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Abstract

A probabilistic cloud-to-ground lightning algorithm was created by training a neural
network on storm characteristics. The input dataset consisted of all storm cells over the
entire coterminous United States on 12 days in 2008-2009 (one day per month). The input
characteristics include radar and near-storm environmental parameters and the neural
network was set up so that its output is the probability of cloud-to-ground lightning at a
grid location 30 minutes in the future. The probabilistic output was evaluated on twelve
independent test dates in 2008-2009 and results of that evaluation are presented.
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1. INTRODUCTION

Accurate temporal and spatial prediction of lightning is important since cloud-to-
ground lightning is hazardous to life and property (Curran and Holle, 1997). Predicting
when and where lightning will occur has proven to be a difficult problem, since it is tied to
convective initiation, as well as a good spatial and temporal understanding of electrification
inside the thunderstorm. A pixel-by-pixel input-output mapping of probability of lightning
at 3-hour intervals was successfully developed at a 22 km resolution to train a neural
network (Burrows, et al. 2005). At the finer resolution of this study (i.e. about 1 km),
however, pixel-by-pixel input-output mapping will not work (explained in Lakshmanan &
Smith, 2009), and so it is necessary to treat storms as objects and train the neural network
with storm properties, and not simply pixel values. Carey & Rutledge (2003) examined
regional variability of cloud-to-ground lightning in severe and non-severe thunderstorms
in the north central U.S., and acknowledged the subjectivity of their definition of severe vs.
non-severe storms. Another regional analysis investigated lightning initiation around Cape
Canaveral, FL, and used the presence of a 10 dBZ echo at the 0° C isotherm as a criterion to
judge the onset of cloud-to-ground lightning in a storm (Hondl & Eilts, 1994). These two
studies had conflicting thresholds for thunderstorms, due in part to their regional extent.
The goal of this study is to further the development of a single, national algorithm to
forecast the probability of cloud-to-ground lightning.

A reliable short-term forecast of intense lightning could be a very useful tool for the
U.S. National Weather Service. Lakshmanan and Smith (2009) describe a method of
predicting the probability of lightning at a given grid location produced by a storm in the
next 30 minutes. Their method involved the training of a neural network on input spatial
clusters of radar reflectivity, vertically integrated liquid (VIL), and near-storm environment
parameters. They explain that it is necessary to treat storms as entities and train the model
with storm properties, and not just on pixel values from a grid. This is namely because even
though, for instance, strong reflectivity at -10°C is a good indicator of lightning, the cloud-
to-ground strikes may not necessarily occur at the location of the maximum reflectivity at
-10°C, but may very well occur elsewhere in the storm, such as in the anvil region.

The neural network lightning prediction algorithm was evaluated on all storms over
the CONUS on 12 days (one per month) from 2008 and 2009 (three from 2008; nine from
2009), which were independent from the days the algorithm was trained on. Evaluation
methods include traditional verification scores, as well as some probabilistic verification
techniques such as the Brier Score and Fractions Skill Score.

2. METHOD

A list of potential predictors of cloud-to-ground lightning used to train the neural
network are given in Lakshmanan and Smith (2009) and are based on Hondl and Eilts
(1994). The predictors include different reflectivity and reflectivity-derived products, as
well the current (the time when the forecast is made) lightning density (units of flashes
minute! km-2), and Lagrangian aspects of the storm such as size and speed. The goal is to
ultimately provide geometric, spatial, and temporal properties of a storm, in real-time, as



inputs to the neural network to generate a predicted lightning probability field, or cluster,
in an operational environment, then advect the lightning probability cluster forward in
time by 30 minutes to create a nowcast for lightning. The neural network outputted a
cluster of uniform probability of cloud-to-ground lightning every 15 minutes for every
“storm” that was tracked. The tracking was done on merged reflectivity clusters, which can
include regions of weak and intense reflectivity. Therefore, every output probability region
does not necessarily correspond to a thunderstorm, but a region of reflectivity. However,
regions of weaker reflectivity would tend to have much smaller probabilities of lightning
associated with them, since the algorithm tends to yield higher probabilities for stronger
radar reflectivities. Probabilities range from 0.01 to 1.0 incremented by 0.01. Storms are
identified using an enhanced Watershed algorithm (Lakshmanan, 2009) and tracked using
cross-correlation and Kalman filters (Lakshmanan et al. 2003). Spatial and temporal
attributes of clusters are extracted as described in Lakshmanan and Smith (2008). A storm
is defined as a group of pixels that meet some size criterion, or “saliency,” whose intensity
values (in terms of radar reflectivity, here) are greater than a minimum value criterion. The
clustering saliency that we chose was 200 km?2, which performed the best in terms of hit
rate. The minimum reflectivity value we chose to threshold storms at was 20 dBZ. It is
reasonable to expect, however, that different cluster saliencies, and perhaps different
storm definitions (in terms of reflectivity) may be more appropriate for different forecast
time periods.

