, surface observations are 
influenced by the eddies, and because these eddies are 

influenced by iz , the boundary layer depth also has an 

impact on surface layer observations.  The influence of the 
boundary layer depth on surface layer observations is 
observed in standard deviation of the along-wind and cross-
wind velocity components (Panofsky et al. 1977).   
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where L  is the Monin-Obukhov length, *u  is the friction 

velocity, and vu,  is the standard deviation of the along-wind 

and cross-wind component.  This equation shows that vu,  

does not obey either Monin-Obukhov or mixed-layer 
similarity theory because these variables are not dependent 

on 
L

z
 in the surface layer or 

iz

z
in the mixed layer.  Instead, 

vu,  is approximately constant in the vertical direction, and 

is a function of the stability parameter 
L

zi ; this is a result of 

the BLSEs.  Solving (1) for iz yields 
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Therefore, if the Monin-Obukhov length, the friction velocity, 
and the standard deviations of the horizontal wind are 
known, then it is possible to solve for the boundary layer 
depth.  These three variables will be determined from 
surface layer observations 

2. Determining L , vu, , and *u  From Surface Layer 

Observations 

We developed two methods to determine these 
variables.  The first method requires wind, or wind and 
temperature measurements, at several different vertical 
levels in the surface layer, and the second method requires 
calculation of relevant fluxes.  

a. a. Optimization Method 

For the optimization method, an optimization technique 

determines L and *u by matching a vertical profile of 

averaged wind or temperature observations with vertical 
wind and temperature predictions from similarity theory.  The 
equation for the mean wind as a function of height in the 
surface layer is given by (Panofsky and Dutton 1984) 
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where k is the von Karman constant, oz is the unknown 

roughness length and 





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

L

z
u is a function that decreases 

the convexity of )(zU in unstable conditions and represents 

how the BLSEs change the mean wind profile.  If a time 
series of wind observations are available at several vertical 
levels in the atmospheric surface layer, then we can average 
these observations and equate them with (3) plus an error 
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where )(, nnob zU is the mean wind at a height nz , 

n represents the observation number, and E describes the 

error of the wind prediction.  From (4), we can form a cost 
function that an optimization technique will minimize 
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where obsN denotes the number of observation levels and 

'E  is an alternate form of the error.  The goal of the 

optimization technique is to minimize 'uE by estimating 

proper values of L , oz , and *u .  Similarly, if multi-level 

temperature observations are available instead of wind we 
can do the same process with the Monin-Obukhov similarity 
equation for mean temperature.  Here, we have  
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where )(zT is the predicted vertical profile of the mean 

temperature, oT the surface temperature, *T  is given by 

*

' 'u T

u
 where 'u and 'T are the turbulent components for 

streamwise velocity and temperature respectively, and 
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(Panofsky and Dutton 1984).  Similarly the cost function has 
the form 
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For this formulation, the optimization technique must search 

for oT , T , oz , and L .  Equation (2) requires the friction 

velocity, therefore we solve for this variable via the relation
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where T is the mean temperature and g is the gravity.  Now 

that we have estimates of the Obukhov length and the 
friction velocity, only a measurement of the standard 
deviation of the horizontal wind is necessary.  This variable 
is determined from the observed wind.   

 

b. Flux Method 

The variables required to solve for iz in (2) can be 

determined if measurements of atmospheric fluxes are 
available.  Therefore, instead of estimating these variables 
via numerical optimization, they can be directly computed 

from surface layer measurements.  The definition of L is 
given by  
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where '' v

v

w
g




 is the buoyancy flux, 'w is the turbulent 

vertical velocity, 'v is the turbulent virtual potential 

temperature and v is the mean virtual potential 

temperature.  If observations of these variables are taken, 
then it is possible to compute the Monin-Obukhov length.  

Similarly, the definition of *u is given by 
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where 'u and 'v are the along-wind and cross-wind turbulent 

velocity components respectively.  If the momentum fluxes 

 ''wu  and  ''wv  are computed from atmospheric data, then 

an observation of *u  is available.  Finally, if vu, is also 

calculated is a similar manner as above, we have all the 

variables necessary in (2) to calculate iz .  The flux method 

should be more accurate than the optimization method 
because more of the unknown variables are determined via 
atmospheric measurements 

