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1. INTRODUCTION 
 

Accurate estimation of rainfall has long 
been a pursuit of weather radar research.  
Initial studies focused on developing 
appropriate reflectivity to rain rate (Z-R) 
relationships for drop size distributions 
(DSDs) associated with different storm types. 
However, varying DSDs were observed even 
within single storms, making the definition of 
characteristic Z-R functions difficult (Marshall 
et al. 1947; Atlas and Chmela 1957; Battan 
1973). Measuring DSDs and assigning Z-R 
relationships based on individual storm 
microphysics is difficult in a real-time, 
operational setting with single-polarization 
radar, so characteristic Z-R relationships were 
nevertheless selected for use in the National 
Weather Service’s WSR-88D network. 
Current estimates of rainfall rate use only one 
default Z-R relationship (Z=300R1.4) across 
the entire network of radars, but the option is 
available for additional Z-R functions to be 
added that are specific to the location of the 
radar, such as a tropical rain rate that is 
applied in coastal areas (Fulton et al. 1998).  

Several case studies of landfalling 
tropical cyclones demonstrated that use of the 
tropical Z-R relationship (Z=250R1.2) greatly 
reduced the underestimation bias of radar-
based estimates of rainfall when compared 
with collocated rain gauges (Vieux and 
Bedient 1998; Davis 2004; Gates 1997; Wood 
1997). However, Ulbrich and Lee (2002) also 
showed for landfall of the remnants of a 
tropical storm that the most appropriate Z-R 
relationship varied during different stages of 
the storm’s passage over the radar. The initial 
rainfall rates from the outer bands of Tropical 
Storm Helene best resembled that of 
midlatitude continental convection while the 
tropical Z-R worked best for the center of the 

storm. While the storm total bias of the radar-
based rainfall accumulation may have been 
small if a single Z-R relationship was used for 
the entire storm, large errors would be 
present when examining shorter time scales 
over the course of the storm’s evolution 
(Ulbrich and Lee 2002). This result 
demonstrates the need for adaptable, 
spatially varied Z-R functions that reflect 
changing environmental conditions and storm 
mode.  

The National Mosaic and Multisensor 
QPE Project (NMQ) is a testbed developed by 
the National Severe Storms Laboratory 
(NSSL) for both real-time, high-resolution 
precipitation estimation and short-term 
precipitation forecasts. The NMQ precipitation 
estimation product (Q2) has a 1-km spatial 
resolution over the continental United States, 
and hourly accumulations are updated every 
five minutes. It is a fully automated 
multisensor rainfall estimate that incorporates 
data from radar, rain gauges, and numerical 
weather prediction (NWP) model analyses. 
The various inputs are used to segregate 
different types of precipitation (stratiform and 
convective rain, hail, tropical rain, and snow) 
and assign different Z-R relationships at each 
grid point (Zhang et al. 2009). 

Identification of tropical (i.e., warm 
rain) precipitation for Q2 is currently based on 
vertical profiles of reflectivity (VPR) calculated 
at each radar location (Xu et al. 2008). The 
radar’s VPR is flagged as tropical if the 
reflectivity either monotonically decreases 
with height (i.e., no bright band is detected) or 
if the reflectivity below a detected bright band 
either remains approximately constant or 
increases with decreasing height. In other 
words, a non-tropical VPR is one in which 
reflectivity decreases below the bright band, 
implying that there is little if any increase of 



liquid water content below the freezing level 
(Fig. 1).  If a VPR is identified as tropical, the 
tropical Z-R relationship is then applied to all 
locations within a distance from the radar 
where reflectivity exceeds a threshold 
(generally the value at which tropical rainfall 
rates begin to differ significantly from 
convective or stratiform rates in the Z-R 
functions). The distance and minimum 
reflectivity are both adjustable parameters in 
the tropical rainfall identification algorithm.  
 
 

 
 

 
 
Figure 1. Vertical profiles of reflectivity classified 

as tropical (upper) and non-tropical 
(lower) in the Q2 system. Classifications 
are based on the slope of the profile 
below the freezing level. 

