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1. INTRODUCTION 
      

The Defense Threat Reduction Agency 
(DTRA) established that it is important to be able 
to predict the atmospheric transport and 
dispersion (AT&D) of chemical, biological, nuclear, 
or radioactive (CBNR) materials. However, 
sometimes there is inadequate source information 
to predict how these materials transport and 
disperse; therefore it becomes necessary to 
characterize the source of a CBNR airborne 
contaminant from remote measurements of the 
resulting concentration field. To generate a 
comprehensive meteorological and tracer AT&D 
dataset suitable for testing current and future 
CBNR algorithms the FUsing Sensor Information 
from Observing Networks (FUSION) Field Trial 
2007 (FFT07) was executed. Part of the FFT07 
data release plan was to make the data available 
in phases. In the first of these phases, the actual 
release location and quantity of the agent was 
withheld and the different research groups with 
CBNR algorithms submitted predictions of 
locations of the source releases. The first part of 
this paper consists of discussing our Phase 1 
results using our Genetic Algorithm (GA) approach 
to source characterization while the second part 
discusses some lessons learned using Trial data.  
 
2. DATA 
     

The initial FFT07 data released, known as 
Trial data, contained readings from 100 sensors 
with the source information (location and amount) 
and abundant meteorological information. These 
data were made available to test and train the 
current CBNR algorithms with the intention that 
sparser datasets could be constructed by data 
denial. After 6 months, Phase 1 data, known as 
Case data, was made available. These Case data 
contained 104 different release events with limited 
meteorological data and concentration data for 
only four or 16 sensors. 
______________________________________   
*Corresponding author address: Luna Marie 
Rodriguez, Department of Meteorology, The 
Pennsylvania State University, 402 Walker 
Building University Park, PA, 16802-5013; e-
mail: lmr257@psu.edu 
 
 

3. EXPERIMENTAL METHODS 
 
Figure 1 depicts the GA procedure for 

source characterization that has also been proven 
to work with identical twin data in Allen et al. 2006, 
2007, Haupt 2005, Haupt et. al. 2006, 2007a, 
2007b, 2007c, and Long et. al. 2010. We begin 
with a set of trial solutions that are then fed into an 
AT&D model. The AT&D models used in this study 
were a Gaussian Puff Model, a Gaussian Plume 
Model, and the Second-Order Closure Puff Model 
(SCIPUFF). The resulting concentration fields of 
these models are then compared via a cost 
function and the best solutions mate and mutate. 
This process iterates until it converges to a best 
solution.  
 
4. PHASE 1 
     

For Phase I of FFT07 we submitted 
predictions of the cases containing concentration 
information from 16 sensors. For all of our 
predictions we manually calculated the 
atmospheric stability, used 10 s averages of the 
concentration data as the time interval, determined 
the stop and start time of each release by visual 
inspection, and did not filter noise. Some 
meteorological data was provided for each case; 
however, we used the GA to determine the 
prevailing wind direction and speed.  When using 
SCIPUFF as our AT&D model we visually 
inspected the concentration data to see whether it 
was a puff or a plume. When using the Gaussian 
models, every case was run for both puff and 
plume, and we took the lowest cost function and 
submitted that result as our prediction for the case.  

Figure 2 shows an example of our predictions 
for a puff and a plume case.  As you can see in 
Figure 2, the case data has concentration values 
from a selection of sensors downwind of the 
source release. Our predictions vary some 
depending on the AT&D model used. We were 
able to achieve lower cost function values and 
better source location predictions when using 
SCIPUFF as our AT&D. 

 
5. SENSIVITY 
 
        After submitting predictions for Phase 1 we 
did a more thorough analysis of the timestep 
average, use of the meteorological data, and how 



2 

to threshold the data for noise. Figure 3 shows an 
example of using different averaging periods for 
the concentration data. The 10 s average was not 
as computationally intensive as the 1 s average 
yet still captures most maximum concentration 
peaks.   

We temporally and spatially averaged the 
meteorological observations and compared results 
obtained using the provided data with using wind 
speed and direction computed directly by the GA. 
Figure 4 indicated the problems that arise with the 
measured wind.  In that case, the wind turns 
through 180 ° with height.  That implies that a key 
issue is determining what is the appropriate 
steering level for the wind advecting the plume.  
We compared using a vertically average wind, a 
wind from the mean level of the layer, and a wind 
speed and direction determined as part of the 
genetic algorithm optimization. The GA-
determined advecting wind produced better 
concentration predictions, which resulted in better 
estimates of the source location. In the future we 
would like the GA to determine the advecting wind 
speed and direction as a function of time.  

To avoid fitting sensor noise we applied 
thresholds equally to all sensors. We found that 
applying this threshold equally may not be the best 
approach given that our cost function values did 
not vary much between out high thresholds and 
low thresholds. However, we expect that applying 
thresholds individually to sensors will greatly 
improve our predictions. 

 
6.  DISCUSSION 

 
We have shown some success at estimating 

source term variables with a genetic algorithm and 
several different dispersion models.  The trial 

cases from FFT07 allowed analysis of our routines 
with real field data.  
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Figure 1. Schematic of Genetic Algorithm. 

  

Figure 2. Source location predictions for a puff and a plume case submitted to Phase I of FFT07. 
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Figure 3. The Field Average is the spatial mean using different averaging periods for the concentration data 
for Trial 15. Sensor 75 Average is the mean using different averaging periods for the concentration data of 
sensor 75 for Trial 15. 

 

 

Figure 2. We temporally averaged the meteorological observations for the Sonic Anemometers and the 
SODAR. 


