
1. INTRODUCTION 

  Within the NOAA Earth System Research 
Laboratory (ESRL), the Global Systems Division 
(GSD) develops weather information systems, 
weather forecast models, and other applications 
in support of the National Weather Service, the 
Federal Aviation Administration, and other 
agencies. Well-known GSD products include the 
Rapid Update Cycle (RUC) model, the Local 
Analysis and Prediction System (LAPS), the 
Meteorological Assimilation Data Ingest System 
(MADIS), and Science On a Sphere® (SOS). A 
common feature of these and other projects is 
that they require observational and model data 
provided by acquisition systems running within 
GSD’s Central Facility. These systems handle 
some 800 GBytes of incoming data per day as 
they acquire, decode, store, and distribute the 
needed data sets for GSD scientists and their 
collaborators.  

 To substantially improve its data systems, 
GSD recently commissioned a six-host cluster. 
This new Linux-based system replaces a 
collection of aging Linux High-Availability (HA) 
pairs and stand-alone platforms to provide much 
needed scalability and throughput performance, 
as well as excellent reliability, resource utilization 
and configurability. 

 In this paper, we detail the implementation of 
the cluster architecture, describing how the 
combined services of Red Hat Cluster Suite, Sun 
Grid Engine (SGE), fcron, and Unidata's Local 

Data Manager (LDM) have enabled us to 
construct a high performance real-time data 
processing environment that serves the GSD 
community. Given the central role of LDM in the 
architecture, we particularly focus on the how 
LDM provides cluster services for data transport, 
and on the use of event notifications in LDM. 

2. LIMITATIONS OF THE HA ARCHITECTURE 

 While GSD's HA pairs have operated 
successfully for a number of years 
(Lipschutz and MacDermaid, 2005), and provided 
robust availability through their automated fail-
over mechanism, a major drawback has been the 
need for two machines, one of which is mostly 
idle, to support a single processing configuration. 
Thus, system expansion or refreshment 
necessitated acquiring and supporting two new 
hosts at a time, adding to systems administration 
effort, power and cooling burden, and cost. In 
addition, while several HA pairs initially may have 
shared common system configurations, the 
individual nature of the systems resulted in drift in 
the configurations over time that became 
problematic to maintain.  

 At the application level, needing to individually 
configure each host's functionality was tedious. It 
often forced choices for where to locate 
processing based on where prerequisite data 
existed, rather than where system resources were 
available. This resulted in both unbalanced 
processing loads and more complicated data 
flows. Further, limited local disk space on the HA 
systems hampered processing of the ever larger 
data sets that need to be processed. 
Documenting the processing for a data set and 
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troubleshooting data outages was complicated by 
the need to identify the specific platforms where 
processing elements were performed.  

3.  GOALS FOR THE CLUSTER  

 In planning for the cluster, the intent was to 
address the HA systems' limitations with these 
benefits:  

• Scalability – processing capacity can be 
added one machine at a time. 

• Throughput – load balancing mechanisms 
allow for much greater aggregate throughput 
than was achieved on hand-configured 
systems. Of course, throughput also improves 
using newer, multicore processors and faster 
networking and storage devices. 

• Utilization – cluster hosts are more 
effectively used than HA pairs in that half the 
hosts are not virtually idle backups. Rather, all 
cluster nodes are active, and load balancing 
methods ensure that jobs are distributed 
sensibly. In addition, the cluster’s shared 
storage arrangement provides space to all 
cluster applications, whereas in the HA 
architecture, spare local disk space on one 
host is unavailable to another host that might 
need space.  

• Maintainability – cluster hosts share a 
common system configuration, substantially 
simplifying ongoing system administration. 
Host reboots and failovers for patching also 
are easier than with the HA arrangement. On 
the application side, multiple configurations 
are replaced by a single, common set of 
configuration files. In addition to reducing the 
number of files to maintain, this also 
eliminates duplicate configuration items 
across hosts.  

• Supportability – application data and log 
files reside on the shared storage, eliminating 
the need to know which specific host ran a 
job.  

• Energy efficiency – higher efficiency in CPU 
utilization means less heat generation, and so 
lower cooling requirements compared to the 
HA computing infrastructure.   

 In addition to these general goals, we strongly 
desired to retain as much as possible of our long-
established application software, thus minimizing 
code and configuration changes. We further 
recognized a continuing need, well served by the 
HA pairs, to be able to split onto separate 
platforms such high volume data streams as 
those from the NWS Satellite Broadcast Network 
(SBN - NOAAPORT) and the WSR-88D Level-II 
radars, and thereby use independent processing 
resources to minimize resource contention. 

