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ABSTRACT

In this paper, we introduce a new approach to forecast verification in which observed and forecast fields are
approximated by a mixture of Gaussians and the parameters of the Gaussian Mixture Model fit are examined
to identify translation, rotation and scaling errors. We interpret resulting scores on a standard verification
dataset.

1. Introduction

Intuitively, approximating a gridded field by a Gaussian Mixture Model (GMM) may be
thought of as the process of finding an optimal way to place Gaussian functions at various
points in the image such that the sum of these Gaussians mimics the input gridded field. As
shown in Figure 1, the larger the number of Gaussian components in the mixture model, the
more closely the image recreated using just the Gaussian components resembles the original
image.

Given the GMM that approximates two images (the forecast and observed), we show in
Section 2 that it is possible to analyze the parameters of the component Gaussians to infer
translation, rotation and scaling transformations.

a. The Gaussian Mizture Model (GMM)

The GMM is defined as a weighted sum of K two-dimensional Gaussians:

G(fL’,y) = Zﬂ-kfk(x>y) (1)

where the amplitudes 7, are usually chosen so that they sum to 1. Each of the two-
dimensional Gaussians, fi(x,y) is defined given the parameters pi,, , iy, and ¥;, as (drop-
ping the subscript k for convenience):
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Fic. 1. Fitting a Gaussian Mixture Model to an image (a) Image being fitted: 2CAPS
24-hour forecast of one hour rainfall amount on May 31, 2005 from Kain et al. (2008). (b)
Image recreated from a GMM with 5 component Gaussians. (¢) With 10 Gaussians (d) With
20 Gaussians (e) With 50 Gaussians (f) Likelihood of the fit as the number of components
is increased



e, by are the center of the Gaussian and X, the variance of the Gaussian i.e. ¥, is a
matrix whose components are:
2
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where o, is the standard deviation in the x direction and o, the covariance of x and y.
|X,y| is the determinant of the ¥, matrix. The scaling factor of the individual Gaussians
(1/(2m+/|X])) has been chosen so that the Gaussians sum to 1 over all x,y. If the m;s are
chosen to sum to 1, then the GMM also sums to 1 over the entire image and a reasonably
good GMM fit can be found using the expectation-minimization method. For more details
on the optimization method, the reader is directed to Lakshmanan and Kain (2009).

The entire GMM fitting process is computationally very cheap. We found that computing
a b0-component GMM fit on a 500x600 image took just 0.05 seconds on a 1 GHz processor.

The GMM is completely specified by the following parameters: m, p,, fty, 05, 0, and
o4y for each of the K Gaussian components of the GMM. Recall, however, the GMM was
defined so as to sum to 1, and that that the intensity of the pixels plays no part in the GMM
equation. Thus, two minor changes have to be made to the GMM procedure explained above:

i. The total intensity associated with all the pixels in the image is stored and this value, A,
is used to scale the GMM so that the image intensities can be recreated i.e. the GMM
equation is modified to be:

ii. Because the GMM equation does not cater to the intensity, the more intensive locations
are repeated several times. This is done by creating a cumulative frequency distribution
(CDF) of the pixel values in the image and using a pixel’s location m times where m
is given by:

CDF(L,,)
freq(LInode)

where I,,,,4¢ is the intensity corresponding to the most frequent quantization interval in
the histogram of intensities used to compute the CDF. Pixel locations with intensities
lower than I,,,4. are used only once. It is apparent that if the correction factor, ~, is
zero, then pixels are not repeated and as gamma is increased, higher intensity pixels
are repeated more often. The results in this paper, unless explicitly stated otherwise,
all use v = 1.

m =1+ round( )V Ly < Lnode (5)

The need for, and the effect of, this intensity correction can be illustrated using the
artificial dataset shown in Figure 2. Without intensity correction (See Figure 2b), the GMM
fit simply tries to get all the non-zero pixel locations correct and the resulting GMM fit is
simply a symmetric ellipse. With low values of v (See Figure 2c), because there are many
more low-intensity pixels than high-intensity pixels, the GMM fit is dragged only slightly
towards the higher intensity values. On the other hand, when the higher intensity pixels are
heavily emphasized (See Figure 2e), there are many more high-intensity pixels in the fit and
therefore, several components of the GMM are expended towards getting the high-intensity
locations correct. In this paper, we use the moderate value of v = 1.



