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1.  INTRODUCTION 

 
Numerical weather forecast models typically use 
three- or four-dimensional variational techniques 
(3-D or 4-DVAR) for data assimilation and model 
initialization.  These and other traditional 
assimilation methods rely on error description to 
appropriately weight the observation in the 
analysis.  Analyses provide an objective means 
to view the atmospheric state and initialize 
numerical forecast models.  Such models are 
commonly used in operational meteorology for 
weather forecast guidance, as a definitive 
historical record of past meteorology, and a 
means to test new atmospheric models under 
“controlled conditions.”  Analyses are also used 
for climate research to study long-term trends 
and augment the climate record (Li et al. 2008; 
Seo et al. 2005). 
 
Data assimilation methods typically assume that 
the distribution of observation and model errors 
are Gaussian and unbiased.  This may not be 
true for all parameters under all circumstances, 
but until recently our ability to independently 
verify this assumption has been very limited.  
This is especially true of water vapor in the free 
atmosphere, which varies greatly in time and 
space.  Since water vapor is central to almost all 
significant weather events and plays a critical 
role in climate processes, improved 
understanding of this parameter is critical for 
improving weather forecast accuracy and 
predicting changes in the Earth’s climate.  As a 
consequence, both weather forecasting and 
climatology are disciplines that stand to benefit 
greatly by identifying and correcting systematic 
moisture errors in observations, analyses, and 
models.  For example, better understanding of 
                                                                             

                                                                             
                                                                             
the hydrologic cycle in General Circulation 
Models (GCMs), and the role water vapor plays 
in satellite cloud observations is increasingly 
relevant in climate work (Roebeling et al. 2009).   
Recent research at NOAA’s Earth System 
Research Laboratory’s (ESRL)’s Global 
Systems Division detects clear evidence of 
systematic errors in the analysis and prediction 
of atmospheric column total precipitable water 
(TPW) vapor in operational Numerical Weather 
Prediction (NWP) models over the continental 
U.S. Systematic errors in Geostationary 
Operational Environmental Satellite (GOES)  
water vapor products that may be related to 
these model errors have also been detected.  
This paper describes how these errors were 
discovered and how they appear to propagate 
with time. 
 
2. LAPS AND THE ASSIMILATION OF SAT-

ELLITE DATA 

 
During the 1980s, NOAA’s Forecast Systems 
Laboratory (FSL); now the Global Systems 
Division (GSD) within ESRL conducted forecast 
exercises to test its workstation prototypes.  
Forecasters were burdened with the nearly 
impossible task of reviewing all national, 
regional and local, real-time, nonstop incoming 
data, made possible through new technologies, 
while forecast production schedules remained 
unchanged.  Forecasters simply received too 
much data to be able to monitor all the 
conventional, new data, and meet their forecast 
obligations.   In spite of advanced display 
technologies, this ever increasing data stream, 
often likened to a “firehose of data,” remains true 
to this day although the situation has improved 
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somewhat by better tools, one of which is the 
Local Analysis and Prediction System (LAPS). 
 
Objective analysis of local data in conjunction 
with nationally disseminated data still presents a 
daunting problem. Conceived as a resolution to 
this challenge, LAPS was designed for the 
purposes of analyzing all local data in real time 
on an affordable computer workstation and 
using its own output fields to initialize local-scale 
forecast models as well as render visualizations 
to the forecaster that capture all available data, 
with each data source weighted relative to its 
respective error.  To date, LAPS has been 
interfaced with several numerical models 
including the Regional Atmospheric Modeling 
system (RAMS) model, version 5 of the 
Pennsylvania State/National Center for 
Atmospheric Research Mesoscale Model, MM5, 
and most recently the Weather Research 
Forecasting (WRF) model using both Advanced 
Research WRF (ARW) and Nonhydrostatic 
Mesoscale Model (NMM) cores.  A more 
detailed review of LAPS and its historical roots is 
available in McGinley et al. (1991).  LAPS 
integrates all state-of-the-art data as they 
become routinely available to a field forecast 
office.  Advanced data include Doppler 
reflectivity and velocity fields, satellite data 
including GOES infrared (IR) image data in 
Advanced Weather Interactive Processing 
System (AWIPS) format, and product data from 
National Environmental Satellite, Data, and 
Information Service (NESDIS), wind profiler 
data, dual-channel ground-based radiometer 
data, and automated aircraft reports.  More 
recently ground-based Global Positioning 
System (GPS) derived zenith TPW is now 
incorporated into the LAPS moisture analysis. 
 