4. SOFTWARE COMPONENTS 

 To achieve our goals, we implemented the 
cluster with these software components: 

• the CentOS Enterprise Linux operating 
system, 

• the Red Hat Cluster Suite for cluster-wide 
application services and failovers,  

• Sun Grid Engine (SGE) for job activation 
and load balancing,  

• fcron for cluster-wide time-based job 
triggering,   

• Unidata's Local Data Manager (LDM) for 
data transport and event-based job triggering, 
and 

• Open-E storage software for controlling the 
shared (via NFS) Data Storage Server (DSS) 
RAID disk system. 

 Within this framework, GSD's Object Data 
System (ODS) applications (Hamer, 2005) are 
responsible for such data processing tasks as 
converting GOES Variable (GVAR) satellite data, 
Gridded Binary (GRIB) model data, WSR-88D 
Level-II radar data, and a variety of point 
observation data types into the netCDF formats 



needed by GSD user applications. Only minimal 
changes to the existing ODS software were 
needed to accommodate the cluster's 
architecture. In addition, two new scripts were 
developed to provide common methods for 
submitting jobs to the SGE job queue from LDM 
(pqact) and fcron, while several old scripts were 
extended to include a cluster-wide locking 
mechanism to avoid concurrent instances of some 
jobs. Modifications to LDM scripts were also 
needed, as described in Section 5.4. 

5. LDM ON THE CLUSTER 

 LDM has long served as the key middleware 
in GSD for real-time data transport and event-
driven data processing services. In preserving the 
same LDM data processing capabilities used on 
the HA systems, the cluster architecture 
compartmentalizes data streams that deserve to 
be separated, but also shares across hosts the 
data and processing that can be accommodated 
on any host. To accomplish this, we differentiate 
data flow services from event handling based on 
data arrival “notification” messages. 

5.1 LDM and ODS 

 In a manner similar to pqact, ODS client 
applications process desired data messages by 
attaching directly to the LDM data queue. For 
example, the LdmGrib2Flat client captures GRIB 
records in the NOAAPORT stream. The client 
writes the data into forecast-hour GRIB files that it 
opens in dynamically determined directories using 
the center, sub-center, model, and grid 
parameters found within the GRIB. Likewise, the 
ODS LdmPoint2Tar client writes selected point 
data messages into hourly tar files by data type, 
and LdmNexrad2TarGZ streams Level-II WSR-
88D data into gzipped tar files by volume scan 
time for each radar station. 

 On completion of a GRIB file, LdmGrib2Flat 
emits a uniquely identified data arrival notification 
message indicating the location on disk of the 
newly available file (Fig. 1). For each GRIB file 
that requires subsequent processing, the 
associated notification identifier is specified in a 

pqact configuration, along with the command to 
be run. Given a desired notification, pqact pipes 
the notification message to a script, 
qsubOnTextNty.pl that extracts the GRIB file's 
path and then submits the specified command to 
the SGE job queue for execution. For instance, 
the ODS Grib2NetCDF application may be run to 
convert a GFS model GRIB file to netCDF format. 

 Point data tar files can be subsequently read 
by the Point2NetCDF program to decode the raw 
data and create netCDF files, for example 
containing METAR or maritime observations. 
These jobs, typically run on a schedule, are 
submitted to the SGE queue by fcron using the 
script qsubCmd.pl. 

 The key extension to ODS for the cluster was 
to enable specification of separate LDM queues 
for data services and notifications. Thus, the ODS 
clients process data from an ingest queue and 
insert notification messages into a local 
notification queue. 

  

Figure 1. A sample ODS data arrival notification 
message. 

 

5.2  LDM Data Services 

 To independently handle various incoming 
and outgoing data streams, a number of LDM 
instances are configured under Cluster Suite to 
run as relocatable cluster services. These 
services are normally set to run on different hosts, 
but two or more can also run concurrently on a 



single host, if necessary in a failover situation. 
The specific hosts on which each service may run 
is determined within the cluster by defining 
Failover Domains, configured based on a desire 
to reasonably balance data volume across the 
cluster. 

