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1.  INTRODUCTION 

 
 Due to the chaotic nature of the atmosphere, there 
are inherent limitations to forecasting a single realization 
of the future atmospheric state.  While numerical 
weather prediction (NWP) models have become more 
advanced in recent years in representing and predicting 
the atmospheric state, they are still limited because of 
imperfect model numerics, imperfect parameterizations 
of unresolved physical processes, and interpolations of 
input data that is sparsely located compared to current 
model grid resolutions.  In recognition of these 
difficulties, contemporary NWP uses ensembles of 
simulations.  Members in these ensembles often differ 
by imposed initial conditions (ICs), lateral and lower 
boundary conditions (LBCs), model physics 
parameterization schemes, and even the choice of NWP 
modeling system.  Grimit and Mass (2002) state that 
there is a strong positive correlation between the 
ensemble spread and forecast error for short-range 
mesoscale NWP.  For example, if the spread across the 
ensemble is low, the forecast error (and hence, the 
forecast uncertainty) is generally low, and vice-versa. 
 There are a few different approaches to ensemble 
initialization that are documented in the literature.  Each 
approach attempts to account for uncertainty in the 
forecast.  Several approaches are designed specifically 
to account for uncertainty in the initial conditions.  Some 
of these include using bred vectors, singular vectors, an 
ensemble Kalman filter, ensemble transform Kalman 
filter, or the ensemble transform approach.  There are 
several studies in the literature that compare the relative 
performance of ensembles that are initialized with these 
different methods, but the ensemble Kalman filter has 
generally performed best (Wang and Bishop 2003; 
Buizza et al. 2005; Bowler 2006; Descamps and 
Talagrand 2006; Wei et al. 2006). 
 Another source of uncertainty for regional NWP (or 
limited-area models) arises from the specification of the 
lateral boundary conditions.  Warner et al. (1997) 
summarize many of the issues that modelers must 
consider with regard to LBCs.  Notably, errors that arise 
due to the LBCs “sweep” across the model domain 
through the integration period, which can degrade 
model results and constrain ensemble dispersion 
(Nutter et al. 2004).  Therefore, if there is a particular 
region that is of interest to the modeler, that region 
should be placed far enough away from the lateral 
boundaries so that errors from the boundary will not 
have advected into that region at the time of interest. 
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 In addition to ICs and LBCs, another source of 
uncertainty in NWP results from the model physics 
parameterizations.  Because NWP models are unable to 
resolve many physical processes that occur, such as 
convection, cloud and ice microphysics, atmospheric 
radiation, as well as processes in the atmospheric 
boundary layer (ABL), parameterization schemes for 
these processes are necessary.  The land surface must 
be represented by discrete categories of typical soil and 
vegetation types, as well as soil moisture profiles.  All of 
these processes must be approximated.  These 
approximations introduce some amount of error to NWP 
solutions that is unavoidable.  Judging by the focus of 
the major national centers in the 1990s on creating IC 
ensembles (e.g., Toth and Kalnay 1993; Molteni et al. 
1996), it was once thought that IC uncertainty dwarfed 
physics uncertainty in importance, at least for global 
forecast models.  Many studies in recent years, 
however, have shown the importance of physics 
uncertainty in NWP, particularly in limited-area models.  
As an example, studies investigating the impacts of 
physics parameterization schemes on NWP forecasts 
have been conducted for a variety of situations, 
including for predictions of the southwest monsoon 
(Bright and Mullen 2002), mesoscale convective 
systems (Jankov et al. 2005), and the passage of a mid-
latitude cyclone (Deng and Stauffer 2006), just to name 
a few. 
 Several studies have also investigated the 
performance of ensembles that incorporate multiple 
sources of uncertainty.  Warner et al. (2000) and Jones 
et al. (2007) showed that physics variability is important 
in cases with weak synoptic forcing, and IC variability is 
important in cases with strong synoptic forcing.  Physics 
variability can also be more important than IC variability 
in increasing ensemble spread in the very short term (6-
12 h) (Stensrud et al. 2000), and can have a greater 
impact on near-surface meteorological parameters than 
IC variability (Eckel and Mass 2005).  Fujita et al. (2007) 
found that spread was greater for dynamic variables in 
an IC ensemble, and greater for thermodynamic 
variables in a physics ensemble.  They concluded that 
because the distribution of spread in the IC and physics 
ensembles they created was so different, the ensembles 
likely covered different portions of the probability density 
function (PDF) of the atmospheric state.  They 
recommended using a combined IC/physics ensemble 
as the best choice for severe weather and boundary 
layer forecasting, since it incorporates variability from 
multiple sources of uncertainty. 
 One of the main messages that can be gleaned 
from these studies is that it is critically important to 
include both IC/LBC and physics uncertainty in short-
range (0-48 h) NWP ensembles, in order to sample the 
forecast PDF of the atmospheric state more accurately.  



