
1. INTRODUCTION

 Within the NOAA Earth System Research
Laboratory (ESRL), the Global Systems Division
(GSD) develops weather information systems,
weather forecast models, and other applications
in support of the National Weather Service, the
Federal Aviation Administration, and other
agencies. Well-known GSD products include the
Rapid Update Cycle (RUC) model, the Local
Analysis and Prediction System (LAPS), the
Meteorological Assimilation Data Ingest System
(MADIS), and Science On a Sphere® (SOS). A
common feature of these and other projects is
that they require observational and model data
provided by acquisition systems running within
GSD’s Central Facility. These systems handle
some 800 GBytes of incoming data per day as
they acquire, decode, store, and distribute the
needed data sets for GSD scientists and their
collaborators.

 To substantially improve its data systems,
GSD recently commissioned a six-host cluster.
This new Linux-based system replaces a
collection of aging Linux High-Availability (HA)
pairs and stand-alone platforms to provide much
needed scalability and throughput performance,
as well as excellent reliability, resource utilization
and configurability.

 In this paper, we detail the implementation of
the cluster architecture, describing how the
combined services of Red Hat Cluster Suite, Sun
Grid Engine (SGE), fcron, and Unidata's Local

Data Manager (LDM) have enabled us to
construct a high performance real-time data
processing environment that serves the GSD
community. Given the central role of LDM in the
architecture, we particularly focus on the how
LDM provides cluster services for data transport,
and on the use of event notifications in LDM.

2. LIMITATIONS OF THE HA ARCHITECTURE

 While GSD's HA pairs have operated
successfully for a number of years
(Lipschutz and MacDermaid, 2005), and provided
robust availability through their automated fail-
over mechanism, a major drawback has been the
need for two machines, one of which is mostly
idle, to support a single processing configuration.
Thus, system expansion or refreshment
necessitated acquiring and supporting two new
hosts at a time, adding to systems administration
effort, power and cooling burden, and cost. In
addition, while several HA pairs initially may have
shared common system configurations, the
individual nature of the systems resulted in drift in
the configurations over time that became
problematic to maintain.

 At the application level, needing to individually
configure each host's functionality was tedious. It
often forced choices for where to locate
processing based on where prerequisite data
existed, rather than where system resources were
available. This resulted in both unbalanced
processing loads and more complicated data
flows. Further, limited local disk space on the HA
systems hampered processing of the ever larger
data sets that need to be processed.
Documenting the processing for a data set and

A HIGH PERFORMANCE LDM DATA CLUSTER

Robert C. Lipschutz, David Hagerty*, Paul Hamer, Peter Lannigan*, and Chris MacDermaid
Cooperative Institute for Research in the Atmosphere (CIRA)
Colorado State University, Fort Collins, Colorado USA, and

NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado USA

*NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado USA
 Contract with Riverside Technology, Inc., Fort Collins, Colorado USA

55

Corresponding author address: Bob Lipschutz,
NOAA/ESRL/GSD, R/GSD2, 325 Broadway, Boulder,
CO 80305. Robert.C.Lipschutz@noaa.gov

troubleshooting data outages was complicated by
the need to identify the specific platforms where
processing elements were performed.

3. GOALS FOR THE CLUSTER

 In planning for the cluster, the intent was to
address the HA systems' limitations with these
benefits:

• Scalability – processing capacity can be
added one machine at a time.

• Throughput – load balancing mechanisms
allow for much greater aggregate throughput
than was achieved on hand-configured
systems. Of course, throughput also improves
using newer, multicore processors and faster
networking and storage devices.

• Utilization – cluster hosts are more
effectively used than HA pairs in that half the
hosts are not virtually idle backups. Rather, all
cluster nodes are active, and load balancing
methods ensure that jobs are distributed
sensibly. In addition, the cluster’s shared
storage arrangement provides space to all
cluster applications, whereas in the HA
architecture, spare local disk space on one
host is unavailable to another host that might
need space.

• Maintainability – cluster hosts share a
common system configuration, substantially
simplifying ongoing system administration.
Host reboots and failovers for patching also
are easier than with the HA arrangement. On
the application side, multiple configurations
are replaced by a single, common set of
configuration files. In addition to reducing the
number of files to maintain, this also
eliminates duplicate configuration items
across hosts.

• Supportability – application data and log
files reside on the shared storage, eliminating
the need to know which specific host ran a
job.

