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1. INTRODUCTION 
 
 Meteorologists face the difficult task of 
forecasting complex winter storm systems that can 
affect millions of people.   Forecasting snowstorms is a 
multifaceted problem with many challenges.  Kocin and 
Uccellini (2005) state that “one can conclude that the 
accuracy of weather forecasting, even for a rare event 
such as a major Northeast snowstorm, can be attributed 
to the introduction of numerical models into the forecast 
process beginning in the 1950s, the continued 
improvements made to the numerical models and global 
data, and the overall professional development of 
forecasters whose training and education are based 
heavily on understanding the strengths and weaknesses 
of the models.”  In addition to improvements made to 
the numerical models, improvements in weather 
forecasting have come from the development of 
statistical post-processing methods of weather 
forecasting.  Glahn and Lowry (1972) implemented 
Model Output Statistics (MOS) post-processing that is 
an objective weather forecasting technique.  MOS 
consists of determining a statistical relationship between 
a predictand and variables forecast by a numerical 
model at various projection times. The development of 
linear regression equations that relate model predicted 
variables to weather observation enabled the prediction 
of weather variables not directly forecast by the model, 
like snow accumulation.  
Another development in weather forecasting has been 
the advent of meteorological ensembles which quantify 
forecast uncertainty by representing possible 
realizations of future states of the atmosphere.  
Advanced statistical post-processing techniques have 
recently been developed and implemented in order to 
improve the calibration and the accuracy of NWP 
ensembles.  Several studies have examined different 
methods of post-processing ensemble forecasts in order 
to improve weather prediction (Raftery et al. 2005, 
Greybush et al. 2008, Glahn et al. 2009). Although 
many of these advanced statistical post-processing 
methods have been shown to improve general 
forecasting, only recently have there been attempts to 
use post-processing to improve snowfall accumulation 
predictions. Cosgrove and Sfanos (2004) have applied 
the MOS post-processing technique to forecast the 
conditional probability of snow and the snowfall amount 
exceeding a certain threshold, given that snowfall   
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occurs, using the Global Forecast System (GFS) model.  
Several studies have attempted to improve snowfall 
forecasting by more accurately predicting the snow 
density (Roebber et al. 2003, Baxter et al. 2005, Ware 
et al. 2006, Roebber et al 2007). There have been 
attempts at improving weather predictions from the use 
of Numerical Weather Prediction (NWP) ensemble 
forecast systems, the use of advanced statistical post-
processing, and developing an accurate snowfall 
density climatology.  However, no studies have 
attempted to apply statistical post-processing to current 
NWP ensemble prediction systems.  The goal of our 
study is to use advanced statistical guidance methods to 
post-process forecasts from the Global Ensemble 
Forecast System (GEFS) in order to improve both the 
accuracy and ensemble calibration 24 hour snowfall 
accumulation predictions. 

In section 2, we discuss the datasets: the Global 
Ensemble Forecast System and the cooperative 
observing network.  In section 3, we discuss the 
statistical guidance methods used.  In section 4, we 
summarize and discuss the results.  In section 5, we 
provide conclusions and ideas for future research. 

 
2.   STUDY DATA 
 
a. Verification Data 
 

In order to test the validity of any forecast and 
allow for consistent, reliable statistical post-processing, 
an accurate observing system is necessary (Allen 
2001).  The National Climatic Data Center’s (NCDC’s) 
Cooperative Summary of the Day reports, or co-op, are 
used as our snowfall observing network.  The co-op 
reports are taken daily by volunteers at their home or 
work and then sent to NCDC who collects and 
processes the data.  The variables reported once per 
24-hr period are precipitation amount, snowfall 
accumulation, maximum temperature, and minimum 
temperature. Co-op stations are established, closed, 
supervised, and inspected by NWS personnel with 
annual visits to ensure observer proficiency, adherence 
to instrument and exposure standards, and network 
integrity (NWS 2000).  This dataset has many 
challenges, such as data formatting, quality control, 
varying reporting times, and station changes.  The data 
has been quality controlled by the National Climatic 
Data Center (NCDC) with 36 different checks for 
consistency and quality (NCDC 2000) and also quality 
controlled by the National Weather Service 
Meteorological Development Laboratory (MDL).  The 
quality control by MDL has eliminated observations with 
subjective information; such as, “accumulated amount 
since last measurement” or “subjectively derived value.”  