Current operational short-range ensemble forecast 
(SREF) systems, such as NCEP SREF (Du et al. 2004) 
and the UK Met Office Global and Regional Ensemble 
Prediction System (Bowler et al. 2008), incorporate 
these multiple sources of uncertainty by varying or 
perturbing the ICs, LBCs and physics schemes.  
Another common thread among nearly all the ensemble 
studies discussed above is that they deal primarily with 
obtaining spread in precipitation forecasts.  It is not 
clear, however, whether the strategies employed in 
these studies would be the best strategies for obtaining 
spread in atmospheric transport and dispersion (AT&D) 
applications. 
 To obtain appropriate spread in concentration 
predictions from AT&D models, there should be good 
spread in low-level wind direction and ABL depth, as 
these are two of the most important parameters 
affecting uncertainty in AT&D predictions (Lewellen and 
Sykes 1989).  A previous study by Lee et al. (2009) 
modeled concentration predictions from an actual tracer 
release with an NWP “ensemble of opportunity” that 
varied only certain physics parameterizations and data 
assimilation schemes.  They found that variability in the 
wind angle in this physics “ensemble” was insufficient to 
yield enough spread in the concentration predictions to 
encompass the concentration observations.  It is 
expected that incorporating IC uncertainty in an NWP 
ensemble would yield increased spread in the wind 
direction (Fujita et al. 2007), and hence in the 
concentration predictions as well (Peltier et al. 2009).  
Therefore, we hypothesize that for AT&D forecasting 
purposes, the best NWP ensemble configuration would 
be one that varies ICs/LBCs in addition to physics 
parameterizations, with a focus on obtaining appropriate 
spread in the ABL. 
 It is not clear a priori what NWP ensemble 

configuration would be best for AT&D applications, 
especially with the number of options for physics 
parameterizations that are available in NWP models.  
Therefore, some testing is necessary.  This study is a 
preliminary examination of the first of a series of 
historical evaluation periods that will be conducted with 
many ensemble members.  The aim of this study is to 
explore methods that will help determine a useful 
ensemble configuration for AT&D applications. 
 
2.  ENSEMBLE DESIGN 
 

 Our 18-member physics ensemble for this study 
was created using version 3.1.1 of the Weather 
Research and Forecasting (WRF) Advanced Research 
WRF (ARW) NWP model (Skamarock et al. 2008).  The 
microphysics and atmospheric radiation schemes (both 
longwave and shortwave) were the same for each 
ensemble member, but the land surface, surface layer, 
boundary layer and cumulus scheme configuration 
varied for each member, as detailed in Table 1.  There 
were 45 full vertical levels in each simulation, with the 
lowest full level at 24 m AGL, 9 full levels below 500 m 
AGL, 16 full levels below 1 km AGL and 24 full levels 
below 2 km AGL.  The model top was at 50 hPa.  Such 
high vertical resolution in the lowest portions of the 

troposphere was chosen because this study focuses on 
processes occurring in the ABL.  A single model domain 
was used with a horizontal grid spacing of 36 km and a 
time step of 180 s.  The domain encompassed the 
continental United States (CONUS), as shown in Figure 
1.  No data assimilation was used during the model 
integration for this study.  The ICs/LBCs for all 18 
members in this study come from the 0.5°x0.5°-
resolution Global Forecast System (GFS) forecast 
cycles initialized at 0000 UTC daily for the two-week 
period of 4-17 January 2009.  That two-week evaluation 
period was chosen because the synoptic regime 
between the two weeks.  During the first week (4-10 
Jan) there was a deep, digging trough moving across 
the U.S., and during the second week (11-17 Jan) a 
persistent ridge in the western U.S. and trough in the 
eastern U.S. set up.  By evaluating ensemble 
performance in different synoptic regimes, our results 
will be more robust than if the ensemble forecasts were 
from a single synoptic regime.  In the future we would 
like to do similar two-week evaluation periods in the 
other three seasons as well, to investigate if our results 
are seasonally dependent. 