The probability of lightning regions were evaluated using some traditional
verification scores, including the probability of detection (POD), false alarm ratio (FAR),
critical success index (CSI), and Heidke Skill Score (HSS) (e.g. Wilks, 2006). Cloud-to-
ground strikes from the National Lightning Detection Network (NLDN) were averaged in
space (3 km radius) and time (15 minutes) to create grids of lightning density. A location is
said to have experienced lightning if there is a cloud-to-ground strike within a given
distance to that point within the past 15 minutes. Fig. 1 shows the correspondence of the
lightning density and lightning probability clusters for a given time, as well as how the
algorithm was able to predict lightning initiation. The clusters are all created on a grid with
resolution of 0.01 degrees latitude and longitude (about 1 km by 1 km in the mid-latitudes).

If any area fraction of a lightning probability cluster, forecasted at time to, intersects
any area fraction of a lightning density cluster at to+3omin, then that particular probabilistic
forecast is considered a ‘hit.” A ‘false alarm’ occurs if the probability cluster intersects no
area of lightning density, and a ‘miss’ may also occur, if a lightning density cluster did not
have a lightning probability forecast covering any of the area. This ‘double penalty’ was
partially ameliorated in two ways: firstly, a search radius of 10 pixels (about 10 km) for
each probability cluster was employed; secondly, probability clusters and lightning density
clusters were ignored if they did not meet the size threshold of at least 50 km2. The search
radius helps forecasts that are relatively close, and it also helps capture anvil strikes that
are away from the core of the storm. The size threshold helps eliminate single strikes far
out from the core, in the outer perimeter of the anvil, which would yield a low lightning
density cluster that is spatially unconnected with the rest of the parent storm. The size
threshold does not neglect very small storms. Instead it ignores weak storms. A storm that
creates a 50 km? cluster of lightning density had just one lightning flash since a single
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Fig. 1: Representation of how the algorithm tracks storms and captures lightning initiation. The date is 12 July 2009, one of
the evaluation dates, and geographically, this region depicts the southeast U.S., including Tennessee, southern Kentucky,
northern Alabama and northern Georgia. a) Initial observed lightning density clusters at time to, which is 2002-2007 UTC
(depending on the product). b) The composite reflectivity field (lowest tilt) at to. ¢) The reflectivity at the -10° C isotherm at t.
d) Clusters identified in the reflectivity composite (at time to, as described in Lakshmanan et al. 2003.) e) Predicted clusters of
probability of cloud-to-ground lightning at to+30 minutes (2037 UTC). Yellows, reds, and white indicate higher probabilities
(~70-100%), and blues indicate lower probabilities (~20-40%). f) The actual observed lightning density clusters, at to+30
minutes. Yellow circled regions are example areas of where the algorithm captured new initiation of cloud-to-ground lightning
strikes. These are areas where there was no lightning observed at to (in a) but it was forecasted at to (in e) and it was indeed

observed at to+30 minutes (in f).



lightning flash is averaged in space of a 3 km radius (1 km? +/- 3 km in +/- x and y
directions yields a 7 km by 7 km box equal to 49 km?2). In essence, we are ignoring storms
that produce less than 2 flashes in 15 minutes.

Correct nulls are computed, but not in the traditional manner. Since cloud-to-
ground lightning is such a low probability phenomena, climatologically speaking, any areas
that do not have lightning density clusters or probability clusters could be considered
correct nulls. However, this would saturate the standard 2-by-2 contingency table (e.g.
Wilks, 2006) with an enormous amount of correct nulls. In this study, correct nulls are
computed based on a probability threshold. Any probability cluster with a probability
below that threshold that would normally be scored a false alarm will now be considered a
correct null, and any cluster with a probability at or above that threshold will be treated as
usual, and scored either a hit or false alarm. Since only probability clusters (and therefore
only tracked clusters of merged reflectivity) can be considered, we are essentially
rewarding the algorithm for correctly not forecasting lightning in areas of reflectivity
where there was no lightning, and not simply counting everywhere in the CONUS where
there was not lightning as a correct null. For example, at the 20% threshold, all probability
clusters less than 20% that contained no lightning density will be considered a correct null
instead of a false alarm. It should be noted that the Heidke Skill Score couldn’t be
computed at the 0% threshold (all probability clusters) since (by our definition) we have
no information about correct nulls.

