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1. Introduction 

 

 Both the TDA (Mitchell et al 1998) and MDA (Stumpf et al 1998) were 

developed and used with WSR-88D data beginning in the early 1990s to help 

forecasters learn to recognize signatures of circulations far enough in advance to 

issue tornado warnings with ample lead times. With the development of new 

radar technologies, it has become necessary to develop a new rotation detection 

algorithm for forecasters. This study makes improvements to the algorithm now 

in development and analyzes slightly altered versions of this algorithm to 

determine which performs best in a set of case studies. The Kmeans 

(Lakshmanan et al 2003) algorithm is examined to determine the best adaptable 

parameter settings for it to work with azimuthal shear data, rather than reflectivity 

fields or satellite IR temperatures that previous studies have used. 

The algorithm identifies and tracks circulation “clusters” in maximum 

azimuthal shear fields. The last several positions of these circulation clusters 

through time are connected and shown as the “past tracks”. While these tracks 

should be predominantly linear if the algorithm accurately monitors and tracks 

these circulations, the tracks initially appeared erratic. This proved especially true 

at the smallest size scale, which study deals with exclusively. The number of 

clusters identified can also be problematic. Identifying too many clusters 

increases the false alarm rate, while too few could led to undetected 

mesocyclone-scale and tornado-scale circulations.  

 Three different size scales are used to identify and track both smaller 

tornado-scale and larger mesocyclone-scale circulations. The three main 

parameters of the algorithm initially altered in hopes of improving the algorithm 

were the filter types, size thresholds, and data ranges. Once parts of the 

algorithm were more closely examined through this process, it became apparent 

that other changes could be made as well.  

 This work attempts to make the number of circulations identified more 

accurate and improve the linearity of the cluster past tracks by altering the filter 

types, size thresholds, data ranges and by changing the tracking algorithm itself. 

The algorithm is tested on 11 different tornadic case studies (Table 1). Once 
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improvements are made, different versions of the algorithm are compared in 

three different categories using a statistical program called w2scoretrack. The 

goal of this project is to develop a set of adaptable parameters for the algorithm 

that accurately identify and track the circulations. 

 

2. Method 

 

a. Creating the maximum azimuthal shear fields 

 

 Due to the noisiness of the velocity field, a more organized field was 

desired for the circulation tracking and identification in this algorithm. By taking 

the least linear squares derivative (LLSD) (Smith and Elmore 2004) of the 

velocity field, an azimuthal shear field was created. This field is smoother and 

more ideal for tracking. The field is then converted from polar to Cartesian 

coordinates. Finally the maximum azimuthal shear values in the elevation scans 

between layers (0-3 km in this study) are incorporated into a two-dimensional 

field known as the maximum azimuthal shear field. Clusters are identified on the 

azimuthal shear field using an enhanced watershed transformation (Lakshmanan 

et al 2009). 

 

b. Improving the algorithm 

 

 The algorithm was evaluated using case studies in the WDSS-II graphical 

user interface. The 11 cases chosen were tornadic, used WSR-88D “super-

resolution” data, and occurred between May 2007 and February 2009. Several 

hours of radar data from each case study is used. 

 First, the algorithm was processed on the Greensburg, Kansas tornado 

case from the Dodge City WSR-88D (KDDC). This case was chosen randomly 

from the supplied case studies and while it is an example of a larger, extremely 

strong circulation, it also contained many smaller, less intense circulations. 

 The algorithm‟s performance was evaluated and several changes were 

made in hopes of improving its cluster identification and tracking. The first of 

these changes was a time/space correction on the azimuthal shear field that 

takes storm motion into account. This helped to eliminate “doubles” or “shadows” 

that occur when the same circulation is shown in the data at two different 

locations, and is an artifact of storm motion. These appeared in the field when 

not all of the elevation scans in the specified layer taken into account in a time-

step were updated. Before this change, the lowest scans received new data 

while the highest scans were still using the older data, producing a “shadow” or 

“double” in the maximum azimuthal shear field. 
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 Next, a 30° conical search radius was incorporated into the algorithm to 

help provide a better first guess approximation as to where clusters would be 

located in future time steps. Previously, the algorithm just looked to the nearest 

cluster without accounting for storm motion. The cluster identification was also 

made a function of not only the distance between clusters, but also a function of 

cluster peak values and sizes. The hope of this was that cluster identifications 

would remain assigned to the same circulations from time step to time step since 

the cluster‟s size and peak values would not fluctuate much between these 

steps.   