 

 
FIG. 1.  Geographical domain used by the WRF-ARW 

ensemble. 

 
 
3.  ENSEMBLE DOWN-SELECTION 

 
Our 18-member ensemble in this study varied only 
physics parameterizations.  By first examining the 
performance of many combinations of physics options, a 
more intelligent choice can be made to down-select 
which combinations of physics would be good 
candidates for a small number of “control” members in a 
future ensemble that incorporated physics and IC/LBC 
uncertainty.  One potential way to incorporate IC/LBC 
uncertainty in that future ensemble would be to use an 
ensemble Kalman filter to generate IC/LBC 
perturbations around each of the control physics 
members.  If, for example, four control physics members 
were used, each with five IC/LBC perturbations around 
them, this would result in an ensemble of 20 members, 
which would be comparable in size to NCEP SREF (21 
members).  Down-selecting to a smaller number of 
ensemble members is also important due to 
computational restraints. 



TABLE 1.  Physics parameterizations for the ensemble members used in this project. 
 

Member Microphysics Longwave 
Radiation 

Shortwave 
Radiation 

Land 
Surface 

Surface 
Layer 

Boundary 
Layer 

Cumulus 

1 WSM 5-class RRTM Dudhia Thermal Diff. MM5 Similarity YSU Kain-Fritsch 

2 WSM 5-class RRTM Dudhia Thermal Diff. MM5 Similarity YSU Grell-Devenyi 

3 WSM 5-class RRTM Dudhia Noah MM5 Similarity YSU Kain-Fritsch 

4 WSM 5-class RRTM Dudhia Noah MM5 Similarity YSU Grell-Devenyi 

5 WSM 5-class RRTM Dudhia RUC MM5 Similarity YSU Kain-Fritsch 

6 WSM 5-class RRTM Dudhia RUC MM5 Similarity YSU Grell-Devenyi 

7 WSM 5-class RRTM Dudhia Thermal Diff. Eta Similarity MYJ Kain-Fritsch 

8 WSM 5-class RRTM Dudhia Thermal Diff. Eta Similarity MYJ Grell-Devenyi 

9 WSM 5-class RRTM Dudhia Noah Eta Similarity MYJ Kain-Fritsch 

10 WSM 5-class RRTM Dudhia Noah Eta Similarity MYJ Grell-Devenyi 

11 WSM 5-class RRTM Dudhia RUC Eta Similarity MYJ Kain-Fritsch 

12 WSM 5-class RRTM Dudhia RUC Eta Similarity MYJ Grell-Devenyi 

13 WSM 5-class RRTM Dudhia Thermal Diff. Pleim-Xu ACM2 Kain-Fritsch 

14 WSM 5-class RRTM Dudhia Thermal Diff. Pleim-Xu ACM2 Grell-Devenyi 

15 WSM 5-class RRTM Dudhia Noah Pleim-Xu ACM2 Kain-Fritsch 

16 WSM 5-class RRTM Dudhia Noah Pleim-Xu ACM2 Grell-Devenyi 

17 WSM 5-class RRTM Dudhia RUC Pleim-Xu ACM2 Kain-Fritsch 

18 WSM 5-class RRTM Dudhia RUC Pleim-Xu ACM2 Grell-Devenyi 

 

 
In order to down-select to a smaller number of 

ensemble members, the first step was to build specific 
datasets for a feature selection process.  A feature 
selection process evaluates the predictive ability of each 
of the features, which in this case are ensemble 
members.  Therefore, the datasets must consist of an 
observation and the corresponding ensemble 
member.forecasts.  However, the ensemble member 
forecasts are valid at computational grid points, so a 
distance-weighted interpolation from the four 
surrounding grid points to the observation location was 
used. 