Fi1Gc. 2. Without intensity correction, the GMM will fit only the shape, ignoring the pixel
values. (a) Image being fitted: Synthetic image from Gilleland et al. (2009). (b) Image
recreated from a GMM with 10 component Gaussians but without any intensity correction.
(c) Same as b, but with an intensity correction of vy =0.5 (d) y=1(e) y=3 (f)y=5



b. Error Measures

Given two Gaussian components, one from the forecast field and one from the observed
field, it is possible to compute translation, rotation and scaling errors from the parameters
of the two components (how corresponding Gaussians are identified is described in Section
2f).

The translation error, e, is the Euclidean distance between their means:

Etr = \/(,Uxf = fzo)? + (fys — Hyo)? (6)

where the subscripts f and o correspond to the forecast and observed fields respectively.
The rotation error, e,,;, can be computed from the two covariance matrices since the first
eigen vector of a covariance matrix represents the direction of maximum variance (this is the
key idea underlying Principal Components Analysis, for example). Once the eigen vectors
of the two covariance matrices are computed, the dot product of the eigen vectors yields the
cosine of the angle between them. Hence, the rotation error (in degrees) can be computed

as: 180
erot = —c08 (vy.0,) (7)
T

where vy and v, are the maximum-variance eigen vectors of the covariance matrices (X) of
the forecast and observed fields. As pointed out by Davis et al. (2006), however, one should
be careful about using rotation error on objects that are circular. In the case of a GMM,

the confidence associated with e, is low if o, and o, are nearly equal.
The scaling error, e,. can be computed as:

_ Ay

(8)
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so that if e,. is less than one, it’s an underforecast and if it is greater than one, it’s an
overforecast.

c. Finding Corresponding Gaussians

All the error measures in the previous section are defined assuming that one Gaussian
component from each field (forecast and observed) is given. In fact, there will be K Gaussian
components available from each field. Therefore, these error measures are computed for each
pair of Gaussian components (K? pairs in all) and the best match for each forecast component
is selected by normalizing and weighting the three individual errors to compute an overall
error. We chose the scaling factors and weights arbitrarily:

e=0.3x% mm(%, 1) 4 0.2 % min(erot, 180 — €,6¢) /90 + 0.5 % (max(ese, 1/esc) — 1)  (9)

In practice, they would be chosen based on the resolution of the images and the needs of
the users of the forecast. For example, underforecasts and overforecasts may have different
costs, as could translation errors beyond a certain threshold.

The overall forecast error is defined as the mean of the individual GMM component errors.
Alternately, because the Gaussians are localized, the errors could be used as indicative of
the errors in different regions of the forecast field.



2. Results, Analysis and Conclusions

We computed the GMM on three datasets from a verification methods intercomparison
project (Gilleland et al. 2009; Ahijevych et al. 2009) that was established to improve the
understanding of the characteristics of various model forecast verification methods. The
goal of the intercomparison project was to provide answers to questions such as how differ-
ent verification methods provide information on location errors, intensity errors, structure
errors and model performance at different scales. To enable reasonable comparison, the
verification methods were carried out on synthetic and real fields with known errors. The
methods were also applied to a common dataset used in a subjective model evaluation ex-
periment. The results of the GMM approach on the different datasets that were created by
the intercomparison project are presented below.

a. Geometric

This dataset consists of a synthetic object that is subjected to geometric transformations.
We carried out GMM fitting assuming 3 components so as to keep the hand-analysis of GMM
parameters manageable. For consistency, we used the normal intensity correction (v = 1)
that we employ on real-world datasets.

Even though these choices are non-ideal for this synthetic object, the GMM approach
does extremely well in identifying the translation, rotation and scaling errors. The GMM
fit shown in Figure 3 is a poor approximation to the synthetic object. This is because the
synthetic object is unrealistic in two specific ways. First, the synthetic object has abrupt
transitions between intensity levels whereas Gaussian approximations are better suited to
more gradual varations. Secondly, the intensity (gamma) correction is done based on a
cumulative distribution function. This works well on real-world images but does poorly on
this synthetic image where the distribution function consists of just two values. Indeed, as
shown in Figure 2, it is possible to obtain a better approximation to the synthetic object by
using many more components (to better approximate the high gradients) and a higher value
of v (to better equalize the sparse intensity histogram).