A nearest neighbor method was then implemented when converting the 

data to Cartesian coordinates. A weighted combination method using the nearest 

range-gate to each grid point center was used instead of the maximum value 

within a radius from the grid point center. The filter, size thresholds, and data 

ranges were also changed from the initial version to the improved version. The 

algorithm went from using a median filter initially, to an erosion/dilation filter. The 

filter takes every pixel touching a background pixel and changes it into a 

background pixel. Then the filter dilates, or makes every background pixel that is 

touching an object pixel into an object pixel. The rest of these parameter changes 

can be seen in Table 2. 

 Once all these changes had been made, the case was processed on the 

„New Hampshire tornado‟ case from the Boston, Massachusetts WSR-88D 

(KBOX) on 24 July 2008. Since this case had much lower maximum azimuthal 

shear values and was smaller in size, it was chosen to test the changes made 

based on the Greensburg case.  

 

c. Creating and scoring different tracking and identification methods 

 

After it was determined that the algorithm performed well qualitatively in 

both the Greensburg and New Hampshire cases, this improved algorithm was 

processed on all 11 case studies. Afterwards, small changes were made to this 

improved algorithm‟s filter and thresholds to create four additional, slightly altered 

versions of the algorithm. The performance of each of the five total versions was 

then scored in three categories using a technique developed by Lakshmanan et. 

al (2009). The parameters used for these versions are shown in Table 3. 

To provide temporal continuity, only clusters lasting longer than 300 

seconds (longer than one full volume scan) are used from each of the 11 cases. 

Since the tracks eliminated by this condition are very short, they have very little 

error and bias the overall results in each case. By eliminating them, values in 

every category increased.   

The versions were scored on median duration, position error, and 
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mismatch error. Median duration per cluster represents the median lifetime per 

cluster measured in seconds. Larger values in this category would indicate more 

continuous, long-lived circulations as opposed to short-lived circulations that 

oscillate above and below the data or size thresholds.  

Position error measures the position error in relation to a straight line 

between cluster locations over time. It essentially measures how linear the tracks 

remain through time. Small values in this category would be indicative of 

somewhat linear paths and few cluster mismatch errors over time. Mismatch 

errors refer to the amount of maximum azimuthal shear value fluctuation per 

cluster over time. When mismatches occur, the maximum azimuthal shear value 

for a specific cluster identification will change when the particular identification 

number is assigned to a cluster with different characteristics. The fluctuation in 

these values over time can be a tell-tale sign of a cluster mismatch. Since 

mismatches cause higher values, a good algorithm would want to have smaller 

values in this field. 

 

3. Results 

 

 While only qualitative comparisons are made between the pre-study 

version of the algorithm and the post-study version, it appears the changes made 

in this study significantly improve the algorithm. Figure 3 helps to illustrate this 

fact. This particular time step helps to illustrate how the path(s) have become 

more linear, mismatches have been reduced, and it appears that the more 

intense clusters are being properly identified. After qualitatively reviewing the 

performance of both the pre-study version of the algorithm and the post-study 

version, it does appear that there are significant improvements. 

 When examining the performances of the four additional, slightly altered 

versions of the post-study algorithm with the scoring algorithm, the results are 

much more quantitative. Figures 4, 5, and 6 indicate a great deal of overlap 

between the different versions, especially in terms of confidence intervals. In 

terms of position error (or linearity error), all five scored versions seem to have a 

median value very near 1 km and their confidence intervals almost completely 

overlap. An ideal version of the algorithm would have very low values in this 

category. Thus, in terms of position error there is no clear “best” version. 

 Figure 5 shows the relationship performance of the different versions in 

terms of cluster durations. Unlike the other two statistically evaluated categories, 

ideal duration values would be rather high. This would indicate that clusters are 

being accurately tracked throughout time. The SizeIncrease version does appear 

to have a longer median duration, but this is probably because since it increases 

the minimum size threshold, it also helps to filter out some of the shorter-lived 
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clusters. This can be seen in Figure 7, which shows how many clusters are used 

by each of the versions. It can be seen that the SizeIncrease version uses many 

fewer clusters that some of the other methods. Since this is the case, it is difficult 

to count this as a “win” for the SizeIncrease method. Strong circulations of 

smaller sizes could slip through without being detected using this particular 

version. 

 The numbers of cluster identification mismatches are shown in Figure 6. 

While there is still a larger overlap between confidence intervals, the Median0.05 

version does appear to have a lower median value that the other versions.  