For the ensemble member down-selection we used 
a data mining and analysis program called RapidMiner 

(Mierswa et al. 2006).  The datasets examined by this 
program were the interpolated ensemble member 
forecasts and the corresponding observations for each 
of three prognostic meteorological variables: 2-m 
temperature, 10-m u-wind, and 10-m v-wind.  The first 
ten days of the 00 UTC ensemble forecasts (4-13 
January 2009) were used to build these datasets, at 
forecast lead times of 24 h, 36 h, and 48 h. 
 Principal Component Analysis (PCA) weighting was 
then applied to each dataset individually.  PCA is a 
mathematical procedure that reduces a large dataset of 
correlated variables to a smaller dataset of uncorrelated 
variables, or principal components.  This operator uses 
the factors from the first principal component, which 
describes the most variability in the dataset, to calculate 
ensemble member weights.   The ensemble members 
that contribute most to the first principal component are 
thus given a higher weight.  The ensemble member 
weights are a quantitative analysis of the predictive 
ability of each of the ensemble members.   

In order to evaluate the deterministic prediction of 
the ensemble, a linear regression with ten-fold cross-
validation was used.   Ten-fold cross-validation splits the 

dataset into ten different subsets.  The linear regression 
model is trained on nine of the subsets and then 
predicts the tenth set.  This is repeated on each of the 
ten subsets to assess how the results of the linear 
regression technique will generalize to an independent 
data set (Wilks 2005).  Linear regression is used to 
predict the weather variables.  This method was 
selected because it is a simple and effective way of 
relating predictors (ensemble member forecasts) to the 
predictand (observations), and because it is similar to 
Model Output Statistics (MOS) (Glahn and Lowry 1972).  
A RapidMiner operator called Weight Guided Feature 
Selection then determines the optimal selection of 
ensemble members to maximize the predictive ability of 
the linear regression model based on the ensemble 
member weights.  The goal is to produce a subset of the 
ensemble members that are judged to be the most 
important for capturing the variance and predictive 
ability of the ensemble. 
We down-selected the ensemble from eighteen 
members to twelve members, although the process can 
be tuned to yield a different number of members.  The 
results for all three variables and all lead times (24, 36, 
and 48 h) are shown in Table 2.   The final column 

shows the root mean square error (RMSE) of the linear 
regression model on the down-selected ensembles.  
These results indicate similar forecast errors for all lead 
times for each forecast parameter. 

For the 2-m temperature forecast, the selected 
subset of ensemble members were consistent for all 
lead times, and none of the ensemble members that 
were selected used the Thermal Diffusion land surface 
model (LSM) (see Table 1).  The Thermal Diffusion LSM 
is a simpler scheme than either the Rapid Update Cycle 
(RUC) or Noah LSMs because of a simpler treatment of 
soil moisture and no modeling of explicit vegetation 
effects (Skamarock et al. 2008).  As evidenced by the 



TABLE 2.  Summary of ensemble members selected for all lead times and all forecast parameters.  The final column is 
the root mean square error (RMSE) of the linear regression model that computes a deterministic forecast. 
 

Parameter Ensemble Members Selected RMSE 

2-m T, 24 h 3 4 5 6 9 10 11 12 15 16 17 18 3.010 K 

2-m T, 36 h 3 4 5 6 9 10 11 12 15 16 17 18 3.351 K 

2-m T, 48 h 3 4 5 6 9 10 11 12 15 16 17 18 3.257 K 

10-m u, 24 h 1 2 3 4 5 6 7 8 9 10 11 12 3.397 m s
-1

 

10-m u, 36 h 1 2 3 4 5 6 7 8 9 10 11 12 3.042 m s
-1

 

10-m u, 48 h 1 2 3 4 5 6 7 8 9 10 11 12 3.328 m s
-1

 

10-m v, 24 h 1 2 3 4 5 6 7 8 9 10 11 12 3.423 m s
-1

 

10-m v, 36 h 1 2 3 4 7 8 9 10 11 12 13 14 3.177 m s
-1

 

10-m v, 48 h 1 2 3 4 7 8 9 10 11 12 13 14 3.334 m s
-1

 

 

 
ensemble member selection, a better representation of 
the land surface is important for better predictions of 2-
m temperature.   