By referring to Table 1, it may be observed that translation to the right, whether by
50 points as in geom001 or by 125 points as in geom005, is easily inferred by the change
in the longitude direction of the appropriate number of pixels. Translation to the north
or south can similarly be inferred from changes in p,. Differences in size can be inferred
quantitatively as changes in o, or in the amplitude,Am;, as in geom004. Both numbers
(1/2110/128 and 167034/49734) indicate that the region in geom003 is about three times
too big. The wrong orientation in geom(004 can be inferred from the changes in o, and o,.
The new object is 4 times too small in the north-south direction and 4 times too large in
the east-west direction. The translation by 125 pixels can be inferred by the change in .
Quantitatively, the rotation is captured by the e, of 90 degrees. When the objects become
circular (as in geom003 and geom005), the rotation metric is unreliable but this is to be
expected because the ”orientation” of a circular object is undefined. Thus the GMM is able
to capture the transformations on this synthetic dataset (except for circular objects).

If we were to rank the different synthetic forecasts by the admittedly subjective weighted
error metric of Equation 9, the order is: geom001, geom002, geom(004, geom003 and finally
geom005. This is intuitively what one would expect.
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F1G. 3. Top row: Synthetic images from Ahijevych et al. (2009). Second row: GMM with
3 components.

TABLE 1. GMM fits on synthetic images from Ahijevych et al. (2009) and the associated

errors. The numbers in bold are referenced in the text.

Each row refers to a Gaussian

component.
Data set | Description My | M O'Z Oy o2 Amy, Cr | €rot | €se e
geom000 | Original 249 | 203 | 1720 | 4 128 49734
249 | 203 | 1667 | 4 127 49734
250 | 203 | 1668 | 9 127 49737
geom001 | 50 pts. right 249 | 253 | 1694 | 0 129 49731 50 0 1 0.15
250 | 254 | 1682 | 4 121 49741 51 0 1 0.15
250 | 253 | 1679 | 4 131 49732 50 0 1 0.15
geom002 | 200 pts. right 249 | 404 | 1612 | 4 126 49739 | 201 | O 1 0.3
250 | 403 | 1682 | 4 127 49735 200 | O 1 0.3
250 | 403 | 1760 | O 129 49731 200 | O 1 0.3
geom003 | 125 pts. right, 250 | 339 | 1696 | 9 | 2110 | 167034 | 136 | 91 | 3.36 | 1.68
too big 249 | 340 | 1696 | 13 | 2048 | 167018 | 137 | 92 | 3.36 | 1.67
250 | 341 | 1647 | 4 | 2021 | 167032 | 138 | 91 | 3.36 | 1.68
geom(004 | 125 pts. right 249 | 341 | 104 | 1 | 2046 | 49736 138 | 90 1 0.5
wrong orientation | 249 | 340 | 101 1 12027 | 49729 137 | 90 1 0.5
250 | 339 | 105 2 | 2120 | 49740 136 | 90 1 0.5
geom(05 | 125 pts. right, 249 | 355 | 1678 | 17 | 8271 | 323126 | 152 | 90 | 6.5 | 3.25
huge 250 | 356 | 1688 | 34 | 8203 | 323125 || 153 | 90 | 6.5 | 3.25
250 | 356 | 1668 | 16 | 8265 | 323121 | 153 | 90 | 6.5 | 3.25
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F1G. 4. Top row: Perturbed images from Ahijevych et al. (2009). Second row: GMM with
3 components.

b. Perturbed

The "perturbed” set of cases from the Intercomparison Project (Ahijevych et al. 2009)
consists of observed data from the 2005 NSSL/SPC Spring Experiment described in Kain
et al. (2008). The observed data were subjected to various transformations as shown in
Figure 4. We carried out the fit with 3 Gaussian components, as in the case of the synthetic
cases, primarily to keep the hand-analysis of GMM parameter changes tractable. We used
only the top 10% of pixel values in each of the images to form the GMM fit so as to avoid
contanimation by the extremely large number of low intensity pixels in this real-world image.
This adaptive threshold was 6.6 mm on the original image and higher, due to movement of
pixels beyond the edge of the domain, for the perturbed images.