Also, all cases that reported snowfall but not 
precipitation were eliminated from the dataset. 

The next step was determining which observations 
to use because the co-op sites report once per day.  
Thus, the hour at which the observation takes place 
varies between stations.  In order to maintain 
consistency and to provide a valid test of our methods, 
we have kept all observations between 11z and 17z in 
order to compare forecasts valid for 12z.  Not only are 
most of the observations recorded between 11z and 
17z, but this correlates with a lead time of 12 hours from 
the Global Ensemble Forecast System.  Using this time 
period parallels the approach used by Cosgrove and 
Sfanos (2004).  Only the observations with a snowfall 
measurement of a trace or more are retained in the 
dataset. 

 
b. Ensemble Forecast Data 

 
The National Center for Environmental Prediction 

(NCEP) Global Ensemble Forecast System (GEFS) is 
an ensemble forecast system using the Global Spectral 
Model.  Due to several changes in the model 
configuration and number of members, the longest cold 
season consistent dataset available was October 1, 
2006 to March 31, 2007.  During this time period, the 
GEFS consisted of 15 total ensemble members: one 
high resolution control run and seven paired 
perturbations from the NCEP breeding method with 
Ensemble Transform (ET).  The initialization time of the 
forecasts is 00z each day and each forecast is archived 
at 95.25 km resolution.  The GEFS direct model output 
consists of forecasts for every six hours from 0-364 hrs.  
There are 31 forecast elements from the GEFS, which 
are listed in Table 1.  There are four wind speeds 
forecast for both U- and V-wind components, five 
temperature levels forecast, four categorical 
precipitation categories: rain, freezing rain, ice pellets, 
and snow, four geopotential height fields, six-hour 
maximum temperature, minimum temperature, and 
accumulated precipitation.  There are also four relative 
humidity levels forecast and two pressure fields. 

In order to compare the GEFS forecasts on a 
95.25 km grid to individual co-op reporting sites, a 
nearest neighbor weighted method was used to 
interpolate to the co-op locations.  First, the closest 
three grid locations to the co-op sites were selected.  
The nearest neighbor process then converts the grid 
point locations and co-op reporting sites from spherical 
to Cartesian coordinates.  Next, the respective 
distances between the three nearest grid points and the 
co-op reporting sites are computed.  To calculate a 
forecast for the co-op location, a distance-weighted 
average of the three nearest neighbor grid points is 
used.  The distance-weighted average forecast for all 31 
elements is used in the training data. 

The dataset consists of GEFS predictions for all 
31 weather variables at forecast valid times of 12-18 
hrs, 18-24 hrs, 24-30 hrs, and 30-36 hrs.  These 124 
variables are combined with each station’s latitude,  

Table 1.  GEFS archived elements. 

Element Element 
Description 

Levels 

Press Pressure [Pa] Surface 

PRMSL Pressure 
reduced to MSL 

[Pa] 

Mean Sea Level 

RH Relative 
humidity [%] 

2M,925mb,850mb, 
700mb,500mb 

TMP Temperature [K] 2M,1000mb,850mb, 
700mb,500mb 

TMAX Maximum 
temperature in 6

2-M 

TMIN Minimum 
temperature in 6 

2-M 

U GRD U-comp of wind 
[m/s] 

10-M, 850mb, 700mb, 
500mb 

V GRD V-comp of wind 
[m/s] 

10-M, 850mb, 700mb, 
500mb 

HGT Geopotential 
height [gpm] 

1000mb, 850mb, 
700mb, 500mb 

FRZR Categorical 
Freezing Rain 
[1=yes;0=no] 

2-M 

ICEP Categorical Ice 
Pellets 

[1=yes;0=no] 

2-M 

SNOW Categorical 
Snow 

[1=yes;0=no] 

2-M 

RAIN Categorical Rain 
[1=yes;0=no] 

2-M 

PRCP 6h accumulation 
of Total 

precipitation 
[kg/m2] 

2-M 

 
 
longitude, and elevation as predictors into the statistical 
guidance model.  The statistical guidance methods use 
these variables to predict the total 24 hr snowfall 
accumulation.  This methodology is displayed in Figure 
1.  The 11Z-17Z co-op observation, which is 
approximately 7am for observations in the Eastern Time 
Zone, correlates with a 12-36 hr prediction from the 
GEFS.  



