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1.  INTRODUCTION

The  Tropical  Rainfall  Measurement  Mission 
(TRMM)  satellite,  since  its  launch  in  1997,  has 
been proven an invaluable source of precipitation 
information over the tropics where large areas are 
not  covered  by  ground  sensors.   One  potential 
beneficiary  of  the  TRMM-based  quantitative 
precipitation  estimates  (QPE)  is  the  National 
Weather  Service  (NWS)  hydrologic  forecasting 
operation which covers areas where precipitation 
data from ground-based sensors are often scarce 
to nonexistent.  However, the infrequent temporal 
sampling of the TRMM data has been an obstacle 
to  its  direct  utilization  in  such  operations  where 
frequent updates of precipitation data are required. 
One way to address this limitation is to combine 
TRMM  QPE  with  more  frequent  measurements 
from  Geostationary  Operational  Environmental 
Satellites  (GOES).   The  Self-Calibrating 
Multivariate  Precipitation  Retrieval  (SCaMPR) 
framework  (Kuligowski  2002),  developed  at  the 
NOAA’s  National  Environmental  Satellite,  Data, 
and  Information  Service  (NESDIS),  serves  this 
purpose.   The original  version of  SCaMPR uses 
less  frequent,  but  more  accurate  passive 
microwave (PM) precipitation estimates  from the 
Defense Meteorological Satellite Program (DMSP) 
to  calibrate  the  GOES  infrared  (IR)  brightness 
temperature-to-rain  rate  relationship  in  real-time. 
This  framework  has  been  modified  to  allow 
ingesting TRMM data as an additional  source of 
calibration  data.  In  comparison  to  other  existing 
multi-satellite  QPE  algorithms,  such  as  the 
National  Centers  for  Environmental  Predictions 
(NCEP)  Climate  Prediction  Center  (CPC) 
Morphing (CMORPH; Joyce et al., 2004), and the 
TRMM  Multi-satellite  Precipitation  Analysis 
(TMPA;  Huffman et  al.  2007),  SCaMPR has the 
advantage of  shorter  latency,  which is  critical  to 
NWS hydrologic predictions.  

Prior to the experimental use of SCaMPR data 
in NWS hydrologic forecasting, NESDIS and NWS 

conducted  a  set  of  evaluation  experiments  to 
assess the potential improvement in the accuracy 
of  QPE resulting from the ingest  of  TRMM data. 
The study site of  the experiment  was  set  to  be 
central Texas which is within the effective latitude 
range  of  TRMM (i.e.,  below 35  degree  latitude). 
The analyses were performed at hourly and daily 
resolutions  by  using  a  set  of  rain  gauge 
measurements  from  the  Lower  Colorado  River 
Authority (LCRA) for the period of 2000-7.   
   
2. DATA AND METHODOLOGY

2.1 SCaMPR 

The  SCaMPR  framework  was  described  in 
Kuligowski (2002).  In this framework, brightness 
temperature  values  at  three  GOES  infrared 
channels (6.9, 10.7 and 12.0 or 13.3 μm) are used 
as  predictors  of  rain  rates.  In  the  original 
implementation,  the  predictands  are  rain  rate 
estimates  retrieved  from  passive  microwave 
(PMW)  measurements  by  the  Defense 
Meteorological  Satellite Program (DMSP) Special 
Sensor Microwave/Imager (SSM/I; Ferraro 1997), 
and by the NOAA Advanced Microwave Sounding 
Unit-B  (AMSU-B;  Vila  et  al.  2007).   The  PMW 
rainfall  estimates  are  first  used  to  select  the 
predictors and calibrate the threshold values used 
to identify rainy and dry pixels. Then in the rainy 
pixels thus identified, the rain rate predictors are 
selected  from  the  GOES  data  and  the  retrieval 
equation  is  calibrated  via  stepwise  forward 
regression.  This calibration is done in real-time as 
soon  as  SSM/I  and  AMSU-B  data  become 
available.  