• Energy efficiency – higher efficiency in CPU
utilization means less heat generation, and so
lower cooling requirements compared to the
HA computing infrastructure.

 In addition to these general goals, we strongly
desired to retain as much as possible of our long-
established application software, thus minimizing
code and configuration changes. We further
recognized a continuing need, well served by the
HA pairs, to be able to split onto separate
platforms such high volume data streams as
those from the NWS Satellite Broadcast Network
(SBN - NOAAPORT) and the WSR-88D Level-II
radars, and thereby use independent processing
resources to minimize resource contention.

4. SOFTWARE COMPONENTS

 To achieve our goals, we implemented the
cluster with these software components:

• the CentOS Enterprise Linux operating
system,

• the Red Hat Cluster Suite for cluster-wide
application services and failovers,

• Sun Grid Engine (SGE) for job activation
and load balancing,

• fcron for cluster-wide time-based job
triggering,

• Unidata's Local Data Manager (LDM) for
data transport and event-based job triggering,
and

• Open-E storage software for controlling the
shared (via NFS) Data Storage Server (DSS)
RAID disk system.

 Within this framework, GSD's Object Data
System (ODS) applications (Hamer, 2005) are
responsible for such data processing tasks as
converting GOES Variable (GVAR) satellite data,
Gridded Binary (GRIB) model data, WSR-88D
Level-II radar data, and a variety of point
observation data types into the netCDF formats

needed by GSD user applications. Only minimal
changes to the existing ODS software were
needed to accommodate the cluster's
architecture. In addition, two new scripts were
developed to provide common methods for
submitting jobs to the SGE job queue from LDM
(pqact) and fcron, while several old scripts were
extended to include a cluster-wide locking
mechanism to avoid concurrent instances of some
jobs. Modifications to LDM scripts were also
needed, as described in Section 5.4.

5. LDM ON THE CLUSTER

 LDM has long served as the key middleware
in GSD for real-time data transport and event-
driven data processing services. In preserving the
same LDM data processing capabilities used on
the HA systems, the cluster architecture
compartmentalizes data streams that deserve to
be separated, but also shares across hosts the
data and processing that can be accommodated
on any host. To accomplish this, we differentiate
data flow services from event handling based on
data arrival “notification” messages.

5.1 LDM and ODS

 In a manner similar to pqact, ODS client
applications process desired data messages by
attaching directly to the LDM data queue. For
example, the LdmGrib2Flat client captures GRIB
records in the NOAAPORT stream. The client
writes the data into forecast-hour GRIB files that it
opens in dynamically determined directories using
the center, sub-center, model, and grid
parameters found within the GRIB. Likewise, the
ODS LdmPoint2Tar client writes selected point
data messages into hourly tar files by data type,
and LdmNexrad2TarGZ streams Level-II WSR-
88D data into gzipped tar files by volume scan
time for each radar station.

 On completion of a GRIB file, LdmGrib2Flat
emits a uniquely identified data arrival notification
message indicating the location on disk of the
newly available file (Fig. 1). For each GRIB file
that requires subsequent processing, the
associated notification identifier is specified in a

pqact configuration, along with the command to
be run. Given a desired notification, pqact pipes
the notification message to a script,
qsubOnTextNty.pl that extracts the GRIB file's
path and then submits the specified command to
the SGE job queue for execution. For instance,
the ODS Grib2NetCDF application may be run to
convert a GFS model GRIB file to netCDF format.

 Point data tar files can be subsequently read
by the Point2NetCDF program to decode the raw
data and create netCDF files, for example
containing METAR or maritime observations.
These jobs, typically run on a schedule, are
submitted to the SGE queue by fcron using the
script qsubCmd.pl.

 The key extension to ODS for the cluster was
to enable specification of separate LDM queues
for data services and notifications. Thus, the ODS
clients process data from an ingest queue and
insert notification messages into a local
notification queue.

Figure 1. A sample ODS data arrival notification
message.

5.2 LDM Data Services

 To independently handle various incoming
and outgoing data streams, a number of LDM
instances are configured under Cluster Suite to
run as relocatable cluster services. These
services are normally set to run on different hosts,
but two or more can also run concurrently on a

single host, if necessary in a failover situation.
The specific hosts on which each service may run
is determined within the cluster by defining
Failover Domains, configured based on a desire
to reasonably balance data volume across the
cluster.