 
Figure 1. Process layout for the 12-36hour snow 
accumulation forecast. 

3.  STATISTICAL GUIDANCE METHODS 
 

In order to forecast 24 hr snow accumulation, a 
method must be devised that translates the predicted 
weather variables from the GEFS as well as the latitude, 
longitude, and elevation from the co-op sites into a 24 hr 
snow accumulation forecast.  These are statistical 
guidance or post-processing methods because they are 
used after the model has output its predictions.  Glahn 
and Lowry (1972) developed Model Output Statistics 
(MOS), which determines a statistical relationship 
between a predictand and the variables forecast by a 
numerical model at some projection times.  MOS uses a 
linear regression equation to relate the predicted 
variables to the predictand.  MOS is still the statistical 
technique used in operational forecasting at the NWS to 
predict variables not explicitly forecast in the model.  
Thus, we use linear regression as our baseline method 
for comparison.  We attempt to improve upon MOS by 
capturing non-linear relationships among the predictors 
using an Artificial Neural Network as depicted in Figure 
2.  This simplified diagram shows four predictors fed into 
one hidden layer consisting of five nodes.  These five 
nodes are connected to the output layer, or prediction, 
which is the 24 hr snow accumulation.  The ANN used 
in this study is a feed-forward neural network trained by 
a backpropagation algorithm, also known as a multi-
layer perceptron.  This ANN has a learning rate of 0.3 
and a momentum of 0.2.  The ANN goes through 50 
training cycles to find the optimal model.  The activation 
function is the standard sigmoid function, with the 
predictor values are scaled to range from -1 and +1.  
The type of the output node is linear for numerical 
regression tasks such as snowfall accumulation 
forecasting.  

 
Figure 2. Diagram of an Artificial Neural Network.   

 The linear regression and ANN statistical 
guidance methods were trained on the high resolution 
ensemble member using a ten-fold cross validation.  
After the Root Mean Square Error (RMSE) of the 24 hr 
snowfall accumulation prediction is minimized in the 
cross validation, the statistical guidance models are 
saved.  The linear regression and ANN models are next 
applied to each ensemble member individually to predict 
the 24 hr snow accumulation.   

4.  RESULTS 

To test the deterministic forecast accuracy of the 
statistical guidance methods, the ensemble mean 
consensus forecast is calculated.  This consensus 
forecast is calculated by averaging the 15 individual 
ensemble members.  The Mean Absolute Error (MAE) 
of the consensus forecast is the mean absolute 
difference between the consensus orecast and the 
observation averaged over all 80219 observations.  The 
MAE calculated for the linear regression method is 
0.0328 meters, or 1.29 inches.  The MAE for the ANN 
method is 0.0297 meters, or 1.17 inches.  The ANN not 
only produces a lower MAE for the consensus forecast, 
but also predicts higher snowfall accumulations than the 
linear regression, as shown in Figures 3 and 4.  

 

 

Figure 3.  Linear regression predicted snow 
accumulation versus the observed snow accumulation. 

The ability to predict greater snowfall totals is beneficial 
because larger snow accumulations tend to produce the 
most impact.  Figure 3 plots the linear regression 
predicted snow accumulation versus the observed snow 
accumulation.  From this plot, it is clear that the linear 
regression does not predict snow accumulations greater 
than 0.25m and also predicts negative snowfall values.  
Figure 4 plots the ANN predicted snow accumulation 
versus the observed snow accumulation.  The ANN 
predicts snowfall accumulations as high as 0.6m and 
does not predict negative values like linear regression. 



 

Figure 4. Artificial Neural Network predicted snow 
accumulation versus the observed snow accumulation. 

   
It is also important to evaluate the ensemble 

spread, or the forecast uncertainty, from the statistical 
guidance methods.  One method to display ensemble 
spread is rank histograms.  The rank histogram was 
developed independently by Anderson (1996), Hamill 
and Colucci (1996, 1997), and Talagrand et al. (1997) to 
quantify ensemble dispersion. The rank histograms for 
the linear regression method, Figure 5, and for the ANN 
method, Figure 6, both display under-dispersive 
ensembles.  

 
Figure 5.   Rank histogram for linear regression 
method.  Bins one and nine are significantly higher than 
the rest, indicating the ensemble is under-dispersive. 