The SCaMPR framework has been enhanced 
to  allow  the  use  of  precipitation  estimates  from 
TRMM  Precipitation  Radar  (TPR;  Iguchi  et  al. 
2000) and Microwave Imager (TMI; Kummerow et 
al.  2001)  data  as  additional  predictands.   The 
process starts by aggregating the TMI  and TPR 
data to the resolution of the other PMW data for 
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consistency and then bias-adjusting the SSM/I and 
AMSU  data  using  TMI  data  via  a  distribution-
matching procedure similar to that of Joyce et al. 
(2004).  Then the GOES data are aggregated to 
the resolution of the target data and the results are 
subsequently used to calibrate the GOES IR-rain 
rate  relation.   A  schematic  of  the  updated 
framework is shown in Figure 1. 

2.2  Experimental Setup

We chose central Texas as the location for the 
evaluation (Fig.  2).   Two hundred  and  forty  two 
rain gauges operated by the Lower Colorado River 
Authority (LCRA) supply high quality precipitation 
measurements. The rain gauge data for the period 
of 2000-7 were acquired from LCRA.  Two sets of 
hourly SCaMPR QPEs were produced at NESDIS 
for the same period.  The first QPE data set was 
created based on only SSM/I and AMSU data as 
predictands,  which  is  referred  to  hereafter  as 
SCaMPR-P  (P  for  passive  microwave).  The 
second  one  was  created  with  the  enhanced 
SCaMPR framework  with  TPR and  TMI  data as 
additional  calibration data sets.  This data set  is 
referred to as ScaMPR-T (T for TRMM; note that 
passive microwave data are also used in creating 
SCaMPR-T).   

All  of  the  LCRA  gauge  records  were  at  an 
hourly resolution prior to 2005.  After 2005, most 
of the data have been at 15-min scale.  These 15-
min data were aggregated to hourly.  Two steps 
were undertaken in order to ensure the quality of 
the  gauge  records.   First,  the  accumulation  by 
each  gauge  was  plotted  over  time  and  any 
conspicuous discontinuity (i.e., negative increment 
or positive increment exceeding 300 mm between 
two consecutive hours) was removed.  Then the 
automated  quality  assurance  (QA)  procedure 
developed  by  Kondragunta  et  al.  (2006)  was 
applied:   records  at  a  particular  gauge  location 
were  checked  against  those  from  neighboring 
gauges  and  radar  precipitation  estimates  at  the 
collocated radar bins.  The radar-only precipitation 
estimates used here were created via the Multi-
sensor  Precipitation  Estimator  (MPE;  see  e.g., 
Young et  al.,  2000),  by using NWS’s  West  Gulf 
River  Forecast  Center  (WGRFC)  archival  digital 
precipitation array  (DPA) data for  2000-7.   Note 
that  no  gauge-based  bias  correction  or  multi-
sensor merging was performed in order to ensure 
its comparability to SCaMPR data. 

The QA procedure was applied to the hourly 
and daily gauge products independently.  Through 

the  QA  procedure,  gauge  records  deemed 
suspicious  were  identified  and  subsequently 
dropped.  The remaining gauge records were then 
paired with collocated radar and satellite QPEs.   

2.3  Evaluation Methods 

      The SCaMPR products were evaluated by 
comparing  the  quantiles  of  SCaMPR  rainfall 
amounts at  pixels collocated with gauges versus 
gauge data at both hourly and daily scales. Then 
the  following  metrics  were  computed  by 
aggregating  pairs  of  hourly  observations  at 
multiple gauge locations over 2000-7: a) bias (ratio 
of SCaMPR (or radar) total to gauge total); b) bias 
of  positive  pair  (where  rainfall  exceeding  1  mm 
h-1);  c)  correlation  coefficient;  d)  probability  of 
detection (POD); e) false alarm ratio (FAR; ratio of 
instances where satellite data indicate rain while 
gauge  data  do  not);  and  f)  Hedike  Skill  Score 
(HSS). POD, FAR and HSS are defined as follows. 