 

Because the tropical rainfall 
identification is based only on a single, 
instantaneous VPR at each radar location, 
there is no way to determine in the current 
algorithm whether the tropical Z-R is 
appropriate for the entire umbrella of the 
radar. It is often the case that significant 
rainfall events occur along boundaries 
between different air masses, with 
precipitation on one side of the boundary 
having very different characteristics from 
precipitation on the other side. This is true for 
extratropical transition of tropical cyclones in 
the Mid-Atlantic region, as well as convection 
that develops along midlatitude fronts and 
troughs. Thus, to apply the tropical Z-R 
relationship precisely where we might expect 
warm rain to occur, we need more information 
about the environment from which the 
convection developed.  

The goal of this study is to examine 
the Q2 rainfall estimates, hourly rain gauge 
accumulations, and environmental fields from 
the Rapid Update Cycle (RUC) model 
analyses for two tropical cyclone cases to 
determine if there are systematic relationships 
between the Q2 rainfall bias and the 
characteristics of the ambient environment 
that would indicate where application of the 
tropical Z-R is most appropriate. 

 
2. DATA AND METHODOLOGY 
 

The two rainfall cases analyzed for 
this study were both tropical cyclones that 
impacted North Carolina: Hurricane Isabel 
(2003) and Tropical Storm Alberto (2006). 
Hurricane Isabel made landfall near Cape 
Hatteras, NC, on September 18, 2003 at 
category 2 strength on the Saffir-Simpson 
scale (Gautam et al. 2005). It then weakened 
to a tropical storm over Virginia before 
becoming extratropical further north into 
Pennsylvania on September 19. The domain 
for this study only includes the region where 
Isabel was hurricane strength (Fig. 2), so it is 
considered to be a true tropical system with 
no extratropical characteristics.  
 



 
 

Figure 2. Tracks and intensities of Hurricane Isabel and Tropical Storm Alberto (source: Coastal Services 
Center). The red box represents the domain of this study. 

 
Tropical Storm Alberto was quite 

different, however. Alberto developed in the 
western Caribbean and made landfall as a 
tropical storm over the Florida panhandle. 
The storm weakened to a tropical depression 
in Georgia as it moved northeast and was 
classified as extratropical by the time it 
reached eastern North Carolina (Franklin and 
Brown 2006). The remnants of Alberto left 
torrential rain and flooding in North Carolina, 
with some areas receiving 5-7 inches in 24 
hours. 

Hourly, 20 km, isobaric RUC analysis 
files were retrieved in GRIB format for the full 
duration of each rainfall event within the 
selected domain (Fig. 2). Individual variables 
were extracted and remapped to the Q2 
cartesian 1km grid for direct comparison to 
the QPE fields. The variables analyzed for 
tropical rainfall classification were: 

 
1) Precipitable water 
2) Precipitable water * 1000-700 hPa mean 

Relative Humidity (an approximation of 
Precipitation Efficiency) 

3) Equivalent Potential Temperature (Theta-
E) 

4) Cloud depth (difference between cloud 
base and cloud top fields) 

5) 500 hPa Temperature 
 
Additional variables were also 

extracted that were required for generation of 
Q2, such as 0 °C isotherm height (used for 
bright band detection for stratiform rain 
classification) and surface temperature (liquid 
vs. frozen precipitation classification).  

Hourly Q2 rainfall fields without gauge 
bias correction were recreated for both events 
using the 20 km RUC fields and archived 
Level-II NEXRAD data from the National 
Climatic Data Center (NCDC). Data from 
three radars covering eastern North Carolina 
were used to generate the Q2 rainfall: 
Raleigh, NC (KRAX), Morehead City, NC 
(KMHX), and Wakefield, VA (KAKQ). The 
hourly Q2 accumulations are not based on 
single Z-R functions at each grid point for the 
entire hour. The best precipitation flag 
(stratiform, convective, tropical, or hail) is 
recalculated on the 5-minute update interval 
such that the one-hour accumulation can be a 
sum of different rainfall rates over the course 
of the storm evolution. While the hourly Q2 
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rainfall is updated every five minutes, only 
accumulations on the hour were retained for 
analysis in order to align with the times of the 
model fields and rain gauge data.  