3. RESULTS

The days evaluated from 2008 were: 9 October, 11 November, and 10 December;
from 2009: 3 January, 11 February, 28 March, 10 April, 8 May, 9 June, 12 July, 9 August, and
8 September. Days were chosen such that there was at least some lightning in the CONUS.
Probability of lightning forecasts were produced every 15 minutes of each day, and the
aggregate results included: 31,285 hits; 28,462 misses; 111,663 false alarms; and 70,934
observations. The number of hits and misses do not add up to the total amount of
observations since a probability cluster may contain one or more lightning density clusters,
or observations.

Figure 2 displays the aggregate POD, FAR, CSI, and HSS for the twelve evaluation
days as a function of probability threshold, in a binary sense. Any forecast probability at or
above the threshold indicates a “yes” forecast and below the threshold indicates no
forecast. The maximum CSI (0.325) is produced at the 50% threshold, which is of course,
the threshold that would produce non-probabilistic forecasts (“yes” or “no”) of the more
likely of the two events (lightning or no lightning).

The Heidke skill score uses the proportion correct (sum of hits and correct nulls
divided by sample size, [e.g. Wilks, 2006]) as the accuracy measure. Thus, skill is relative to
that of random chance. HSS = 1 for a perfect forecast; a forecast equivalent to the reference
forecast receives a score of zero; and HSS < 0 are given to forecasts worse than random
chance. With the exception of the 10% probability threshold, which had negative skill, all
other probability thresholds had positive skill with respect to random chance, with a
maximum HSS at the 70% threshold, of 0.307.
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Fig. 2: POD (blue), FAR (green), CSI (red), and HSS (orange) as a function of probability
threshold. which vields binarv forecasts.

The maximum CSI varied by season and by threshold, as shown in Figure 3. The cool
season (December to March, here) had maximum CSI’s below 0.2, while the warm season
days (April to November) all had a CSI of 0.25 or greater. It should be noted again that only
one day per month was evaluated, so these results may not be entirely representative of
the monthly population, however, it is interesting to see the seasonal difference in CSI with
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Fig. 3: Maximum CSI for each month (blue bars), and at what threshold

that CSI occurred (orange line).
similarly to threshold.

CSI is multiplied by 100 to scale it

our small sample size.
One can also see how the
threshold at where the
maximum CSI occurred
ranges from the 30%
threshold to the 80%
threshold, with the cool
season months tending
to have a lower threshold
value than the warm
season months.

A maximum CSI at
a higher threshold may
indicate that the
lightning density clusters
tend to be stronger that
day, such that it is likely
that more high-
probability clusters
would be forecast than
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The reliability and sharpness of the lightning prediction algorithm are shown in
Figures 4 and 5, respectively. The observed probabilities are binned into 10% increments,
centered around the values on the abscissa, and inclusive on the upper bound. However,
the forecast probability bin of 1 includes only probabilistic lightning forecasts equal to
unity. Ideally, we would like to see the observed probability along the line y=x,
corresponding to perfect reliability, that is, the probability of the observations given the
forecast should equal the actual forecasted probability. Towards both extremes, the
algorithm appears to be rather reliable, with the observed probability lining up close to the
perfect reliability line. In the middle forecast probability bins, the algorithm is clearly over-
forecasting, yielding observed probabilities less than the actual observed frequencies of
lightning, i.e. the forecasted probabilities of lightning underestimate the observed
frequencies of lightning.

A sharp algorithm
is desirable as well, since
it tends to forecast
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Fig. 5: Sharpness diagram for the probabilistic lightning forecasts. The forecasts are binned into 5% increments,
inclusive on the upper bound.



Score

produce more extreme-probability forecasts and less medium-probability forecasts, which
is desirable (Figure 5).