 After considering the known data flows 
targeted for the cluster, we established the 
following five LDM services: 

ldm-noaaport – ingest service for all 
NOAAPORT data 

ldm-radar – ingest service for WSR-88D 
Level-II and WSI NOWrad radar data 

ldm-other – ingest service for GOES GVAR 
and miscellaneous data types 

ldm-outbound – distribution service for 
sending cluster data to other GSD hosts 

ldm-fdr – Facility Data Repository service for 
saving data to GSD’s Mass Store System. 

 A non-LDM sixth service, MainIP, establishes 
the cluster's canonical IP address and runs the 
single fcron daemon instance. 

 Each LDM service establishes a unique IP 
address in addition to its own queue, pid, and log 
files, enabling multiple rpc.ldmd services to 
coexist on a host. Thus, an external LDM may 
request data from the ldm-outbound service 
without knowing the particular host it happens to 
be on.  

 As an LDM ingest service receives data, its 
associated pqact and ODS client processes are 
responsible for writing the data to the shared 
storage. On successful completion of data files, 
the various data writing methods then emit 
notification messages to signal the events. And, 
rather than inserting the notifications back into 
their own service queues, the writers instead put 
the notification messages into a local “Notify LDM” 
queue.  

 

5.3  The Notify LDM and SGE 

 The Notify LDM (ldm-notify) operates 
independently on all the cluster hosts to initiate 
processing on receipt of data arrival notification 
messages. These Notify LDM instances start up 
at host boot time using the local host IP address 
and identical ldmd.conf and pqact.conf 
configuration files on each host. While processing 
for many files simply entails copying from the 
shared storage to GSD’s public file server, some 
files require additional format conversion, image 
remapping, or other post-processing. After each 
processing step, a new notification message is 
inserted into the Notify queue to provide a trigger 
for yet another step. 

 The key to the cluster's load-balancing 
architecture is this: rather than simply running 
jobs on the host on which a notification was 
emitted, jobs are submitted to SGE, which finds 
the least loaded host for the job. Since data files 
on the shared storage are visible to each host, 
and Notify LDM is configured identically on all 
hosts, processing is thus dynamically distributed 
across the cluster members. If a member leaves 
the cluster, say for OS patching, the remaining 
hosts pick up the work that would have been 
assigned by SGE to the missing host. 

5.4  LDM Scripting and Configuration 

 To manage the data service and Notify LDM 
instances in a shared environment, several 
accommodations were needed.  

 First, we established each instance's home 
path on shared storage as /usr/local/ldm/ldm-
<instance>, where instance is noaaport, radar, 
other, outbound, fdr, or notify. Since the data 
services only run on one host at a time, the 
ldmd.pid file for each service instance lives in its 
instance home. Similarly, the ldmadmin-pl.conf, 
ldmd.conf, and pqact.conf files reside in ./etc 
directories under their respective home paths and 
can be managed from any cluster host; log files 
reside under ./log, and are visible from any host, 
as well. In contrast, to run independently on all 
hosts, the Notify LDMs require their ldmd.pid, 



pqact.conf, and ldmd.log files to reside locally on 
each host. Thus, the Notify ldmd.pid files are 
written to the local path /var/run/ldm, while the 
Notify pqact.conf files reside under /var/ldm/etc to 
accommodate unique pqact 'state' files on each 
host, and ldmd.log files are written into local 
/var/ldm/log directories. 

 To control the LDM instances, we extended 
the standard ldmadmin perl script. The modified 
ldmadmin looks for a shell environment variable, 
LDMINSTANCE that determines the path for the 
associated ldmadmin-pl.conf, which in turn sets 
the various instance-specific LDM parameters; 
without a valid LDMINSTANCE, ldmadmin exits 
with an error message. We further facilitated the 
use of instances by developing a new script, 
ldmadmin-wrapper, to which we linked ldmadmin-
<instance> files. In addition to ensuring that the 
instance environment variable is correctly set, this 
cluster-aware wrapper also prevents inappropriate 
commands from being run. In particular, because 
the data service instances may only be started 
and stopped by the Cluster Resource Manager to 
ensure cluster consistency, ldmadmin-wrapper 
restricts which options may be run from the 
command line. Thus, 'ldmadmin-noaaport start' 
will exit with a message listing the valid options 
that may be run (e.g., pqactHUP); 'ldmadmin-
noaaport watch' on the NOAAPORT ingest 
service host is valid and will display incoming 
message information, while on a different host it 
will simply indicate on which host that service is 
located and then exit. 