Here too, the GMM is able to capture the translations as shown in Table 2 for cases
1-3. Within the limits of round-off error, the differences in p, and p, match up well with
the known translation errors (See also the first two columns in Figure 4). In cases 4 and
5, the translations are larger. While the GMM fits and ey point to the magnitude of the
translation error, the numerical estimates are inexact because many of the pixels that were
in the original fit are now off the edges of the image.

Case 6 involves both translation and an overestimate of precipitation amounts — each
pixel’s value is multiplied by 1.5. This overestimate is captured in the amplitude (Amy)
of the Gaussian and in the scaling errors (ess). Moreover, the translation effect is mostly
independent of the amplitude effect as can be noticed by comparing the pu, and p, here with
those of fake003. The translation error in fake006 is not identical to that of fake003 because
formerly low-intensity pixels around the boundaries of a storm system were included in the



TABLE 2. GMM fits on perturbed images from Ahijevych et al. (2009) and the errors
associated with the forecasts. The numbers in bold are referenced in the text.
Data set | Description Ly o 02 Oy cr A | € | €rot | €se e
fake000 | Original 176 | 289 1305 743 | 1328 | 26437
309 | 252 | 1272 | 482 665 | 26437
379 | 407 | 1456 | 3919 | 20490 | 26437
fake001 | 3 pts. right 181 | 292 | 1306 | 743 | 1328 | 26437 || 6 0 1 0.02
5 pts. down | 314 | 255 | 1270 | 490 675 | 26437 || 6 0 1 0.02
384 | 410 | 1456 | 3918 | 20424 | 26437 || 6 0 1 0.02
fake002 | 6 pts. right 186 | 295 | 1307 | 744 | 1329 | 26437 || 12 | O 1 0.04
10 pts. down | 319 | 258 | 1269 | 496 675 | 26437 || 12 | O 1 0.04
389 | 414 | 1472 | 3928 | 20348 | 26437 || 12 | O 1 0.04
fake003 | 12 pts. right | 195 | 299 | 1206 | 840 | 1133 | 27101 || 21 | 178 | 1.03 0.08
20 pts. down | 340 | 261 | 774 | 578 767 | 34201 || 32 | 16 | 1.29 0.28
416 | 495 | 1051 | 1900 | 10252 | 17843 || 95 | 0 | 0.67 0.53
fake004 | 24 pts. right | 212 | 311 | 1059 | 813 | 1111 | 26527 || 42| O 1 0.13
40 pts. down | 354 | 276 | 1239 | 802 837 [ 33773 || 51| 9 | 1.28 0.31
432 | 483 | 1347 | 3110 | 13743 | 17566 || 93 | 2 | 0.66 0.54
contd...
fake005 | 48 pts. right | 250 | 335 | 968 | 801 | 1121 | 25113 || 87| 2 | 0.95|0.29
80 pts. down | 387 | 304 | 1772 | 1052 | 934 | 33256 || 94| 5 | 1.26 | 0.42
452 | 447 | 1405 | 4659 | 20003 | 15666 || 83| 2 | 0.59 | 0.6
fake006 | 12 pts. right | 192 | 298 | 1096 | 859 | 1198 | 33338 | 18 | 1 | 1.26 | 0.19
20 pts. down | 335 | 263 | 1178 | 773 829 | 42294 (|28 | 10 | 1.6 | 0.41
times 1.5 412 | 483 | 1264 | 2538 | 12634 | 22304 || 83| 1 |0.84 | 0.34
fake007 | 12pts. right | 222 | 306 | 2355 | 194 | 459 | 17815 || 49 | 140 | 0.67 | 0.48
20 pts. down | 345 | 258 79 162 486 | 20620 || 36 | 138 | 0.78 | 0.34
minus 2 mm | 409 | 431 | 755 | 2884 | 20770 | 15932 || 38 | 3 0.6 | 0.45

GMM fit once their intensities are multiplied by 1.5.

Finally, fake007 involves both translation and a consistent underestimate of precipita-
tion. This is reported by the GMM as a reduction in the amplitude and in the size (o, is
smaller and o, larger but the net change is towards a smaller size). Note, for comparison,
that fake006 showed an amplitude increase but no increase in size. Thus the GMM is able
to parsimoniously capture all the transformations on the perturbed dataset. The under-
forecast is captured in ey, but because the e,. was defined as a ratio, the reported error
(0.67, for example) does not match up with the actual transformation which was a constant
underforecast of 2mm.