A key feature of adapting LAPS to local data 
assimilation has been radar and satellite data.  
In the area of satellite data assimilation a 
number of approaches have been attempted for 
GOES moisture data.  We have a variational 
interface that can assimilate raw sounder 
radiances, raw imager radiances, radiances 
approximated from eight-bit display image data, 
typically available on AWIPS, and most recently 
three-layer derived product water vapor 
assimilation.   
 
After testing different approaches over several 
years, the derived product data was finally 
adopted as the primary satellite moisture 

product that we use.  But there are even some 
adaptations that occurred in applying these data. 
 
In the mid-1990s, the moisture module in the 
LAPS system became more based on one-
dimensional variational minimization (1-DVAR) 
operating at each individual gridpoint to combine 
the diverse data sources that were added to the 
assimilation in the late 1990s and early 2000s.   
At about this same time, GOES-8 data products 
became available and it was assumed that these 
products would have minimal bias error due to 
the better onboard black-body calibration 
techniques available with the new satellite 
series.  The variational system at that time 
dropped horizontal shape matching assimilation 
(Birkenheuer 1992) in lieu of directly using 
derived product TPW values in concert with 
other new moisture data sources such as GPS-
derived (TPW), GOES direct radiance data 
through the use of a newer forward radiance 
model (now referred to as the community 
radiative transfer model, CRTM), and the 
inclusion of cloud information in the solution 
(Birkenheuer 1999). 
 
Initially, the three-layer product was used 
directly for some time.  We applied this as an 
absolute measure of water vapor for the three 
defined sigma levels in (each layer an integrated 
computation from the derived sounding profile).  
The computations of layer and total water from 
GOES were obtained from NESDIS and their 
operational suite of product data. 
 
During this time we began assimilating TPW 
retrieved from GPS signal delays as another 
independent water vapor measurement in LAPS.  
The main point here is that GPS is also a 
satellite-based observing system but it is 
completely independent of GOES and other 
traditional meteorological satellite moisture 
measures that use the microwave or infrared 
bands. 
 
3. GPS TPW MEASUREMENT AND ACCU-

RACY 

 

A summary of the techniques used by ESRL for 
about one decade to estimate TPW from GPS 
signal delays is available in Wolfe and Gutman 
(2000), and the rapid (near real-time) 
assimilation of these data into operational 
numerical weather prediction (NWP) models 
running at the National Centers for 
Environmental Prediction (NCEP) is described in 



 

Smith et al. (2007). Provided funding, the 
system is planned to be transferred to the 
National Weather Service (NWS) for operational 
management in 2012. 
 
The estimation of the excess path length or 
signal delay introduced by the refractivity of the 
neutral (non-dispersive) lower atmosphere is 
tantamount to discerning the change in the 
speed of light through the atmosphere due to the 
presence of water vapor (Wolf and Gutman 
2000).  The determination of water vapor-
induced “signal delay” is used to derive a value 
for the zenith “equivalent” integrated water. 
Unlike satellite sounder retrievals, the 
distribution or vertical profile of water vapor 
cannot be directly measured using GPS 
techniques alone; only the sum total can be 
computed.  However there is a good match in 
the asynoptic measuring abilities of GPS, 
GOES, and other conventional and experimental 
water vapor observing systems as described in 
Revercomb et al. (2003) and other more recent 
publications. 
 
Even though the satellite observations using 
radiometric techniques and GPS use different 
techniques to compute TPW, one would expect 
that the end result of comparing these 
independent TPW estimates should be 
approximately the same and the differences 
should be more or less random. The GPS 
measurement requires no external calibration 
and ultimately depends on the accuracy of the 
atomic clocks in space and on the ground.  
Systematic errors in GPS measurements of 
position and time are thought to come from 
mismodeling the elements of the GPS error 
budget as defined in (1). 
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where: 
P = measured pseudorange            
R = the geometric range to the satellite  
c = the speed of light 

∆T and ∆τ = errors in the receiver and satellite 
clocks 
∆ion and ∆ trop = ionospheric and tropospheric 
signal delays  
∆multi = errors introduced by multipath                
ε = receiver noise. 
 