For the 10-m u-wind and v-wind forecasts, different 
members were selected and the results were not 
uniform across all lead times.  Ensemble members 1-12 
were selected for most cases.  The exceptions were for 
the v-wind at 36- and 48-h lead times that selected 
ensemble members 13 and 14 instead of 5 and 6.  
Ensemble members 13-18 all use the Pleim-Xu surface 
layer scheme and the Asymmetric Convective Model 
(ACM2) boundary layer scheme.  Ensemble members 
13 and 14 use the Thermal Diffusion LSM while 
ensemble members 5 and 6 have the RUC LSM.  These 
results indicate that different representations of 
boundary layer processes are important to predictions of 
10-m winds. 

Scatterplots of ensemble member forecasts vs. 
observations for each forecast variable at each forecast 
lead time were created (not shown).  The scatterplots 
for temperature showed that the chosen subset of 
ensemble members was well correlated with 
observations.  The scatterplots for u- and v-wind, 
however, showed poor correlations. This result indicates 
that this down-selected ensemble poorly forecasts u- 
and v-wind speeds. 

The selection of ensemble members appears 
directly related to the forecast variable as the process 
selected different ensemble members for temperature 
and wind speed.  Ensemble members 3, 4, 10, 11, and 
12 were always selected.  If down-selecting to five 
ensemble members, these five have added value to all 
of our forecast parameter and lead times and would 
likely be an accurate down-selection number.  Down-
selecting even further to members 4, 10, and 12 would 
eliminate redundant forecasts from being used as 
“control” physics members in a future IC/LBC/physics 
ensemble, as the differences in the cumulus schemes 
appear to have very little effect in this time period.  This 
is possibly due to convection not being as widespread in 
January as in warmer months, and the results may 
change as we test the method for other seasons. 

As redundant ensemble members were not 
eliminated in this case, it seems that a calibrated down-
selected ensemble is unlikely to result from the PCA 
weighting ensemble member selection method.  
However, the PCA weighting method did provide 

guidance about which ensemble members were the 
most valuable for a deterministic forecast.  The PCA 
weighting method evaluated the deterministic predictive 
ability of the ensemble, while other methods, such as 
Bayesian Model Averaging, examine both the 
deterministic and probabilistic skill of the ensemble. 
 
4.  CALIBRATION AND VERIFICATION 

 
Even with our best efforts to make the ensemble 

represent the possible outcomes of the atmosphere, it is 
unlikely that the distribution of the ensemble will be the 
same as the observed distribution of atmospheric 
states.  Therefore, it is necessary to post-process 
ensemble data in order to more accurately represent the 
probability density function of potential atmospheric 
states.  The primary technique used in this study is 
Bayesian Model Averaging (BMA), as detailed in Raftery 
et al. (2003) and discussed below. 

The goal of BMA is to provide a calibrated model 
that predicts the PDF of a forecast variable given an 
ensemble of deterministic forecasts from a number of 
dynamical numerical weather prediction models.  This is 
done by comparing previous ensemble forecasts 
against a set of verification data for some length of time, 
a “training period”.  When applied to forecasts, BMA can 
yield probabilistic predictions such as those shown in 
Fig. 2. 

If the relationship between an observed value 

y and a bias-corrected ensemble of predictions 

of y , kf , is the same as during the training period, the 

conditional PDF of y conditional on kf  is: 

1

1
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k
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      (1)

 

where |k kg y f is the posterior probability of y given 

that k is the best ensemble member and kw is the 

probability of k being the best ensemble member, 
termed the weight of ensemble member k. The log-
likelihood of this model is given by: 



 

, 1
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K
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     (2) 

where represents all of the parameters to be 

estimated and s and t represent the spatial and 

temporal dimensions, respectively.  This log-likelihood 
cannot be solved analytically and would be complex for 
direct methods, but can be recast in terms of “missing 
data” which, if known, would make the problem trivial.  

In this case the “missing data” is 
kstz , an indicator 

function that is 1 if ensemble member k is the closest to 
the verification at space and time st and 0 otherwise.  
Using this missing data, we can maximize the likelihood 
using expectation-maximization (EM). 

 
 

 
FIG. 2.  Example probabilistic forecast that uses BMA 
ensemble member weights and standard deviations.  
Each blue curve represents the weighted conditional 
probability for an ensemble member.  The red curve 
indicates the total prediction probability density function.  
The black vertical line represents the observation. 