Let  c1 denote  the  number  of  pairs  where  both 
gauge and satellite (or radar) report rain below a 
given  threshold,  c2 the  number  of  pairs  where 
satellite or radar  report  rain above this threshold 
while  gauge  does  not;  c3  the  number  of  pairs 
where  gauge  reports  rain  beyond  this  threshold 
whereas satellite (or radar) does not, and c4 where 
both values in the pair are above this threshold, 
then 
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Among these metrics,  bias  and  correlation were 
computed  in  two ways.   The first  was  by  using 
records  where  either  gauge  or  satellite 
precipitation estimates were positive (“positive” is 
defined here as rain rates above 1 mm h-1) and the 
second was by choosing only records where both 
estimates are positive.  POD, FAR and HSS were 
computed using three precipitation thresholds (1, 5 
and 15 mm h-1) to investigate the performance of 
the  SCaMPR  products  at  different  rainfall 
intensities (.  The reason thresholds higher than 15 mm 



h-1     are  not  shown    is  that    there  are    few instances    that   
SCaMPR and gauge both report rainfall above 15 h-1    for   
some seasons).   These metrics were also computed 
for the radar-only products to put the accuracy of 
SCaMPR QPEs into perspective.  The evaluation 
results are stratified by seasons, i.e.,  December-
January-February  (DJF;  winter),  March-April-May 
(MAM; spring),  June-July-August  (JJA;  summer), 
September-October-November (SON; fall).  

      In  order  to  account  for  the  uncertainties 
associated  with  the  validation  statistics,  the 
combined  gauge-radar-satellite  precipitation 
estimates  were  randomly  sampled  via 
bootstrapping (Simon,  1997).   For  each  season, 
200 samples were drawn from the data set, with 
each sample half of the size of the entire data set 
(in  terms  of  number  of  collated  gauge-radar-
satellite  records).   Replicates  of  records  were 
allowed.  The validation statistics were computed 
for  each  sample  and  the  associated  distribution 
was  derived  for  each  statistic  from  the  multiple 
samples. 

3.  RESULTS

3.1 Quantile Comparisons

The quantiles of  hourly and daily rainfall  are 
shown  in  Figs.  3  and  4.   On  an  hourly  scale, 
quantiles  from both  SCaMPR-P and  SCaMPR-T 
QPE point to a low bias at the higher rain rates, 
where quantiles from radar-only QPE show much 
closer  agreement  to  those  of  the  gauge  data. 
Evidently,  fewer  instances  of  higher  rainfall 
amounts  are  present  in  the  SCaMPR-P  and 
SCaMPR-T QPE than in collocated gauge or radar 
data.   Between  the  two  products,  quantiles  for 
SCaMPR-T  QPE  exhibit  more  severe  negative 
conditional  bias  for  all  seasons  relative  to 
SCaMPR-P  except  for  spring,  where  it  shows 
slightly better agreement.  

Daily  comparisons  (Fig.  4)  show  similar 
results, except that the low bias in SCaMPR-P and 
SCaMPR-T products  are  more  pronounced,  and 
especially so for higher daily rainfall amounts (> 50 
mm day-1).  Quantiles from both SCaMPR-P and 
SCaMPR-T  are  only  slightly  different  except  for 
DJF,  when SCaMPR-P shows closer  agreement 
with the gauge and radar data. 