 

Given that our ability to estimate the 
pseudorange (i.e. the product of the speed of 
light in a vacuum and the difference between the 
arrival time of the radio signal the time the signal 
was transmitted) is constantly improving,

1
 it is 

reasonable to assume that our estimates of the 
tropospheric signal delays and water vapor 
retrieved from these delays will continue to 
improve over time. 
 
While other water vapor sensing systems (e.g. 
radiometers, LIDARs, and in situ systems 
including chilled mirrors and tunable diode laser 
spectrometers) are known to be more precise 
than GPS, all except GPS require external 
calibration.  What GPS lacks is the ability to 
reveal the vertical distribution of moisture.  As a 
consequence, one can easily envision a 
composite global observing system (at least for 
water vapor) that uses GPS for temporally 
invariant calibration of brightness temperature or 
estimates of TPW derived from IR satellite 
radiance, and other satellite, ground-based or in 
situ observing systems.  These systems could 
provide precise estimates of PW at different 
vertical levels in the atmosphere. 
 
One example of the utility of this independent 
measure is the recently exploited ability to 
identify and ferret out bad batches of 
rawinsonde observations (RAOBs).  We see this 
illustrated in Fig 1; the good tracking between 
RAOB integrated water collocated with GPS 
TPW data, and the identification of a “bad batch” 
of RAOBs that was then pulled from operational 
use after noting the discrepancies with RAOB 
data. 

                                                 
1 The reason for this is that as the accuracy of 
the atomic clocks improves (i.e. ∆T and ∆T 
become smaller), our ability to measure lengths 
based on the relationship between frequency 
and wavelength improve.  As more satellites are 
launched, and the number of receivers on Earth 
increase, the estimates of the geometric range 
to each satellite (the satellite orbits) improve.  
Increasing the number of frequencies of the 
signals transmitted by the satellites improves 
estimating the ionospheric signal delay, which is 
frequency dependent.  Even if there are no 
significant reductions in multipath errors or 
receiver noise, the precision of the tropospheric 
signal delay estimate is now approximately 5 
mm which is equivalent to less than 1 mm of 
precipitable water vapor in the total atmospheric 
column. 

(1) 



 

  
Fig 1. Compares GPS median measurements (blue) with green RAOB launch data for Pt. Barrow AK.  
Top figure shows integrated precipitable water (IPW), [virtually the same as TPW] from RAOB and GPS, 
the lower plot shows the comparison with surface temperature.  Around 12/23 (denoted on the figure), a 
new batch of rawindsondes is put into service.  Immediately a discrepancy is seen between GPS and 
RAOB data.  The batch was subsequently removed from use on 1/04 and the integrated precipitable 
water (IPW); again matches between RAOBs and GPS IPW/TPW measures. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. GPS AND GOES MOISTURE ASSIM-

ILATION, RECONCILIATION, AND SOLUTION 

 
With GPS data available, we began examining 
the two independent TPW data sets (GPS and 

GOES) and made some observations that were 
difficult to explain given the information about 
the assumed accuracy of GOES observations 
that are available in  peer-reviewed literature. 

  
Fig. 2 The hourly bias plot of GOES [defined here using GPS TPW as “truth”] was our first clue that 
operational GOES vapor product data was not representative of a-synoptic water vapor.  The reason for 
this is presumed to be  due to model dependence on RAOB data for updates in water vapor truth, or 
perhaps because the GOES product was “tuned” to RAOB data (limited to synoptic times).  This analysis 
reveals that, aside from the overall moist bias in GOES, the GOES product data bias degrades between 
synoptic times. 
 
At this stage two paths could be pursued to deal 
with the discovered moist bias; we chose to go 
in both directions.  The first path to establishing 
better accuracy was a bit more elegant, and that 
was to variationally minimize a solution that best 
matched horizontal gradients from the satellite 
field in the variational scheme while 
simultaneously maintaining agreement with 
absolute measures of water vapor 
(RAOB/GPS/saturated cloudiness),.  This had 
the advantage of capturing the spatial detail in 
the satellite imagery while ignoring bias (since 
the derivative of constant bias is zero).  This 
approach has worked well for routine satellite 
water vapor assimilation and is the current 
methodology used in our operational system.  
(Birkenheuer et al. 2006). 
 