Ranking the different perturbed forecasts by the error metric of Equation 9 yields this
order: fake001 (0.02), fake002 (0.04), fake003 (0.23), fake006 (0.31), fake004 (0.33), fake007
(0.42) and finally fake005 (0.44). Ordering forecasts in this manner is subjective as the order
would change depending on the weights assigned to the translation, rotation and scaling
errors and to the maximum tolerable errors in each category.
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c. June 1, 2005

The third set of cases we analyzed consists of observed data and model runs from the
2005 NSSL/SPC Spring Experiment described in Kain et al. (2008). The observed data from
June 1, 2005 are compared with 24 hour forecasts of one hour rainfall accumulation carried
out on May 31, 2005. The GMM fits of the data and the model forecasts (from the 2CAPS,
ANCAR and 4NCEP models) are shown in Figure 5. The images cover the lower 48 states
of the United States. The 4NCEP model forecast was produced at the National Centers for
Environmental Prediction (NCEP) using a Weather Research and Forecasting (WRF') model
whose core was a Nonhydrostatic Mesoscale Model (Janjic et al. 2005) with a 4.5km grid
spacing and 35 vertical levels. The 4NCAR model forecast was produced at the National
Center for Atmospheric Research using the Advanced Research WRF (ARW; Skamarock
et al. (2005)) core with a 4km grid spacing and 35 vertical levels. The 2CAPS was produced
at the Center for Analysis and Prediction of Storms at the University of Oklahoma (also using
the ARW core) with a 2km grid spacing and 51 vertical levels. All three forecast systems
used initial and lateral boundary conditions from the North American Model (Rogers et al.
2009). The observations are from the Stage II rainfall accumulation dataset produced by
NCEP (Baldwin and Mitchell 1998).

The June 1 case consists of three quite different systems: an elongated band stretching
north-south in the middle of the image, somewhat weaker precipitation in the Southeast and
weak, isolated storms in the Northwest. As with the ”fake” cases in the previous section, we
carried out the fits with 3 Gaussian components for tractability and limited the fit to the
top 10% of pixel values in each of the images. The 3-component GMM fit does not capture
these three events. Instead, two of the components correspond to the northern and southern
sections of the elongated band and the south-eastern band. The weak, isolated cells in the
Northwest are ignored in the GMM fit. As pointed out by Wernli et al. (2009), it would
be advantageous to carry out this analysis on smaller domains where only one type of of
meteorological system predominates. It should also be noted, from Figure 1, that higher
order GMM fits do capture all these systems. We chose to use only a 3rd order fit so as to
keep the hand-analysis of component parameters tractable. Automated analysis employing
more components is shown in Figure 6.

The GMM coefficients are shown in Table 3. The GMM coefficients of the 2CAPS forecast
(which is the same as the fake000 field in Table 2) are repeated for convenience.

The easy correspondence of GMM parameters that existed in the geometric and perturbed
cases does not exist in the real model forecasts. Nevertheless, interesting conclusions can be
drawn from the transformations indicated by the changes in the GMM parameters. We'll
consider the Gaussian components one-by-one.

For the first Gaussian component (corresponding to the Northcentral part of the image),
all three forecasts are displaced to the north and west. The 2CAPS forecast is the least
displaced — its p, and pu, are closest to that of the observation and e is lowest. The
4ANCAR model run underestimates the precipitation; the 2CAPS model run overestimates it
while the ANCEP gets the intensity of precipitation nearly correct (Amy of 23002 vs. 22136 or
a eg. of 1.04). Examining the elements of the X, matrix, the 2CAPS forecast gets the shape
wrong whereas the 4ANCAR and 4NCEP forecasts get the extent correct in the north-south
direction (the x direction in our right-handed coordinate system centered at the top-left of

10



<15 <20 <24
. 3

Observed ANCAR ANCEP

Fi1g. 5. Top row: Observations on June 1, 2005 and 24-hour model forecasts of one hour
rainfall amount on May 31, 2005. The 2CAPS forecast field is shown in Figure 4a. Second
row: GMM with 3 components.

TABLE 3. GMM fits on observed and model forecasts from Kain et al. (2008) and the errors
associated with the model forecasts.