The collection of hourly rain gauge 
data for Hurricane Isabel and Tropical Storm 
Alberto included gauges from several different 
networks: ASOS, North Carolina ECONet, 
USGS, and RAWS. Any gauges that were 
more than 200 km from the nearest of the 
three radars were excluded from the analysis. 
Extensive quality control was performed on 
the gauge dataset for a previous study that 
examined the same two storms and 
associated Q2 rainfall fields (Kitzmiller et al. 
2008). 

For the calculation of Q2 bias, a 
nearest neighbor method was used to match 
the location of each rain gauge to the nearest 
grid point on the Q2 cartesian 1 km grid. The 
rain gauge hourly accumulation was then 
subtracted from the Q2 accumulation such 
that overestimates (underestimates) by Q2 
would result in positive (negative) bias. Data 
values were not included in the analysis if 
both the Q2 and gauge accumulations were 
zero or if one of the two fields was flagged as 
missing. The bias was the value compared to 
the environmental fields in order to assess 
how well the Z-R selection for Q2 rainfall 
totals approximated the measured 
precipitation at varying intensities (reflectivity 
< 30 dBZ under a “tropical” radar was 
classified as stratiform). 
 
3. RESULTS 

 
A strong relationship was found for 

Hurricane Isabel between gradients in the 
environmental parameters and the gauge 
biases across the domain (Figs. 3, 4). Q2 
tended to overestimate rainfall totals in 
environments with lower water vapor content 
and shallower convection and underestimate 
rainfall where convection was much deeper 
and water vapor content was higher 
(generally near the center of the storm). This 
tendency was not only true for the heaviest 
rainfall, however, but for lighter accumulations 
as well where precipitable water was high. Q2 
underestimated rainfall at nearly all locations 

where the gauges exceeded 15 mm in one 
hour (denoted as yellow, green, and blue 
points in Fig. 4), and Q2 underestimates of 
more than 10 mm were all located in 
environments where precipitable water was 
greater than 40 kg m-2. Large Q2 
overestimates were only found where 
precipitable water was less than 40 kg m-2. 
Similar trends were also evident in the 
equivalent potential temperature, 500 mb 
temperature, and cloud depth parameters 
(Fig. 4). 

Because Alberto was extratropical as 
it passed over eastern North Carolina, its 
environment was much different from that of 
Hurricane Isabel. Precipitable water was 
generally lower across the domain, and the 
500 mb temperature anomaly associated with 
the storm (i.e. mid-level diabatic warming) 
was generally lower. The trends between 
rainfall biases and environmental fields were 
not as clearly defined (Fig. 5), but the largest 
Q2 underestimates still occurred only where 
precipitable water was highest. The relative 
humidity modification of precipitable water did 
amplify the difference between the dry and 
moisture-rich environments and created a 
clearer separation between the largest Q2 
high and low biases (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 3. Evolution of reflectivity, gauge/Q2 bias, and precipitable water during the landfall of Hurricane 

Isabel. Blue (red) circles in the bias field represent Q2 overestimates (underestimates), and the 
dark green and blues in the precipitable water field indicate PW > 2 inches. 



 
Figure 4. Comparison of RUC-derived environmental parameters and gauge/Q2 rainfall biases for 

Hurricane Isabel (all hourly gauge accumulations > 2.54 mm). Dot colors represent the hourly 
rain gauge accumulation. 



  
 
Figure 5. Evolution of reflectivity, gauge/Q2 bias, and precipitable water during the passage of the 

remnants of Tropical Storm Alberto. Blue (red) circles in the bias field represent Q2 
overestimates (underestimates), and the dark green and blues in the precipitable water field 
indicate PW > 2 inches. 

 
 
 



 
Figure 6. Comparison of RUC-derived environmental parameters and gauge/Q2 rainfall biases for the 

remnants of Tropical Storm Alberto (all hourly gauge accumulations > 2.54 mm). Dot colors 
represent the hourly rain gauge accumulation. 