The second approach was to attempt a 
correction of the product data and led to the 
foundation for this paper.  A simple scaling and 
exponential fit of the data to collocated GPS 
data points was used as a correction function 
(Birkenheuer et al. 2008).   
 

= 
b

c
G aG  

 
where Gc are the corrected GOES moisture 
values, G are the initial product values as 
received from NESDIS, a is a scaling term and b 
is a power term, both dimensionless.  The b 
term removes curvature from the paired 
measurements, while the scaling term helps to 
move the linear agreement to the 1:1 line.  The 
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selection of this fitting equation was made such 
that no absolute bias offset was defined. 
 
The method of solution for (1) was variational 
analysis.  This was chosen because it has an 
advantage over traditional linear least squares 
determination of coefficients a and b.  
 
The variational method minimizes the following 
simple functional: 
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where J is minimized via iteration using the 
Powell (1962) method by modifying coefficients 
a and b from (1) and summed over all of the 
data (N points) consisting of paired (i) GOES 
and GPS data.  The “best fit” (and lowest J 
value) therefore forced all of the corrected 

GOES measurements to be as close as possible 
in magnitude to GPS.  The variational method 
puts direct linear weight on the water amount 
differences.  Thus, small differences (less than 
one, even if they described large amounts of 
water) likely carry almost insignificant weight in 
determining the result, while ever increasing 
values of moisture discrepancies would 
proportionally more strongly  influence the 
correction terms.  

 
Thus, we created correction data for use by 
NESDIS and any product user who would want 
to apply the data with an hourly bias correction.  
The correction algorithm was able to maintain 
the intercept at zero and correct both linear and 
minor nonlinear bias.  The following figures 
show the dramatic reduction in hourly bias, both 
in terms of hourly plots and overall scatter with 
respect to paired GPS data. 

 
Fig. 3 After correction the bias was very close to the zero line. 
 

(3) 



 

 
Fig. 4 The initial scatter plot of ~1.8M paired GPS and uncorrected GOES 12-derived TPW data. No 
quality control was applied, the few outliers seen above the main cluster represent an insignificant 
number of points overall. 

  
Fig. 5 The same scatter plot after applying the hourly correction coefficient to all data.  A successful shift 
of the GOES data to drier values was achieved along with an unforeseen narrowing of the scatter (not 
shown) at the moist end.  The result was also seen to reduce RMS. This was likely due to the correction 
of the tendency to increase moist bias at high moist values, in effect “straightening” the observed 
curvature in bias at these levels. 
 



 

The second approach also led to another 
unforeseen observation.  About two years ago, 
the correction coefficients were plotted by hour.  
Initially they had only been viewed in tabulated 
form and once plotted it was evident that a 
pattern emerged (Birkenheuer et al. 2008).  A 
diurnal signal was detected as there appeared to 
be a random feature to the data during dark 
hours but during daylight the coefficients 
changed in a regular manner.  More important, a 
second observation was made between the 
GOES-East and -West coefficients.  Though the 

coefficients were not as high in value for the 
western satellite, the same temporal response 
was observed and it was offset in phase.  The 
phase shift roughly corresponded to the 
difference in “time zone” between the spacecraft 
subpoints and thereby the time difference in 
when the daylight periods began and ended for 
the fields of view of each spacecraft.  We 
obviously had some kind of daylight response to 
the water vapor retrieval that we could not 
explain. 
 

 
 
Fig. 6 Systematic errors were revealed through the examination of plotted correction coefficients. Here we 
see a clear daytime effect in both GOES-East and -West data.  We also see that the “onset” of this 
response appears offset or phase delayed and that it roughly corresponds to the time zone difference 
between the two satellites (green arrows, for both scaling and power terms).  The fact that this is shorter 
than the actual time zone difference might be explained by observation location.  GOES West satellite 
data are paired with GPS data to the east of that satellite’s subpoint (135 degrees west), while GOES 
East was viewing pairs primarily west of its subpoint at 75 degrees west.   
 
 
These observations led to speculation regarding 
the cause of the daytime effect.  One idea was 
that the sunlight had an effect on the retrieval 

algorithm and this might be modifying measured 
radiance.  After discussing these data with the 
satellite team at the Cooperative Institute for 



 

Meteorological Satellite Studies at the University 
of Wisconsin-Madison Space Science and 
Engineering Center (CIMSS), they designed a 
new algorithm that is now under test with 
improved surface emissivity.  This new algorithm 
reduces the moist bias compared to the 
operational algorithm studied above.  Though 
better than the current (operational NESDIS) 
algorithm, when compared to GPS data, it did 
not appear to address all of the problems.   
 