3.2 Comparisons  of  Hourly  Validation 
Statistics

Box plots of  hourly validation statistics (bias, 
correlation,  POD and  FAR)  as  derived  from the 
sampling exercise are  shown in Figure 5.   Both 
SCaMPR-P  and  SCaMPR-T  QPE  are  positively 
biased for all four periods (Fig 5a) whereas radar-
only data are close to bias-neutral.    This positive 
bias  is  more  pronounced  during  spring  and 
summer and  less so during fall  and  winter  (Fig. 
5a).   It  appears  that,  though  the SCaMPR data 
exhibit  overall  positive  bias,  these  data 
nevertheless  are  negatively  biased at  higher 
rainfall  rates  in  the  quantile  comparisons. 
Between these two products, SCaMPR-T is less 
biased for all  four  seasons (Fig.  5a).  When only 
records  where  both  gauge  and  satellite  values 
indicated rain (i.e.  > 1 mm h-1;  such records are 
hereafter  referred  to  as  positive  pairs)  were 
included,  the  bias  values  for  SCaMPR-P  and 
SCaMPR-T QPEs are mixed across seasons.  For 
spring,  SCaMPR-P  still  exhibits  conspicuous 
positive bias, whereas for the other  seasons the 
values  are  close  to  bias-neutral  with  a  slightly 
negative bias in the winter (Fig. 5b).  On the other 
hand, SCaMPR-T is associated with much higher 
bias values than SCAMPR-P, and the values are 
negative for all seasons except spring, where it is 
close to neutral  (Fig.  5b).   This  implies that  the 
addition of  the TRMM data had more impact  on 
the  absolute  rainfall  rates  than  on  rainfall 
detection.

As shown in Figure 5c,  correlation values of 
SCaMPR-T  products  are  generally  higher  than 
those for the SCaMPR-P products for all seasons, 
indicating improvements from incorporating TRMM 
data.   However,  even  with  the  improvements, 
correlation  values  for  SCaMPR-T  remain  much 
lower  than those for  radar  QPE (0.2-0.4  for  the 
former  vs.  0.6-0.8  for  the  latter).   Correlation 
values  computed  using  positive  pairs  (Fig.  5d) 
point  to  similar  features,  except  that  the 
improvements of SCaMPR-T over SCaMPR-P are 
less obvious and are subject to a higher level of 
uncertainty  (as  indicated  by  the  wider  quantile 
ranges in Fig. 5d). 

The comparisons of probability of detection (POD) 
and false alarm ratio (FAR) are shown in Figure 5e 
and  5f.  Across  the  seasons,  POD  values  for 
SCaMPR-T are consistently lower than those for 
SCaMPR-P, and the values for these products are 
much lower than those for the radar  QPE.  POD 
values for SCaMPR-P and SCaMPR-T QPEs are 



quite low during winter (in the 0.3-0.4 range), and 
are substantially higher during spring and summer 
(>0.5). While TRMM ingest tends to reduce POD 
values, it appears to help mitigate false alarm. For 
all seasons, FAR values for SCaMPR-T are lower 
than those for SCaMPR-P. 
 
3.3 Dependence on rainfall intensity

POD and FAR were also computed by using 
higher  rain  rate  thresholds  (5  mm and  15 mm), 
and  the  results  are  shown  in  Figures  6  and  7. 
HSS  values are shown in Figure 8. 

For POD, it appears that the values for both 
SCaMPR-P and  ScaMPR-T tend  to  decline with 
increasing  rain  rate  thresholds  irrespective  of 
season  (Fig.  6).   The  difference  between  the 
products, i.e., lower POD values for SCaMPR-T, is 
more  pronounced  at  5mm except  for  the  winter 
(Fig. 6).  At 15 mm threshold, POD values of both 
products approach zero (Fig. 6).  Compared to the 
two satellite QPEs, radar-only QPE shows much 
higher POD across the thresholds and seasons.

FAR  values  generally  increase  with  higher 
rainfall thresholds (Fig. 7). SCaMPR-T FAR values 
are  generally  superior  to  SCaMPR-P  results. 
However, at 15 mm h-1, SCaMPR-T results show 
slightly higher FAR values for spring, winter and 
fall.   It  needs  to be noted that  the uncertainties 
associated with the FAR values are also elevated 
at  15  mm  due  to  smaller  sample  sizes.   FAR 
values for ScaMPR-T are far higher than those for 
radar-only QPE.
 

HSS values show improvements in SCaMPR-
T  vs.  SCaMPR-P  results  at  1-  and  5-mm 
thresholds.  At the 15-mm threshold, higher HSS 
values  are  evident  for  SCaMPR-P  (except  for 
winter, where the HSS score for SCaMPR-T drops 
to zero due to a lack of data points).  Again, HSS 
values  for  radar-only  QPE  are  far  higher  than 
those for the two satellite products.