 Taking into account all three categories evaluated by the statistical 

software, it does not appear that there is a definite “best” method for circulation 

detection and tracking. There was a great deal of confidence interval overlap 

between all the methods and the only category with a possibly significant 

performance was the Median0.05‟s performance in terms of a lower mismatch 

error. 

 In an attempt to gain some kind of quantitative results comparing the pre-

study algorithm to the post-study algorithm, the statistical software was 

processed on the Greensburg, Kansas once using the pre-study version of the 

algorithm and once with the post-study version of the algorithm. The results of 

this comparison are shown in Figures 8, 9, and 10.  

 As seen in Figure 8, the median linearity/position error is roughly 0.5 km 

lower in the post-study version of the algorithm than in the pre-study version. The 

confidence intervals still overlap to a certain degree, but these results are 

encouraging. In terms of cluster duration (Figure 9), the median post-study 

version is actually reduced. The reasons for this are unknown and it should be 

noted that the confidence intervals in this particular category are incredibly large 

and overlapping. Median mismatch error (Figure 10) appears to have stayed 

nearly the same between the two versions, although it the confidence interval 

has become narrower.  

  

4. Conclusion 

 

 Since the scoring categories can work against each other in some cases, 

it is hard to score well in all three categories. As an example, an older cluster 

identification that becomes associated with a new cluster would have increased 

duration, but also increased mismatch error. The “best” method of cluster 

tracking and identification could not score the worst in any category and would 

ideally rank highly in all three.  

 The statistical significance of the results in all three categories is uncertain 

because of larger confidence interval overlap. The position error comparison is 
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very inconclusive due to similar median values and largely overlapping 

confidence intervals. The SizeIncrease method appears to have the longest 

duration, but since it tracks fewer clusters than most of the other methods, there 

is doubt to whether it would identify smaller, possibly tornadic circulations. The 

Median_0.005 method has a lower median value than the other methods in 

mismatch error, but the confidence intervals still overlap greatly. This overlap 

makes it very difficult to identify a best method for tracking and identification of 

circulation clusters. 

 There is much more confidence in the qualitative improvement from the 

initial version to the improved version of the algorithm processed on the 

Greensburg case. Track linearity appears better as well as accurate cluster 

identifications. The quantitative results of the scoring algorithm suggest support 

to these observations. Linearity error lessens in the improved version while 

mismatch error seems to have decreased slightly as well. Duration also 

decreased, most likely due to a decreased minimum size threshold in the 

improved version. 

  While nothing concrete arose from the pre-study version versus post-

study version of the algorithm in terms of statistical categories based on the 05-

06 May 2007 case, it did show possible signs of improvement in linearity error. 

Had this analysis been processed on all 11 cases, the results would be more 

substantial. 

 Overall there was no best method for cluster identification and tracking 

determined from this study, but all methods performed well. There was significant 

qualitative improvement from the algorithm‟s initial version and some suggested 

quantitative improvement as well.  
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Figures and Tables 

 

Case Study Date WSR-88D Radar Description 

04-05 May 2007 KDDC Greensburg, KS EF-5 

18-19 August 2007 KTLX Tornadic cells associated with Hurricane Erin 

07 January 2008 KMKX Few tornadic supercells 

05-06 February 2008 KNQA Super Tuesday Outbreak 

07-08 April 2008 KTLX Supercells with no tornado reports 

22 May 2008 KFTG Windsor, CO EF-3 

22-23 May 2008 KDDC Several strong supercell tornadoes 

25-26 May 2008 KDVN Parkersburg, IA EF-5 

12-13 June 2008 KICT Few supercell tornadoes 

24 July 2008 KGYX New Hampshire tornado 

10-11 February 2009 KTLX Supercell tornadoes 

Table 1: The dates, radars, and brief descriptions of the 11 cases used for this study are shown above. 

 

 

Figure 1: (Bottom left): The reflectivity image associated with the supercell that spawned the Greensburg, 
Kansas tornado on 06 May 2007 at 0420Z. (Bottom right): The white triangles denoted Tornado Vortex 
Signatures that have been registered in the velocity data associated with the reflectivity field in the bottom 
left.  These TVS signatures were used to detect and track circulations in the Tornado Detection Algorithm. 
Note that seven circulations are detected in this velocity couplet alone. These signatures often register in 
areas of clear air as well. This example also shows how much range folding and general messiness can 
appear velocity fields. (Top left): The maximum azimuthal shear below 3 km field associated with the 
reflectivity image in the bottom left. Note how the field looks cleaner and there is a more defined area of 
rotation (located in the red colors). (Top right): The algorithm has been applied to the field shown in the top 
left. The yellow box designates the identified cluster. This algorithm identifies one well-defined circulation as 
opposed to the seven circulations registered by the TDA in the velocity field.  
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Figure 2: The above image is the maximum azimuthal shear field associated with the supercell that spawned 
the Greensburg, Kansas tornado of 05-06 May 2007. This particular time step is at 0319Z on 06 May 2007. 
The yellow, red, and pink pixels indicate areas of high azimuthal shear values in the 0-3 km layer. The 
yellow numbered boxes are identified circulation clusters and the pink lines are the tracks that these clusters 
have taken through time. Ideally these lines would be somewhat linear. 