The Brier Score (Brier, 1950) is a summary measure for probabilistic forecasts for
dichotomous events. A single number will certainly not give a complete picture of forecast
performance, but the Brier Score is an excellent choice from a practical standpoint, given its
decomposition into reliability, resolution, and uncertainty (Wilks, 2006). It is given by:

1 n
BS == (y,-0,)’
n k=1

where yx is the kth forecast and ok is the corresponding k' observation (either 0 if lightning
did occur, or 1 for no lightning, in our case). The Brier Score is basically the mean squared
error for probabilistic forecasts, and therefore, the values range from 0 < BS < 1, 0 being
perfect. Since the algorithm never forecasts 0% probability of lightning, yx was always
between 0.01 and 1.0. Calculating the aggregate BS in this fashion for all 142,948 forecasts,
we receive a BS of 0.1038, which is quite good. This is in part due to the large number of
low-probability forecasts (see Fig. 5). However, this method of computing the BS does not
take into account misses, or “forecast probability of 0% when lightning did occur.” Enter
misses into the equation and our BS = BSpisses = 0.2269, which isn’t as skillful as before, but
is still below 0.25, which is the BS resulting from uniform probability forecasts of 0.50.
This still doesn’t seem quite fair though, since correct nulls have not been considered. In
order to do so, we need to calculate the BS at some probability threshold. Figure 6 displays
the Brier Score as a function of probability threshold. The relatively large drop in BS from
the 0 to 10% threshold is do to the fact that we have no correct null concept at a threshold
of 0 (i.e. all forecasts). The Brier Score achieves a minimum of 0.2115 at the 100%

threshold. Again, false
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Fig. 6: The Brier Score, threshold by forecasted probability of lightning. gives the evaluator an idea of



how ‘realistic’ the forecast looks to the observations. It is typically used for rain coverage,
but will suffice for lightning coverage. It is given by:

FBS 1 >
FSS=1- where FBS = ﬁ;(f’m -P,)

2 2
E Pfcst + E Pobs
N N

FBS is the Fractions Brier Score, and is completely analogous to the traditional BS. Pfs and
Pobs are the fractional forecast and observed lightning areas. Ebert (2009) and Roberts and
Lean (2008) show that the value of FSS above which the forecasts are considered to have
“useful” skill (better than a uniform probability forecast of fo», which is the observed
lightning fraction over the domain) is given by:

0.5+@z0.5
2

1
N

FSS

useful =

which we approximate to 0.5 in our study, since the fractional coverage of lightning over
the CONUS is typically less than 0.01. A search radius from the centroid of each probability
cluster was employed, in order to capture the centroid of the corresponding cluster of
lightning density. A search radius of 0.25°¢ of latitude and longitude (about 25km) was
used. Since some probability clusters were much larger than the lightning density clusters
that they overlapped (and vice versa), we were not able to capture every hit, as the
centroids of the two clusters were simply too distant from each other. The 0.25° search
radius captured most of the hits (80%), while not encroaching on the overlapping lightning
density clusters of other probability forecasts. In this case, our FSS = 0.6289, which is
greater than FSSuseru. We expect that the FSS would score quite well however, since the
forecasts are only for thirty minutes into the future, and we are only scoring the hits.
Scoring misses and false alarms may result in a double penalty, since there is no
corresponding probability cluster or lightning density cluster, respectively. If the domain
were divided into neighborhoods (as in Ebert, 2009), then we could measure the fractions
of each cluster in each neighborhood. On the contrary, since most of the domain does not
contain either probability or lightning density clusters at any given time, the FSS would be
biased with “correct nulls” of fractional coverage (i.e. most neighborhoods would score
perfectly since they have neither cluster). So both misses and false alarms were neglected
when computing the score. Thus, the FSS computed here should be considered for what it
is: a score that examines how well the forecast probability clusters match the lightning
density clusters for (most of) the hits.