4. SUMMARY  AND  PRELIMINARY 
CONCLUSIONS

Records  from  242  rain  gauges  in  central 
Texas were used to evaluate the accuracy of QPE 
derived via the original  SCaMPR framework and 
the  enhanced  one  that  incorporates  TRMM  PR 
and  TMI  data.   Our  analyses  indicated  that 
ingesting  TRMM  data  helps  improve  certain 
aspects of the QPE as judged by the reduction in 
bias and false alarm rate, and the enhancement in 

correlation  and  HSS.   However,  it  tends  to 
introduce  negative  conditional  bias  and  to 
suppress  the  probability  of  detection.   As 
illustrated in the quantile comparisons, SCaMPR-T 
products contain fewer higher rainfall values than 
indicated by SCaMPR-P, and both products show 
negative biases at higher rain rates in the quantile 
comparisons despite a presence of positive overall 
bias  in  the  paired  comparison.   A  closer 
examination  of  the  SCaMPR QPEs  reveals  that 
the  instances  of  false  alarms  vastly  outnumber 
those in which rainfall was reported by gauges but 
not  by  SCaMPR  (e.g.,  by  a  factor  of  2  for 
SCaMPR-P at 1 mm threshold). 

In our  analyses, SCaMPR QPEs were shown to 
exhibit tangible skills in detecting rainfall.  Yet, it is 
also  evident  that  the  SCaMPR  products  are  in 
general  much  less  accurate  than  the  radar-only 
products.  The difference is the most pronounced 
during  heavy  rain  where  the  POD  values  for 
SCaMPR products, both with and without TRMM 
ingest, are quite low.  Improvement in bias, while 
evident after the ingest of TRMM, did not translate 
to  improvement  in  POD.   In  light  of  these 
observations, SCaMPR QPEs can be quite useful 
in  areas  without  ground  radar  and  gauge 
coverage.  On the other hand, further refinement 
of  the  SCaMPR  algorithm  for  improving  the 
detection of heavy rainfall, perhaps by integration 
of radar observations as an additional predictand, 
is desirable. 

Our evaluation was conducted on hourly and 
daily  scales  by  using  point  rain  gauge  data  to 
determine  the  effects  on  TRMM  ingest,  and 
perhaps to give guidance to future improvements 
in the SCaMPR framework.  Meanwhile, additional 
analyses are underway where SCaMPR products 
are  bias-corrected  with  rain  gauge  data,  and 
where  comparisons  of  areal  averaged  rainfall 
totals  and  hydrologic  simulations  will  be 
performed.   These analyses  will  help  define the 
potential  use  of  the  SCaMPR  products  in 
hydrologic forecasting.
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Figure  1:  Data  flow schematic  for  the Self-calibrating Multi-satellite Precipitation Retrieval  (SCaMPR) 
algorithm with TRMM ingest.
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Figure 2: Location of gauges operated by the Lower Colorado River Authority (LCRA). 



Figure  3:  Quantile-quantile  plots  of  hourly  rainfall  from Radar  (R),  SCaMPR without  TRMM (S),  and 
SCaMPR with TRMM ingest (T), for a) December-January-February, b) March-April-May, c) June-July-
August, and d) September-October-November.    



Figure 4:  Same as Figure 3 except for daily amounts. 



Figure 5: Comparisons of statistics for hourly rainfall from radar and two SCaMPR products: a) bias, b) 
bias of positive pairs (> 1mm h-1), c) linear correlation, d) linear correlation of positive pairs, e) probability 
of detection, and f) false alarm ratio. 



Figure 6: Comparisons of POD for hourly rainfall from radar and two SCaMPR products at 1, 5 and 15 
mm thresholds for a) DJF, b) MAM, c) JJA, and d) SON. 



Figure 7: Same as Figure 6, except for FAR.



Figure 8: Same as Figure 6, except for HSS. 
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