4. MODIFIED PRECIPITATION TYPE  
 

Even if the nearest radar to a location 
is flagged as “tropical” by the Q2 algorithms, 
one would not expect the same tropical VPR 
shape in an environment containing much 
drier air below the cloud base. Evaporation 
would instead cause a reduction of liquid 
water content and drop size in the radar 
volume and thus reduce the reflectivity. This 
idea is supported by the relative humidity 
modified precipitable water field, because the 
1000-700 hPa relative humidity only tended to 
reduce precipitable water where rainfall 
accumulations were very light and/or Q2 was 
significantly overestimating.  

To eliminate the overestimation by Q2 
in the vicinity of tropical rainfall, a modification 
was made to the precipitation typing algorithm 
to only allow the tropical Z-R function to be 
applied where precipitable water exceeded a 
threshold. The threshold was initially 
determined to be 48 kg m-2 (1.9 inches) based 
on the inflection points in Figs. 4 and 6 where 
the rainfall bias transitioned from positive to 
negative in both storms, but this value would 
likely vary by geographic location and season 
(an area of future research). Where the 
tropical rainfall rate was not allowed to be 
assigned, the precipitation types were 
assigned as either convective or stratiform as 
is typically done in Q2 where the radars are 
not flagged as tropical. 

The modified precipitation typing 
greatly reduced the large overestimation by 
Q2 for Hurricane Isabel and led to a small 
improvement for Tropical Storm Alberto (Figs. 
7, 8). Alberto differed from Isabel in that the 
areas affected by the restriction of the tropical 
precipitation type were confined to the 
westernmost part of the domain where few 
gauges are available. This caused the 
scatterplot of gauge rainfall to show only a 
minor improvement in the overestimation bias 
(Fig. 8). 

Because Q2 has a tendency to 
systematically underestimate the heaviest 

rainfall amounts, the proposed explanation 
was that the Z-R relationship used for tropical 
rainfall is generally inadequate for capturing 
the rainfall rates in storms with high 
precipitation efficiency. An alternate tropical 
Z-R relationship was therefore tested for 
Isabel and Alberto that was derived from 
observations of convective storms over 
Taiwan (Z=32.5R1.65). The use of the Taiwan 
Z-R function did improve the bias where water 
vapor content was high (Figs. 7, 8), but it also 
introduced some overestimation of lighter 
precipitation that was not present with the 
original tropical Z-R function.  

Another idea proposed has been to 
use precipitable water or the relative humid 
ity-modified precipitable water as a scaling 
factor to enhance Q2 accumulations as a 
function of the environment’s water vapor 
content, which is a method currently 
employed for real-time satellite precipitation 
estimation algorithms such as the 
Hydroestimator (Scofield et al. 2003). Such 
an approach may have some value where the 
gauge-based bias correction is ineffective due 
to sparse gauge networks such as in the 
western U.S. Furthermore, a more linear 
approach to rainfall adjustment may not lead 
to the overestimation that was generated by 
changing the Z-R equation. 

Precipitable water was the only 
parameter used in this study to modify the 
precipitation types, but the other parameters 
were analyzed for both events in order to 
determine if a combination of variables used 
together would be a more effective 
discriminator of tropical environments than 
using one parameter alone. Future work will 
examine these and other parameters on a 
larger scale to see how the criteria for tropical 
rainfall varies geographically. A fuzzy logic-
type scheme using all the parameters (and 
the radar VPRs) with criteria specific to 
certain regions may be a much more robust 
way to apply the tropical rainfall rates in the 
Q2 system. 
 



   
 
Figure 7. Comparison of RUC-derived environmental parameters and gauge/Q2 rainfall biases for Hurricane Isabel 

using the three different tropical rainfall algorithms: Q2 default (left), precipitable water modification 
(middle), and precipitable water modification with the Taiwan tropical Z-R function (right). Dot colors 
represent the hourly rain gauge accumulation.  

 
  

 
 
Figure 8. Comparison of RUC-derived environmental parameters and gauge/Q2 rainfall biases for Tropical Storm 

Alberto using the three different tropical rainfall algorithms: Q2 default (left), precipitable water modification 
(middle), and precipitable water modification with the Taiwan tropical Z-R function (right). Dot colors 
represent the hourly rain gauge accumulation.  
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