4. DISCUSSION

This neural-network trained probabilistic lightning prediction algorithm is an
important step in accurately now-casting cloud-to-ground lightning, in a probabilistic
fashion. However, there is much work yet to be done before such an algorithm can be used
operationally as a NWS product. Firstly, we recognize that the probability clusters are
uniform probability, clustered around the core of a storm. Lightning often strikes outside



of the core, in the anvil region. Lightning that occurs away from the core of the storm is
often more dangerous, since victims can be unprepared or unaware of their proximity to
danger. Therefore, the probability clusters that the algorithm produces should have
contours of probability, and not be uniform. The core of a storm would still most likely
have the highest probability of cloud-to-ground lightning, but the anvil regions of storms
should have some lesser probability associated with them. There are several ways to
consider this procedure. One way is to track the cores of storms on reflectivity of the -10°C
isotherm surface (the importance to lightning prediction demonstrated by Hondl and Eilts,
1994 and Vincent et al. 2003), or perhaps -20°C isotherm surface, and then track storms on
merged reflectivity at some lower threshold of reflectivity, to capture the anvil regions of
the storms. A second approach is to use satellite imagery, similar to the methods proposed
by Mecikalski and Bedka (2006), MBO6 hereafter.

In MB06, Geostationary Operational Environment Satellite (GOES) imagery is used
to determine convective initiation of storms (as opposed to cloud-to-ground lightning), as
well as mature cumulonimbus clouds. In particular, they employ the extensive use of
brightness temperature, T, visible satellite imagery (VIS) and different bands of infrared
(IR) imagery. MBO06 use gradients of Tz and VIS to first “mask” a section of a GOES-11 or
-12 image in order to compute IR-based products only where convective clouds are
present. These products include the 10.7um Tp, multispectral channel differences (e.g.
13.3-10.7um difference), and time derivatives of multispectral channel differences (e.g.
0[13.3-10.7um]/0dt), all in order to predict convective initiation, defined in MB06 as first
reflectivity 235 dBZ produced by convective clouds. Using eight different IR-based
products or “interest fields,” MB06 claim their method (which builds on prior work)
achieves ~60-70% accuracy, and lead times ~30-45 minutes.

Utilizing different IR-satellite products could help to improve the algorithm.
Potentially, the algorithm could apply MB06’s method to capture only convective clouds,
and combine this with radar reflectivity. Therefore, the algorithm would no longer be
looking at stratiform complexes, which have little chance of producing lightning. The MB06
method could also increase lead times (which are either 30 minutes, or 0 minutes in this
paper) for the lightning prediction algorithm. One critical drawback to the method
described in MBO06 is the reliance on VIS imagery to mask the GOES image. Doing so saves
much time in computing, but the obvious problem is that the “mask” can only be employed
during the day. The authors acknowledge the shortcoming, and mention that this problem
is an area of active research.

Near storm environment parameters from numerical models, such as CAPE, CIN,
mixing ratio, etc. coupled with radar and perhaps satellite data may also improve the
performance of the algorithm. For instance, a cumulus cloud will not evolve into a
cumulonimbus unless it continually ingests a sufficient amount of moisture to initiate ice
crystal growth (MBO06), which is necessary for electrification inside a thunderstorm.
Atmospheric stability metrics, such as CAPE, can serve to identify atmospheric regions
capable of supporting further convective growth for identified cumulus clouds. The use of
CAPE may also help improve lead times for lightning forecasts, seeing that it can be forecast
by numerical models multiple hours in advance.



6. SUMMARY AND CONCLUSION

A probabilistic lightning prediction algorithm using a trained neural network was
evaluated on 12 independent (from the training days) days (1 per month). Scores were
threshold to yield binary forecasts of “yes” or “no” if lightning would occur. The optimal
probability threshold (in terms of CSI) for the combined 12 days was at 50%, with a score
of 0.325, or at the 70% threshold (in terms of HSS, which takes random chance into
account), with a score of 0.307. The algorithm achieved a Brier Score of 0.1038 (excluding
misses) and 0.2269 (including misses, at the 0% threshold). A Fractions Skill Score was
also computed, which compares the areas fractions for probability clusters and lightning
density clusters (but only for hits). The FSS was 0.6289, which is greater than FSSusefu = 0.5.
Thus, the clusters do have decent correspondence, but that is somewhat expected since the
probability of lightning forecasts is only for the next 30 minutes. The algorithm is fairly
reliable towards both probability extremes, but it is also over-forecasting in the middle
probability bins. The algorithm is also fairly sharp, considering the low climatological
probability of lightning.

Several measures have been identified to improve the algorithm, among which are
tracking radar reflectivity at -10°C or -20°C iso-surfaces, or using GOES satellite data to
capture convective initiation. Near storm environment data from numerical models may
also aid in better probabilistic forecasts, as well as vertical gradients of reflectivity inside
the storm (Vincent et al. 2003). These avenues will be pursued in further studies of this
algorithm.
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