Another possible explanation for some of these 
effects could relate to the choice of the forecast 
model background.  In this case, Global 
Forecast System (GFS) forecasts are used as 
an a priori first guess in the undetermined 
satellite retrieval processing.  This “first guess” is 
minimally perturbed so as to create a slightly 
modified thermal and moisture profile that when 
used in a forward radiance model, generates 
synthetic satellite radiances that better match 
observed radiance.  Higher-quality, “first-guess” 
profiles used in this processing will result in less 
chance for incurring solution error.  Thus, the 
chapter was opened on examining model 
agreement with GPS data and the main theme 
of this paper.   

5. GFS POSSESS A “CHRONIC” MOIST BIAS 

 
Our observations did not solve the satellite water 
vapor problems that we had encountered, but 
they revealed that GFS model forecasts are too 
moist and this fact might be relevant for climate 
interests, if not for the sake of modeling in 
general. It is prudent to understand why 
something is going on in a model that may 
otherwise be taken for granted, not understood, 
or even perceived.  In our working with the GFS 
model, the background model used for satellite 
retrieval processing first guesses, we discovered 
that the overall moisture trends against GPS 
were:  a) too moist, and b) increasing with time; 
at an unrealistic pace.  The fact that the model 
contains more moisture than observed with a 
system like GPS, leads us to believe that this 
could contribute to moist biased retrievals.  We 
show here that GPS-met water vapor 
assimilation can improve the description of 
vapor in some models.  The GFS, that lacks 
GPS assimilation, is shown to be consistently 
moist biased. 
 

 
Fig. 7 The GFS 00-hr and 03-hr forecast trends over an approximate two-year period show a steady, 
discernable increase in moist bias compared to GPS.  Of the three models studied here, we see the 



 

greatest changes over time.  The RMS error for both the forecast and the initial times show a cyclical 
characteristic with better agreement in the dry months (expected) and the highest uncertainty during the 
convective seasons. 
 
We also examined the NAM and the RUC 
models.  Neither of these models demonstrated 

the increasing trend in moisture we see in the 
GFS. 
 

  
Fig. 8 In the above NAM analysis and forecast covering the same period as the GFS figures, we see the 
bias is very near zero with zero change for both the 00-h and 03-h forecasts.  The GPS-compared RMS 
figure is near 2.5mm.  Data appear to remain constant over the course of the two+ years shown.  This is 
the operational NAM model and it does include GPS in the assimilation scheme.  Unlike the GFS, the 
cyclical RMS is stronger in the 3-h forecast over the analysis time.  This would suggest that we are 
analyzing well at convective times, but moisture is not as well tracked by the forecast.  In fact, the 
magnitude of this uncertainty at 3h is very close to the GFS. 
 
 
Finally, we examined the RUC model. 
 

 



 

 

 
 
 
 

 

Fig. 9 The RUC result is similar to the NAM but with slightly more moist bias showing at time 00.  Also a 
slightly increasing bias in the 3-hr forecast accumulating over the past couple of years.  Like the NAM, 
this system is assimilating GPS data.  We feel that the increasing bias in time is due to a concurrent 
assimilation of radar data which started after GPS assimilation.  We have not yet determined if the radar 
assimilation is deemed to be in its most optimal form as of yet, since it is still under development. 
 
 
6. THE IMPLICATIONS FOR CLIMATE 

STUDIES 

 
For the purposes of climate record and GCM 
experiments, moisture budget will play an ever 
increasing role of importance since this 
greenhouse gas is so complex in its behavioral 
relationship to thermal changes.  Thermal-driven 
phase changes not only simply add or subtract 
the vapor load in the atmosphere, but contribute 
to clouds, ice, and liquid water on the surface 
which interact with incoming and outgoing 
radiation at long and short wavelengths.  This is 
generally understood to be the complicating 
nature of water vapor, moving it to the top of the 
list of several significant climate-impacting 

substances.  The ability to at least get the vapor 
“right” in a model is one good first step to getting 
the other relevant water-related characteristics 
in the model correct.  Along with this, a poor 
description of moisture may bring questionable 
impact to any analysis of record or climate 
predictions. 
 