2. Results 

To test both of these methods, data was generously 
provided from Howard University whom participated in the 
D.C. PBL variability experiment.  This data included surface 
layer observations of temperature at 8 vertical levels, and 
surface layer winds recorded at 3 vertical levels.  Further, 
turbulent fluxes were provided by this data set.  Participants 
in the PBL study at Howard University also launched 
radiosondes to determine PBL depth at 1300, 1500, 1700, 
1900 and 2100 UTC on four days (September 14-15 & 19-
20).  These data were more than sufficient to test the surface 

layer iz  calculation methods.  

a. Optimization Method 

 Success of the optimization method is dependent on 
accurately determining the convexity of the temperature and 

wind profiles, because the convexity is determined by L  

and oz .  Because the data provided has more temperature 



data than wind data we use the temperature data for the fit.  
This ample dataset should give the algorithm enough 
information to determine the convexity of the temperature 
profile, allowing successful determination of the unknown 
variables.    The temperature data are averaged over a time 
period of one hour, which may not be a sufficient averaging 
time for (6) to be a valid model of vertical temperature.  
Although, the data is averaged, it may contain both sampling 
noise and calibration errors.  To combat these errors, we 
employ a hybrid Genetic Algorithm (GA), a powerful 
optimization technique, to provide a best estimate of the 
unknown variables (Haupt and Haupt 2004).  The GA 
process is explained thoroughly in Haupt and Haupt (2004), 
thus, an explanation of the GA is omitted here.  The GA 
minimizes (7) until the prescribed number of iterations is 
exceeded or convergence occurs.  As in Long et al (2010), a 
Nelder Meade Downhill Simplex (NMDS) algorithm then 
uses the GA solution to provide a better estimate of the 
unknown variables.  Therefore, the GA is used to find the 
appropriate solution basin and the NMDS cascades down 
that basin to obtain the global minimum in the cost surface.   

Results from the optimization method are shown in 
Figure (1).  Preliminary research shows that this method did 
not accurately estimate the depth of the convective boundary 

layer.  In fact, the estimates of iz are scattered, and there 

exist time periods where no estimate of iz is available.  The 

latter occurs because the algorithm determined that the 
observed temperature profile is characteristic of a neutral 

atmosphere, wherein L approaches infinity and (1) is not 
valid.  Although there are some accurate estimates of the 
boundary layer depth, the scatter over all estimates is too 
large.   Therefore, the optimization technique was not able to 
consistently determine the unknown variables. 

b.  Flux Method 

The data set provided by Howard was sufficient to 
calculate all of the unknown variables in (1) via observations.  
The results of this method are shown in Figure (2).  The 
figure shows that although the flux method was much more 
successful than the optimization method, it still did not 
provide accurate estimates of the boundary layer depth.  
Interestingly, the results for September (14-15) display a lot 
of scatter, while results for September (19-20) are more 
consistent.  A likely cause for the scatter is due to non-
stationarity of the atmosphere.  Another interesting feature is 
that predictions of boundary layer depth on September (19-

20) generally under-predict iz .  Consistency of the 

predictions for these two days is promising; however, the 
estimates are consistently below the observed boundary 
layer depth.  

3. Conclusions  

The above methods to calculate iz did not provide 

accurate estimates of the depth of the atmospheric boundary 
layer.  The failure of these methods could be attributed to 
several causes.  First, implicit in the assumption of similarity 
theory is stationarity of the turbulence.  Any deviations from 

this assumption will cause this theory, and thus our 
formulations, to break down.  A second culprit is 

observational noise.  Because vu,  and *u are both cubed 

in (2), any instrumental error in these variables causes a 

much larger error in iz .  Further, for the optimization 

method, scatter in the mean temperature or mean wind 
profiles (although more-so the temperature than the wind) 
makes it difficult to determine the convexity of these profiles, 

and hence it is difficult to accurately estimate L .  Likewise, 
any calibration issues could adversely impact the profile 
curvature on which the optimization method depends.  A 

third error may come from the equation for vu, given by (1).  

This equation may need to be re-evaluated because of the 
large scatter in the original observations from which it was 
developed.  A fourth and final error may be caused by 
considering measurements at only a single point.  Averaging 
observations over several points can give a more accurate 
representation of the mean properties of the turbulent ABL.  
Unfortunately, the above methods lose their efficiency if 
several observations stations are necessary.  Therefore, the 

verdict does not look promising for determining iz  from 

surface layer observations, but there is still some hope.  In 
future work, we will also investigate other methods of 
determining iz from surface layer observations. 
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6. Figures  

 

Figure 1: Boundary Layer Depth Predictions from the Hybrid GA Optimization Method



 

Figure 2: Boundary layer depth predictions from the Flux Method

 