 After considering the known data flows
targeted for the cluster, we established the
following five LDM services:

ldm-noaaport – ingest service for all
NOAAPORT data

ldm-radar – ingest service for WSR-88D
Level-II and WSI NOWrad radar data

ldm-other – ingest service for GOES GVAR
and miscellaneous data types

ldm-outbound – distribution service for
sending cluster data to other GSD hosts

ldm-fdr – Facility Data Repository service for
saving data to GSD’s Mass Store System.

 A non-LDM sixth service, MainIP, establishes
the cluster's canonical IP address and runs the
single fcron daemon instance.

 Each LDM service establishes a unique IP
address in addition to its own queue, pid, and log
files, enabling multiple rpc.ldmd services to
coexist on a host. Thus, an external LDM may
request data from the ldm-outbound service
without knowing the particular host it happens to
be on.

 As an LDM ingest service receives data, its
associated pqact and ODS client processes are
responsible for writing the data to the shared
storage. On successful completion of data files,
the various data writing methods then emit
notification messages to signal the events. And,
rather than inserting the notifications back into
their own service queues, the writers instead put
the notification messages into a local “Notify LDM”
queue.

5.3 The Notify LDM and SGE

 The Notify LDM (ldm-notify) operates
independently on all the cluster hosts to initiate
processing on receipt of data arrival notification
messages. These Notify LDM instances start up
at host boot time using the local host IP address
and identical ldmd.conf and pqact.conf
configuration files on each host. While processing
for many files simply entails copying from the
shared storage to GSD’s public file server, some
files require additional format conversion, image
remapping, or other post-processing. After each
processing step, a new notification message is
inserted into the Notify queue to provide a trigger
for yet another step.

 The key to the cluster's load-balancing
architecture is this: rather than simply running
jobs on the host on which a notification was
emitted, jobs are submitted to SGE, which finds
the least loaded host for the job. Since data files
on the shared storage are visible to each host,
and Notify LDM is configured identically on all
hosts, processing is thus dynamically distributed
across the cluster members. If a member leaves
the cluster, say for OS patching, the remaining
hosts pick up the work that would have been
assigned by SGE to the missing host.

5.4 LDM Scripting and Configuration

 To manage the data service and Notify LDM
instances in a shared environment, several
accommodations were needed.

 First, we established each instance's home
path on shared storage as /usr/local/ldm/ldm-
<instance>, where instance is noaaport, radar,
other, outbound, fdr, or notify. Since the data
services only run on one host at a time, the
ldmd.pid file for each service instance lives in its
instance home. Similarly, the ldmadmin-pl.conf,
ldmd.conf, and pqact.conf files reside in ./etc
directories under their respective home paths and
can be managed from any cluster host; log files
reside under ./log, and are visible from any host,
as well. In contrast, to run independently on all
hosts, the Notify LDMs require their ldmd.pid,

pqact.conf, and ldmd.log files to reside locally on
each host. Thus, the Notify ldmd.pid files are
written to the local path /var/run/ldm, while the
Notify pqact.conf files reside under /var/ldm/etc to
accommodate unique pqact 'state' files on each
host, and ldmd.log files are written into local
/var/ldm/log directories.

 To control the LDM instances, we extended
the standard ldmadmin perl script. The modified
ldmadmin looks for a shell environment variable,
LDMINSTANCE that determines the path for the
associated ldmadmin-pl.conf, which in turn sets
the various instance-specific LDM parameters;
without a valid LDMINSTANCE, ldmadmin exits
with an error message. We further facilitated the
use of instances by developing a new script,
ldmadmin-wrapper, to which we linked ldmadmin-
<instance> files. In addition to ensuring that the
instance environment variable is correctly set, this
cluster-aware wrapper also prevents inappropriate
commands from being run. In particular, because
the data service instances may only be started
and stopped by the Cluster Resource Manager to
ensure cluster consistency, ldmadmin-wrapper
restricts which options may be run from the
command line. Thus, 'ldmadmin-noaaport start'
will exit with a message listing the valid options
that may be run (e.g., pqactHUP); 'ldmadmin-
noaaport watch' on the NOAAPORT ingest
service host is valid and will display incoming
message information, while on a different host it
will simply indicate on which host that service is
located and then exit.