Moist bias in the satellite retrieval first guess will 
make for a more difficult solution given an 
underdetermined problem.  Generally the 
algorithms used for deriving thermal and 
moisture profiles start with a model forecast as a 
first guess and minimally perturb these profiles 
to achieve a match between modeled and 
observed satellite radiance.  On the current 



 

GOES spacecraft there are about three IR 
channels that contribute to moisture information 
with weighting functions at low (sfc-700hPa), 
middle (700-500 hPa), and high (above 500 
hPa) atmospheric levels.  Therefore, it is critical 
that the first guess contain the profile detail in 
these layers, or the resulting profile may be 
unrepresentative.  Given the GOES R Advanced 
Baseline Imager (ABI) will be underdetermined 
for sounding retrieval work in the same way as 
the current GOES where model error in thermal 
and moisture character will be critical.  Why is 
this important for climate research?   
Geostationary satellite soundings may wind up 
in climate records focused on local climate; 
certainly spaceborne radiometry currently has 
direct bearing on climate records (Chen et al. 
2007; Town et al. 2007), including geostationary 
(GOES R) Goldberg (2009), (Wang et al. 2009).  
This is certainly the case for polar data but 
potentially for GOES as well.  Thus, if this does 
happen and the GFS model is in some way 
responsible for a bias, it needs to be reconciled; 
at least that is our philosophy.  
 
Recommendations of this work are to globally 
expand the temporal nature and density of a 
surface-based GPS network.  This will serve 
several purposes.  It will augment the QC of 
radiosonde networks, contribute to better 
satellite analyses of moisture (when assimilated 
in models), and will improve forecasts serving 
both forecast meteorology and climate.  At this 
time ESRL is striving to move a sustained GPS 
meteorology program (GPS-met) into the NWS 
for operational use.  In addition, we are working 
on an international level to expand the global 
ground- and water-based network.  To this end 
we have collaborated with efforts in Africa, 
Japan, Korea, Europe, and we look to include 
perhaps Mexico in the near future.  We are not 
only exploring expansion of ground-based 
systems, but looking to expand capability over 
large bodies of water.  For example, we are 
establishing the first “permanent” sites on off-
shore oil platforms in the Gulf of Mexico with the 
cooperation of oil companies in 2010.  It is also 
conceivable that platforms can be located on 
ocean freighters, research, and naval vessels.   
 
 

 

 

 

 

 

7. SUMMARY AND CONCLUSIONS   

 
We have demonstrated that the model first 
guess can be improved with knowledge gleaned 
from GPS water vapor data and this can 
improve both the retrievals and the analysis of 
water substance.  Retrievals will benefit by way 
of a better a priori model first guess.  Analysis 
will improve simply by acquiring more accurate 
water information. 
 
Relevance for climate is directly related to 
improved water representation in models and 
analyses.  At least one global model (GFS) has 
been shown here to contain an unrealistic bias 
that is increasing with time.  Such drift if left 
unchecked will only obscure the truth that can 
be derived from GCM climate model simulations.  
 
Assimilation of GPS-met data into current 
CONUS and smaller scale models is shown 
here to have positive impact on reducing if not 
eliminating water bias (NAM).  We urge the 
modeling community to seek ways to 
incorporate GPS-met data into other models that 
have relevance to climate research. 
 
Satellite data play a key role in long-term global 
climate monitoring and analysis of trends.  It is 
therefore important to understand the 
weaknesses observed in utilizing these data in 
other meteorological applications (even local-
scale modeling of something like convective 
initiation) since they may have direct relevance 
to climate science in the future. 
 
To apply the concept of “Analysis of Record” to 
remotely sensed observations (i.e., satellite 
data) for quality climate work, will require the 
ability to verify the accuracy of the observations 
that were analyzed to independently validate the 
accuracy of the analysis.  Another approach is to 
direct more focus on assimilating satellite 
gradients in an analysis to ignore bias. 
 
GPS (along with other independent measures) 
provide an excellent measure as an independent 
data source to quantify the hourly and annual 
bias and RMS of remotely sensed data that 
drive climate records, including the quality 
control of conventional data such as radiosonde.  
We have demonstrated that satellite data can be 
used more effectively by utilizing GPS-met data 
in routine operations in addition to improving our 
meteorological models and analyses. 
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