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ABSTRACT

Storm tracking algorithms have been evaluated either indirectly based on fields advected using their motion
vectors or by validating each association decision in a labor-intensive manner. In this paper, we introduce
three bulk statistics that are measures of mismatch error, jumps and of duration. These statistics allow us
to rank commonly proposed association heuristics (centroid projection, overlap, cost functions, etc.) and
choose a good storm tracking approach.

1. Introduction

Algorithms that can extract properties of storm cells and track those properties over time
provide information that is important to forecasters in assessing storm intensity, growth and
decay (Wilson et al. 1998). Because storm tracking algorithms are a key component of
nowcasting systems, the problem of how to track storms has received a lot of attention
by the research community. Several criteria for associating storm cells across time have
been suggested in the literature: using extent of overlap (Morel et al. 1997), using projected
centroid location (Johnson et al. 1998), minimizing a global cost function (Dixon and Wiener
1993), greedy optimization of position error and longevity (Lakshmanan et al. 2009) and
checking overlap followed by a global cost function (Han et al. 2009). It is important to be
able to objectively evaluate these suggested techniques in order to determine which criterion
or set of criteria provide the best skill.

a. Evaluating Storm Tracking Algorithms

One approach to evaluating storm tracking algorithms is to use the tracking algorithm to
create a short-term forecast and then compare the short-term forecast with actual data (Lak-
shmanan et al. 2003). However, this is an indirect measure of storm tracking effectiveness
since there is no way to separate out the effects of storm tracking from that of storm evolu-
tion. As pointed out by Wilson et al. (1998), the key reason for poor extrapolation forecasts
is not errors in forecast displacement, but the growth and decay of storms in the forecast
period.

A more direct way of measuring the performance of the storm tracking component of
storm identification and tracking algorithms was carried out by Johnson et al. (1998). A
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Fig. 1. Using the ”percent correct” of time assocations is flawed as a way of evaluating the
performance of tracking algorithms because it is an overestimate as discussed in the text and
shown in (a) and is non-specific as discussed in the text and shown in (b,c,d). Dashed lines
as in (a,b) indicate a ”dropped” assocation while arrows indicate a wrong association which
could be due to a mismatch as in (c) or due to a ”jump” as in (d). Solid lines indicate a
correct time association.

”percent correct” of time associations was computed by comparing the automated association
of cells with a human association. This method suffers from three serious flaws: labor
intensiveness, overestimation of skill (see Figure 1a) and non-specificity (See Figure 1b-d).
shown in Figures 1b,c,d.

b. Storm Tracking Algorithms

The basic unit of a storm tracking algorithm is the method by which storms identified in
one time frame are associated with the already labeled storms in the previous time frame –
a storm that is associated with a storm in the previous time frame inherits its label (usually
termed its cell ID) and its time history. A ”track” consists of the locations of a storm from
the time it was first assigned a cell ID to the last time at which that ID was observed.

Many heuristics have been proposed to associate storms identified at the current time
frame, tn, with storms identified at the previous time frame tn−1:

i. PRJ (Johnson et al. 1998): Cell centroid locations at tn−1 are projected (PRJ1) to where
they would be at tn based on the position of the cell centroid at times tn−k|k > 1. Then,
each cell at tn is assigned to the closest unassigned centroid within a certain search
radius. If no centroid is close by, then the cell is given a new ID.

ii. CST (Dixon and Wiener 1993): A global cost (CST) function, formulated as the sum of
the Euclidean distance between matched centroids and a distance metric based on some

1This mnemonic was not used by Johnson et al. (1998). They refered to their entire algorithm as SCIT,
an acronym for Storm Cell Identification and Tracking. Because we wish to emphasize that the comparisions
in this paper are carried out using a common identification algorithm (not the one in SCIT), and changing
only the association algorithm, we assigned mnemonics that refer to just the association algorithm used in
the various studies.
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property that should be relatively consistent, is minimized. Dixon and Wiener (1993)
employ the volume of the cells as this consistent property; in this paper, we’ll use the
area of the cells since our comparison of tracking algorithms will be on two-dimensional
images.

iii. AGE (Lakshmanan et al. 2009): All projected cells within a size-based radius (given
by

√
A/π where A is the area of the storm) are considered ”tied” in terms of position

error, and such ties are resolved in favor of the longer-lived storm, i.e. based on age.

iv. OV (Morel et al. 1997): A storm at tn gets the ID of the cell at tn−1 with which it
has maximum overlap (OV) and whose ID has already not been assigned. Cells are
considered in order of size, with the largest cells assigned first.

v. OC (Han et al. 2009): This is a combination of the OV and CST methods carried out
in sequence. Cells at tn that have 50% or greater overlap with cells from tn−1 are first
matched. Unmatched cells are then associated using a global cost function or assigned
a new ID.

vi. NEW (Lakshmanan and Smith 2009): A newly devised algorithm based on the evalu-
ation technique described here and based on combining the best aspects of AGE, PRJ
and CST.