 We also needed to accommodate starting and
stopping the LDM instances by automated
methods. Specifically, the Cluster Resource
Manager is responsible for data service activation,
while the Notify LDM is activated at host boot
time. To provide that function, we implemented an
LDM resource script, /etc/init.d/ldm, again linked
by instance versions (e.g., ldm-noaaport), to
cleanly start and stop LDM instances with the
correct environment. Whereas a typical LDM
resource script will check for a viable LDM queue
and repair it if necessary, the cluster's version
extends that concept by mounting a new tmpfs
partition at startup and creating a new in-memory

queue for the instance; similarly, stopping a
service will unmount the partition. Using tmpfs for
the queue ensures the highest possible
throughput, and guarantees that an LDM queue is
not corrupted on failover or reboot.

 Finally, another ldmadmin modification forces
each LDM instance to write to a specific log file,
thereby overriding LDM's default syslogd logging
method. This strategy avoids the problems that
would arise from trying to handle cluster-wide
logging through the host-based syslogd facility. It
also eliminates needing to build and maintain
separate instances of LDM to support
independent logging. Because LDM does not
presently have a method for closing physical log
files (short of restarting), we also extended LDM's
newlog utility to “zero out” the currently open log
file after rotating the previous logs down by one
version number.

6. LOGICAL FLOW

 While there are numerous scenarios for
processing the many types of data handled by the
cluster, the following steps describe a typical flow,
as depicted in Figure 2:

• On system startup, ldm-notify is started on
all cluster hosts.

• The ldm-noaaport service is started by
Cluster Manager on dc01 and begins
receiving NOAAPORT data from its upstream
source; meanwhile, the ldm-outbound service
starts on dc03 and accepts connection
requests from external clients.

• The LdmGrib2Flat client on dc01 reads from
the ldm-noaaport queue and writes GRIB data
into shared directories under
/data/grib/noaaport.

• On completion of a GRIB data file,
LdmGrib2Flat inserts an
LdmGrib2Flat_NOAAPORT notification into
the local ldm-notify queue.

• pqact on dc01 identifies the notification

message as one that requires a Grib2NetCDF
action, and submits the configured job into the
SGE queue.

• SGE finds the least loaded host in its list of
available cluster hosts, and runs the
Grib2NetCDF job on that host, say dc02.

• Grib2NetCDF on dc02 reads the specified
GRIB file and creates a NetCDF file in the
configured directory under /tmp_data/grids.
When finished, Grib2NetCDF inserts a
notification message into the local ldm-notify
queue on dc02.

• pqact on dc02 identifies the notification
message as one that requires a
moveTmpDataFiles action to copy the file
from the /tmp_data/grids location to the
desired public server location, and so submits
the configured job to SGE.

• moveTmpDataFiles is started by SGE on
the least-loaded node, and on completion
inserts a new notification message in the ldm-
notify queue on that node.

• If necessary, another job may then be
activated on the cluster, for example to send
the netCDF file into the ldm-outbound queue
for delivery to an external client.

 As the activity driven by the data services
proceeds, many time-based ingest actions,
particularly ftp fetch jobs, are initiated by the fcron
service. Like pqact jobs, the fcron jobs are also
submitted to SGE, and so distributed evenly
across the cluster. In addition to acquisition tasks,
fcron jobs also perform many housekeeping tasks
such as file purging and monitoring. Job activity
on the cluster is monitored by the SGE qstat utility
(Fig. 3).

7. CONCLUDING REMARKS

 The cluster system now operating in GSD’s
Central Facility establishes a reliable, capable,
and scalable new architecture for meeting
substantial and ever-growing data ingest and
processing requirements. While the learning curve
traversed to successfully implement this system
was relatively steep and, at times, arduous, the
resulting system has been well worth the effort.

Figure 2. Cluster logical flow.

 Currently, nearly 200 pqact entries are
configured to handle specific data arrival events,
and fcron manages some 230 different time-
based jobs. Driven by the data flow and the work
to be performed, we are presently logging over
160,000 jobs submitted to the cluster’s SGE
queue each day. We expect these numbers to
grow as new requirements are added by our GSD
data consumers.

8. REFERENCES

Hamer, P. (2005), FSL Central Facility data
systems concepts, presented at 21st Int.
Conf. on Interactive Information and
Processing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, American
Meteorological Society, San Diego, CA, 2005.

Lipschutz, R. and C. MacDermaid (2005), Recent
advances in the FSL Central Facility data
systems, presented at 21st Int. Conf. on
Interactive Information and Processing
Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, American
Meteorological Society, San Diego, CA, 2005.

Figure 3. SGE ‘qstat’ output showing jobs distributed across the six cluster hosts based on
system load. Job names (column 3) are descriptive of the work being done.