Description My | 05 Oy 02 Amy, €ir | rot | €sc e
Observed 193 | 301 | 3546 | 841 | 936 | 22136
350 | 264 | 684 | 1218 | 7508 | 22616
383 | 309 | 921 | 2032 | 22181 | 20061
2CAPS forecast | 176 | 289 | 1305 | 743 | 1328 | 26437 || 21 | 151 | 1.19 | 0.22
309 | 252 | 1272 | 482 | 665 | 26437 || 43 | 129 | 1.17 | 0.33
379 | 407 | 1456 | 3919 | 20490 | 26437 || 98 | 6 | 1.32 | 0.47
ANCAR forecast | 159 | 260 | 3134 | 2344 | 7636 | 16464 | 53 | 129 | 0.74 | 0.44
277 | 264 | 3369 | 1607 | 932 | 39139 || 73 | 126 | 1.73 | 0.7
379 | 461 | 1729 | 2840 | 14879 | 21068 || 152 | 6 | 1.05 | 0.34
ANCEP forecast | 168 | 247 | 3518 | 747 | 6888 | 23002 || 60 | 118 | 1.04 | 0.34
278 | 258 | 3153 | 906 | 484 | 43675 || 72 | 117 | 1.93 | 0.82
405 | 416 | 3920 | 6740 | 24879 | 20010 | 109 | 11 1 10.33
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the image) but over-estimate the east-west extent.

For the second Gaussian component (corresponding to the Southcentral part of the im-
age), all three forecasts are displaced to the north, with the 2CAPS forecast again exhibiting
the least displacement. The forecasts are extremely vertical (ratio of o, to 0,) whereas the
observation indicates that the field should be more horizontal. The wrong orientation is
captured in e.,;. In terms of intensity (Amy or ey.), the 2CAPS is the closest whereas the
ANCAR and 4NCEP forecasts are significant overestimates.

On the third Gaussian component (covering the Southeastern part of the image), the
NCAR and NCEP model forecasts get the intensity and orientation correct but are displaced
to the east. The 4ANCEP also exhibits a displacement to the north. In addition, the ANCEP’s
forecast is overly large in the north-south direction indicating the precipitation, even if correct
in the aggregate, is spread over too large an area.

Overall, the rank of the models, based on the subjective weighting used in Equation 9, is
2CAPS (0.34), ANCAR (0.49) and 4NCEP (0.50). At the extremely coarse scale at which the
forecasts have been compared, the 2CAPS forecast exhibits the least translation, orientation
and scaling errors.

If we increase the number of Gaussians, it is possible to perform the comparison at finer
detail. Recall that we used 3 components in this paper only so that we could do a hand-
analysis of the Gaussian components. Since even a 50-component GMM fit takes just 0.05
seconds to carry out, an automated analysis of errors can be carried out by varying the
number of components from one to 50. This is shown in Figure 6. The errors plotted in that
graph are the translation, rotation and scaling errors scaled according to Equation 9 i.e. the
rotation error plotted there is:

min(epor, 180 — €,4¢)/90 (10)

so that the errors can be averaged across components and plotted on a consistent (zero to
one) y-axis. Looking at the total error graph at the bottom right of the figure, the relative
rankings of the models are quite constant. The 4NCEP model exhibits the greatest errors
while the 2CAPS one exhibits the least. The 4ANCAR model is intermediate between these
two, although at some scales (notably around 15 components), it does better than the 2CAPS
model. These relative rankings are driven most strongly by the translation errors. In terms
of rotation and scaling errors, the three models have comparable performance. It is also clear
that the error measures are quite robust to changes in the number of Gaussian components.

d. Summary

In this paper, we introduced the novel approach of using a Gaussian Mixture Model
to verify model forecasts. We showed that the GMM approach is able to easily identify
translation, rotation and scaling errors in forecasts.
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F1G. 6. Translation, rotation and scaling errors for 24-hour model forecasts of precipitation
accumulation on May 31, 2005 indicate that the 2CAPS model run exhibits the least error
and that the NCAR run is close to it in terms of performance, regardless of the number of
components used in the GMM fit. The forecast fields themselves are shown in Figure 5.
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The GMM fitting technique described in this paper has been implemented within the
Warning Decision Support System Integrated Information (WDSSII; Lakshmanan et al.
(2007)) as part of the w2smooth process. It is available for download at www.wdssii.org.
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