We will employ the objective evaluation of storm tracking introduced in this paper to
compare these heuristics on different cases.

2. Evaluation Method

We evaluate an algorithm by computing the following statistics on each track produced
by that algorithm:

i. dur is the duration of the track. The duration is longer if there are fewer dropped
assocations.

ii. σV is the standard deviation of the VIL of the cell in time (i.e. along a track). The σV

is lower if there are fewer mismatches.

iii. exy is the Root Mean Square Error (RMSE) of centroid positions from their optimal
line fit. The exy is lower for more linear tracks.

Central tendencies of the above statistics are computed on a large dataset of tracks:

i. d̃ur is the median duration of tracks in the dataset. The better the association tech-
nique, the fewer the number of short-lived tracks that result from the technique and the
greater d̃ur is since the distribution of track lengths will be skewed towards longer-lived
tracks.

ii. The mismatch error (σV ) is the mean σV on tracks with duration greater than d̃ur.
Fewer mismatches are indicated by more consistent VIL values and, thus, by a lower
σV . This statistic is computed only on tracks with duration greater than the median
duration.
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iii. The linearity error (exy) is the mean exy on all tracks with duration greater than d̃ur.

In order to perform a fair comparision of different storm tracking techniques, they were
run against cells identified using the same storm identification technique with the same
parameters. The techniques were evaluated on a common dataset consisting of the following
WSR-88D radar data (from 18:00 UTC to 23:59 UTC on each of the days): KBIS, Bismark,
ND on May 21, 1995; KCBX, Boise, ID on May 1, 1995; KIWA, Phoenix, AZ on Aug.
6, 1993, Aug. 20, 1993 and Aug. 6, 2003; KLSX, St. Louis, MO on June 8, 1993 and
July 2, 1993; KLWX, Sterling, VA on Apr. 14, 1993, May 1, 1994, Oct. 6, 1995 and Oct.
6, 2005; KMLB, Melbourne, FL on Mar. 25, 1992, June 9, 1992 and June 12, 1992; and
KTLX, Oklahoma City, OK on June 18, 1992 and Feb. 21, 1994. These cases are diverse
geographically and in terms of the storm types. For example, they include a mesoscale
convective system (KMLB, Melbourne, FL on Mar 25, 1992), a convective line (KLSX, St.
Louis, MO on June 8, 1993), a stratiform event (KTLX, Oklahoma City, OK on Feb 21,
1994), isolated storms (KIWA, Phoenix, AZ on Aug 6, 1993) and a minisupercell (KLWX,
Sterling, VA on Oct 6, 1995).

a. Analysis

It can be noted from the first column of graphs in Figure 2 that the mismatch error (σV )
is lowest when using the overlap (OV) method. The drawback of using such a conservative
approach to associating cells is that the median duration of tracks is bad (white bars) in
four of the five cases – only for isolated cells does the OV method have good performance
on all three measures.

Similarly, it can be noted from the second column of graphs that the linearity error
(exy) is lowest when using the projected centroid (PRJ) method of Johnson et al. (1998).
Again, this is not surprising because the centroid projection method explicitly minimizes
position error after accounting for storm movement, thus emphasizing linearity at the cost
of duration. Indeed, the PRJ method has bad performance in two of the five cases on the
length metric.

The AGE method that was introduced ”for simplicity” in Lakshmanan et al. (2009)
performs surprisingly well for all cases. That method finds reasonable candidates in terms of
location error and then chooses among these candidates first in terms of longevity and then (if
there is a tie in terms of age) on size and finally in terms of intensity. Later experimentation
determined that longevity alone was enough and it is that even simpler version that was
used in this paper. The good performance of AGE indicates that the key parameters for a
tracking algorithm are location error and longevity.

The new tracking technique introduced by Lakshmanan and Smith (2009) exhibits con-
sistently good performance as evidenced by the black and gray bars in Figure 2 on all cases
and metrics.

3. Summary

Although storm tracking algorithms are a key ingredient of nowcasting systems, evalua-
tion of storm tracking algorithms has been indirect, labor intensive or non-specific. In this
paper, we introduced a set of easily computable bulk statistics that can be used to directly
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Fig. 2. Evaluation of different tracking techniques. Black bars denote good performance
while white bars indicate poor performance.
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Fig. 3. Evaluation of tracking techniques on all 16 cases. Black bars denote good perfor-
mance while white bars indicate poor performance.

evaluate the performance of tracking algorithms on specific characteristics. We applied the
evaluation method to a diverse set of radar reflectivity data cases and noted the character-
istic behavior of five different storm tracking algorithms proposed in the literature and now
employed in widely used nowcasting systems. We also devised a storm tracking algorithm
that performs consistently and better than any of the previously suggested techniques.
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