 We also needed to accommodate starting and 
stopping the LDM instances by automated 
methods.  Specifically, the Cluster Resource 
Manager is responsible for data service activation, 
while the Notify LDM is activated at host boot 
time. To provide that function, we implemented an 
LDM resource script, /etc/init.d/ldm, again linked 
by instance versions (e.g., ldm-noaaport), to 
cleanly start and stop LDM instances with the 
correct environment. Whereas a typical LDM 
resource script will check for a viable LDM queue 
and repair it if necessary, the cluster's version 
extends that concept by mounting a new tmpfs 
partition at startup and creating a new in-memory 

queue for the instance; similarly, stopping a 
service will unmount the partition. Using tmpfs for 
the queue ensures the highest possible 
throughput, and guarantees that an LDM queue is 
not corrupted on failover or reboot. 

 Finally, another ldmadmin modification forces 
each LDM instance to write to a specific log file, 
thereby overriding LDM's default syslogd logging 
method. This strategy avoids the problems that 
would arise from trying to handle cluster-wide 
logging through the host-based syslogd facility. It 
also eliminates needing to build and maintain 
separate instances of LDM to support 
independent logging. Because LDM does not 
presently have a method for closing physical log 
files (short of restarting), we also extended LDM's 
newlog utility to “zero out” the currently open log 
file after rotating the previous logs down by one 
version number. 

6. LOGICAL FLOW 

 While there are numerous scenarios for 
processing the many types of data handled by the 
cluster, the following steps describe a typical flow, 
as depicted in Figure 2: 

• On system startup, ldm-notify is started on 
all cluster hosts. 

• The ldm-noaaport service is started by 
Cluster Manager on dc01 and begins 
receiving NOAAPORT data from its upstream 
source; meanwhile, the ldm-outbound service 
starts on dc03 and accepts connection 
requests from external clients. 

• The LdmGrib2Flat client on dc01 reads from 
the ldm-noaaport queue and writes GRIB data 
into shared directories under 
/data/grib/noaaport. 

• On completion of a GRIB data file, 
LdmGrib2Flat inserts an 
LdmGrib2Flat_NOAAPORT notification into 
the local ldm-notify queue. 

• pqact on dc01 identifies the notification 



message as one that requires a Grib2NetCDF 
action, and submits the configured job into the 
SGE queue. 

• SGE finds the least loaded host in its list of 
available cluster hosts, and runs the 
Grib2NetCDF job on that host, say dc02. 

• Grib2NetCDF on dc02 reads the specified 
GRIB file and creates a NetCDF file in the 
configured directory under /tmp_data/grids. 
When finished, Grib2NetCDF inserts a 
notification message into the local ldm-notify 
queue on dc02. 

• pqact on dc02 identifies the notification 
message as one that requires a 
moveTmpDataFiles action to copy the file 
from the /tmp_data/grids location to the 
desired public server location, and so submits 
the configured job to SGE. 

• moveTmpDataFiles is started by SGE on 
the least-loaded node, and on completion 
inserts a new notification message in the ldm-
notify queue on that node. 

• If necessary, another job may then be 
activated on the cluster, for example to send 
the netCDF file into the ldm-outbound queue 
for delivery to an external client.  

 As the activity driven by the data services 
proceeds, many time-based ingest actions, 
particularly ftp fetch jobs, are initiated by the fcron 
service. Like pqact jobs, the fcron jobs are also 
submitted to SGE, and so distributed evenly 
across the cluster. In addition to acquisition tasks, 
fcron jobs also perform many housekeeping tasks 
such as file purging and monitoring. Job activity 
on the cluster is monitored by the SGE qstat utility 
(Fig. 3). 

7. CONCLUDING REMARKS 

 The cluster system now operating in GSD’s 
Central Facility establishes a reliable, capable, 
and scalable new architecture for meeting 
substantial and ever-growing data ingest and 
processing requirements. While the learning curve 
traversed to successfully implement this system 
was relatively steep and, at times, arduous, the 
resulting system has been well worth the effort. 

Figure 2. Cluster logical flow. 



 Currently, nearly 200 pqact entries are 
configured to handle specific data arrival events, 
and fcron manages some 230 different time-
based jobs. Driven by the data flow and the work 
to be performed, we are presently logging over 
160,000 jobs submitted to the cluster’s SGE 
queue each day. We expect these numbers to 
grow as new requirements are added by our GSD 
data consumers. 
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Figure 3. SGE ‘qstat’ output showing jobs distributed across the six cluster hosts based on 
system load. Job names (column 3) are descriptive of the work being done. 