This is evidenced by bins one (leftmost) and 16 
(rightmost) having higher tallies than the other bins, 
meaning that the snow accumulation observation 
tended to be less than all of the ensemble member 
forecasts or greater than all of the ensemble member 
forecasts.   These rank histograms show that neither 
method produces a calibrated ensemble, which would 
provide accurate forecast uncertainty information.  

 

Figure 6. Rank histogram for linear regression method.  
Bins one and nine are significantly higher than the rest, 
indicating the ensemble is under-dispersive. 

Another method of examining the ensemble’s 
uncertainty information is through spread-skill 
relationships, which is a measure of the correlation 
between the ensemble spread and the ensemble mean 
error (Whitaker and Loughe 1998).  The ensemble 
spread is calculated by subtracting the lowest snow 
accumulation forecast by an ensemble member from the 
highest snow accumulation forecast by an ensemble 
member.  The ensemble error is the absolute difference 
between the ensemble mean consensus forecast and 
the snow accumulation observation.  A calibrated 
ensemble should show a one-to-one correlation, or 
unity, between the ensemble error and the ensemble 
spread.  For example, if the error of the forecast is 0.1 
m, the ensemble spread should be 0.1 m.  The spread-
skill plots for the linear regression method and the ANN 
method are shown in Figures 7 and 8 respectively.  The 
slope of the best fit line represents the relationship 
between the ensemble error and ensemble spread.  The 
slope of the best fit line of the ANN method is closer to 
one, or unity, than the slope of the best fit line of the 
linear regression method, 0.552 to 0.496 respectively.  
The correlation coefficients for the ANN and linear 
regression methods are 0.344 and 0.217 respectively.  
The larger correlation coefficients for the ANN method 
suggest that it produces better uncertainty estimates.  
These spread-skill relationships show that the ANN 
method better represents the uncertainty in the snow 
accumulation forecasts than the linear regression 
method. 



 

Figure 7. Ensemble error versus ensemble spread for 
the linear regression method.  Blue points represent the 
80219 pairs of ensemble spread and ensemble error.  
The red line is the linear best fit line to the points.  The 
slope of the best fit line, 0.496, represents the 
relationship. 

 

Figure 8. Ensemble error versus ensemble spread for 
the ANN method.  Blue points represent the 80219 pairs 
of ensemble spread and ensemble error.  The red line is 
the linear best fit line to the points.  The slope of the 
best fit line, 0.552, represents the relationship. 

 
5. CONCLUSIONS AND FUTURE WORK 
 

We have tested two statistical guidance methods 
for producing 24 hr snow accumulation forecasts from 
the Global Ensemble Forecast System output.  These 
methods were trained to reduce the error of the control 
ensemble member and then applied to each ensemble 
member individually.  Averaging these individual 
ensemble members into a single consensus forecast 
produces a deterministic snow accumulation forecast.  
The spread, or the difference between the highest and 
lowest ensemble member forecasts, represents the 
uncertainty in the forecast.  The linear regression 
method is used as our baseline since it is the closest 
method to the National Weather Service standard 
operational statistical guidance method, Model Output 
Statistics.  The ANN method attempts to improve upon 
linear regression because it can model non-linear 
relationships between predictors. 

The results indicate that the ANN statistical 
guidance method of predicting 24 hr snow accumulation 
provides somewhat more accurate deterministic 
forecasts than the linear regression method.  The ANN 
method also has a spread-error correlation closer to the 
ideal 1-1 ratio than the linear regression method, 
indicating that the ANN method produces better forecast 
uncertainty estimates.  The rank histograms show that 
both methods produce under-dispersive ensemble; 
however, Marzban et al (2010) has shown that U-

shaped rank histograms may not be due to under-
dispersive ensembles but a result of correlations among 
ensemble members.  Rotated Q-Q plots will be included 
in future work to further test the ensemble reliability.  
The next step is to improve the calibration of the 
ensemble in order to provide more accurate forecast 
uncertainty information.  Future work will also test the 
snowfall predictions on longer lead times, specifically at 
a lead time of 36 hours that corresponds to winter 
weather watches issued by the NWS.  Future work will 
also test other statistical guidance methods of 
forecasting snow accumulation, including random 
forests and Bayesian approaches. 
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