 
 
 In order to proceed, we also need to assume a 

functional form of the posterior distribution kg .  Here we 

assume that this distribution is a normal, centered on 

kf (since kf is bias corrected) with a standard 

deviation k .  Thus, for each ensemble member k, we 

have two parameters, kw and k , which describe the 

contribution of that ensemble member to the total 
posterior PDF of y.  Using this normal assumption 
together with the BMA model, the expectation (E) step 

which estimates kstz is: 
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The estimates of 
kw and 

k
 are then updated based 

on the new ˆ
kstz in the maximization (M) step: 
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EM iteration is stopped when any of the following criteria 
are achieved: 
 

1. The change in all z are less than the specified 
tolerance 

2. The change in all parameters (
kw and 

k
) are 

less than their respective specified tolerances 
3. The change in the log-likelihood is less than 

the specified tolerance 
4. The maximum number of iterations is reached 

 
As with the member down-selection, we use 00 UTC 
forecasts during 4-13 Jan 2009 as our training period.  
BMA weights and standard deviations are determined 
for forecasts every 12 h from 12 h to 48 h comparing 
model diagnosed 2-m temperature, 10-m U and 10-m V 
to WMO surface observations.  Figure 3 shows the BMA 
ensemble weights for 2-m temperature.  The six 
ensemble members that use the thermal diffusion land-
surface model (1,2,7,8,13,14) have the lowest weights, 
indicating these members contribute the least to the 
optimized ensemble prediction.  This result agrees with 
the results from section 3 where the thermal diffusion 
members were selected for removal from the ensemble 
based on temperature.  The highest weights were 
assigned to the members using the RUC land-surface 
model (5,6,11,12,17,18).  As forecast lead time 
increases, the members with thermal diffusion are 
weighted even less while the members using RUC LSM 
have increasing weights. 

The members with the strongest weights for 10-m 
u-wind are those that use the Pleim-Xu land surface and 
ACM2 PBL scheme (Fig. 4, members 13-18).  This is in 
contrast to section 3, where members 13-18 were 
nominated for removal based on the 10-m u-wind.  The 
cause of this discrepancy is not immediately obvious, 
and is a subject that requires further study, though it 
may be related to the bias removal performed prior to 
the use of BMA.  BMA standard deviations for each 
ensemble member were also computed, but are not 
shown here. 

In addition to BMA, we also examined the 
correlations between ensemble members in order to 
identify possible redundant members.  Correlations in 
the diagnosed 2-m temperature (Table 3) show that 



 

 
FIG. 3.  BMA determined ensemble member weights for 2-m temperature.  Radial distance indicates forecast lead 
time with the innermost ring representing BMA weights for 12-h forecasts, increasing 12-h going outward so that the 
outermost ring is for 48-h forecasts. 
 
 

 
FIG. 4.  As in Fig. 3, but for 10-m u-wind. 
 



 

TABLE 3. Correlation of 2-m temperature between each pair of ensemble members.  The lower triangle is color-coded 
for ease of interpretation, with warmer colors corresponding to larger correlations. 

 

 
 
 
TABLE 4. As in Table 3, but for 10-m u-wind. 

 
 



correlations between members with the same land-
surface model are highest.  This result is consistent with 
the BMA weights for temperature, where weights for 
ensemble members with the same land-surface model 
are similar.  Also note that correlations between each 
ensemble pair where only the cumulus scheme varies 
are one within the precision shown in the table, meaning 
the cumulus scheme has little impact on the 2-m 
temperature.  This is not surprising given that the 
training period is in January, when there is little 
convective activity. 

The 10-m u-wind correlations (Table 4) also show 
high correlations between members that vary only in 
cumulus scheme.  However, for 10-m u-wind the 
surface layer/PBL parameterizations seem to be the 
dominant influence, with the highest correlations 
between members that use the same surface layer/PBL 
pairing.  These correlations reinforce the BMA results 
above, which estimated similar weights for members 
with the same surface layer and PBL. 

In addition to these insights into the dominant 
model process in determining the surface conditions, we 
would like a measure of the performance of the 
calibrated ensemble, both for the deterministic forecast 
and the probabilistic forecast.  Here we consider root-
mean squared error (RMSE) as our deterministic 
measure.  Verifications are conducted over the period 
13-17 Jan, 2009, which keeps our verification period 
independent of our training period.  However, because 
the first week of the total forecast period, which 
encompasses much of the training period, has a very 
different weather regime than the verification period, 
calibration methods (including BMA) may perform worse 
than would otherwise be expected. 