 

Algorithm 
Version 

Filter 
Minimum 

Data 
Threshold 

Maximum 
Data 

Threshold 

Minimum 
Size 

Threshold 

Initial (pre-
study) 

5 x 5 pixel median 0.005 s
-1

 0.02 s
-1 

30 pixels  

Improved (post-
study) 

3 x 3 pixel 
erosion/dilation 

0.006 s
-1

 0.02 s
-1 

25 pixels 

Table 2: The parameters used in this study are shown above for both the pre-study version of the algorithm 
and the improved version. The values of these parameters apply only to the smallest size scale, which was 
the focus of this study. 
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Figure 3: (Left): This image shows the pre-study version of the algorithm processed on the maximum 
azimuthal shear below 3 km field associated with the supercell that spawned the Greensburg, Kansas 
tornado on 05-06 May 2007. This particular time step is at 0249Z on 06 May 2007 and shows two identified 
circulation clusters, labeled 7 and 13. (Right): This image shows the closest possible time step (26 seconds 
behind the image on the left) using the post-study version of the algorithm on the improved background 
fields. The four yellow boxes numbered 8, 11, 3, and 12 refer to the identified circulation clusters. 

 
 

 Filter 
Minimum 

Data 
Threshold 

Minimum Size 
Threshold 

Improved 
3 x 3 pixel 

erosion/dilation 
filter 

0.006 s
-1

 25 pixels (~ 6 km
2
) 

5 x 5 
5 x 5 pixel 

erosion/dilation 
filter 

0.006 s
-1

 25 pixels (~ 6 km
2
) 

Median 
3 x 3 pixel 

median filter 
0.006 s

-1
 25 pixels (~ 6 km

2
) 

Median 
0.005 

3 x 3 pixel 
median filter 

 
0.005 s

-1
 25 pixels (~ 6 km

2
) 

Size 
Increase 

3 x 3 pixel 
erosion/dilation 

filter 
0.006 s

-1
 

40 pixels (~ 10 
km

2
) 

Table 3: The parameters of the improved version of the algorithm (grey row) and of the fourth slightly altered 
algorithms are shown above (white rows). 
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Figure 4: The above graph shows how the performance of the original post-study improved version of the 
algorithm with the four slightly altered versions of the improved version in terms of cluster position error. The 
grey columns show the median values in each category and the red whiskers enclose the 25

th
 and 75

th
 

percentiles. The data is the collected from the algorithms‟ performances in all 11 cases. 

 

 
Figure 5: The above graph shows how the performance of the original post-study improved version of the 
algorithm with the four slightly altered versions of the improved version in terms of cluster duration. The grey 
columns show the median values in each category and the red whiskers enclose the 25

th
 and 75

th
 

percentiles. The data is the collected from the algorithms‟ performances in all 11 cases. 
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Figure 6: The above graph shows how the performance of the original post-study improved version of the 
algorithm with the four slightly altered versions of the improved version in terms of mismatch error. The grey 
columns show the median values in each category and the red whiskers enclose the 25

th
 and 75

th
 

percentiles. The data is the collected from the algorithms‟ performances in all 11 cases. 

 

 
Figure 7: The above graph shows the number of clusters track by each method, or version per case.  
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Figure 8: The graph above shows the relationship in terms of linearity/position error between the initial and 
improved versions of the algorithm in the 05-06 May 2007 case. The grey bars indicate the median values 
and the red brackets indicate 25

th
 and 75

th
 percentiles. 

 

 
Figure 9: The graph above shows the relationship in terms of duration between the initial and improved 
versions of the algorithm in the 05-06 May 2007 case. The grey bars indicate the median values and the red 
brackets indicate 25

th
 and 75

th
 percentiles. 
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Figure 10: The graph above shows the relationship in terms of mismatch error between the initial and 
improved versions of the algorithm in the 05-06 May 2007 case. The grey bars indicate the median values 
and the red brackets indicate 25

th
 and 75

th
 percentiles. 

 