The deterministic ensemble forecast is determined 
by weighting the forecast of each ensemble by its BMA-
estimated weight.  This is compared to a simple 
ensemble mean where all of the weights are identical.  
The probabilistic ensemble forecast is determined by 
calculating the conditional PDF of each ensemble 
member using a normal distribution with a mean of the 
member’s forecast value and a standard deviation as 
determined by BMA, then multiplying each by the 
ensemble weight and adding.  Neither ensemble 
prediction removes the member biases, which may 
adversely affect the performance of the BMA forecast. 

The root-mean squared error is defined as: 

2

1

1 N

i i
i

RMSE f v
N

          (5) 

where v is the value of observation i, f is the forecast 
value at the time and location of observation i, and N is 
the total number of observations. 

The RMSE of the BMA deterministic forecast is 
lower than the RMSE of the simple ensemble mean for 
every variable and forecast lead time combination 
studied, with the largest improvement coming in 
predicted 2-m temperature forecasts (Fig. 5).  This 
indicates that the BMA yields improved ensemble 
forecasts, at least for this case.  In the future we also 
plan to compute the continuous ranked probability score 
(CRPS) (Wilks 2005) as a probabilistic measure to 
evaluate the BMA-weighted ensemble, and compare it 
against the discrete CRPS for equal-weighted ensemble 
members.  This will provide another measure of 
ensemble performance. 

 
 

 
 
FIG. 5.  Root-mean squared error of the deterministic ensemble forecast using equal ensemble weights (blue) and 
BMA-determined weights (red) in the verification period of 14-17 Jan 2009.  Units are m s

-1
 for wind speed RMSE and 

K for temperature RMSE. 



 

5.  CONCLUSION 
 

This study demonstrates several aspects of 
ensemble creation and evaluation.  We created an 18-
member physics ensemble using the WRF-ARW model, 
and evaluated its performance over a two-week period 
in January 2009.  In section 3 we demonstrated how 
principal component analysis could be used in 
conjunction with regression analysis to nominate the 
elimination of poorly performing ensemble members in 
order to down-select a smaller ensemble.  In section 4 
we demonstrated Bayesian Model Averaging as a post-
processing method for ensembles that can produce 
calibrated probabilistic predictions and also be used to 
identify dominant processes.  Section 4 also introduced 
two evaluation metrics: the root-mean squared error, 
which is a deterministic measure of skill, and cumulative 
rank probability score, which is a probabilistic measure 
of skill.  We also calculated error correlations between 
all of the ensemble members, which showed that, for 
this two-week period in winter, changing the cumulus 
parameterization scheme had almost no effect on the 
forecasts.  These error correlations also indicated that 
changing the land surface model appeared to have the 
greatest effect on 2-m temperature predictions, while 
changing the pairings of the surface layer and planetary 
boundary layer schemes had the greatest effect on 10-
m wind predictions.  This illustrates the importance of 
varying these physics options to increase spread in a 
physics ensemble.  However, the ensemble spread in 
this study was quite low, indicating the need to 
incorporate initial condition and lateral boundary 
condition uncertainty in ensemble forecasting, at least in 
winter, when synoptic patterns tend to be more active.  
Also, while these methods did not specifically point out 
redundant ensemble members, it is apparent from 
several lines of evidence, most notably the error 
correlations shown in Tables 2 and 3 and the BMA-
determined ensemble member weights in Figs. 3 and 4, 
that changing the cumulus scheme had little effect on 
the forecasts in this study. 

In the future we plan to increase the size of the 
ensemble with additional combinations of physics 
options, and to evaluate the physics ensemble over two-
week periods in all four seasons.  In this study we used 
the first ten days of the 14-day evaluation period as the 
training periods for the PCA and BMA methods; in the 
future we plan to compare the results using a randomly 
chosen ten days for a training period.  The performance 
of the ensemble should also be investigated for 
forecasts initialized at 12 UTC in addition to 00 UTC, to 
account for possible diurnal effects in the forecasts.  
Recommendations will then be made of which ensemble 
members to use in a year-long ensemble for 
atmospheric transport and dispersion forecasting 
studies. 
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