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Introduction 

NOAA Storm Prediction Center (SPC) and National 
Severe Storms Laboratory (NSSL) have a 
collaborative testbed facility called the Hazardous 
Weather Testbed. The NOAA Hazardous Weather 
Testbed (HWT) has conducted Spring Experiments 
since 2000. The 2009 Spring Experiment took place 
over a 5 week period from 4 May – 5 June. A main 
focus of recent Spring Experiments is to gain an 
understanding of how to better use the output of 
near-cloud resolving configurations of numerical 
models to predict convective storms. HWT Spring 
Experiment participants have found through 
subjective evaluation that high resolution convective 
storm predictions are at times difficult for 
operational forecasters to reconcile, in part because 
many solutions appear to be plausible for a given 
mesoscale environment.  The Development 
Testbed Center (DTC) collaborated with HWT in 
2009 to help evaluate performance of three models 
during the Spring Experiment.  The goal of the 2009 
objective evaluation was to assess the impact of 
radar assimilation on the forecasts of strong 
convection.  Generally speaking, the objective 
evaluation provided by MET supported the 
subjective evaluation performed by the forecasters.  
The results from both the traditional and spatial 
methods will be presented in this paper.   

Methodology 

a. Model configuration and initialization procedures 
 
CAPS ran a 4-km resolution ensemble prediction 
system and provided the output to the Spring 
Experiment in both 2008 and 2009 (Xue et al. 2008; 
2009).  Each year, two members of the ensemble 
were configured identically but initialized differently.  
Specifically, the initialization of one of these 
members included assimilation of radar and other 
observational data, while the other one did not.  
This study focuses exclusively on output from these 
two members.  

 
The these two members are both based on the 
WRF-ARW core, with 4km grid spacing, and 51 
vertical levels. Microphysical parameterizations 
used include: Thompson cloud microphysics, MYJ 
PBL/Turbulence, and Goddard/RRTM (SW/LW) 
radiation  schemes.  The forecast domain is shown 
in Fig. 1.  Initial and boundary conditions were 
generated by interpolating the North American 
Mesoscale (NAM) 12 km model (Rogers et al. 
2009) to the 4 km high-resolution grid.  One of 
these members (hereafter “C0”) used this 
background directly as initial condition while the 
other member (hereafter “CN”) incorporated 
additional observational datasets in a storm-scale 
analysis, including assimilation of radar reflectivity 
and velocity data in the initial condition.  
 

 
Figure 1.  Model domain for the 4 km 2009 CAPS 
forecasts 

Specifically, the unique assimilation process in the 
CN run ingested data from the national network of 
WSR-88D radars, typically using the Level II 
dataset, but occasionally using the Level III data 
when Level II was not available.  Information from 
conventional rawinsonde, wind profiler, METAR 
(Meteorological Aviation Report) surface 
observations and Oklahoma Mesonet observations 
was also included.  Furthermore, visible and 
infrared channel-4 data from GOES satellites were 



used in the cloud analysis package.  Details about 
this complex assimilation process can be found in 
Xue et al. (2008 and 2009). 
 
Both members were integrated out to the 30 h 
forecast time, but the focus here will be primarily on 
the 0-12 h – the period when the assimilated radar 
data is expected to have the most impact (Zhang et 
al. 2007).   
 
b. Verification data sets 
 
Simulated reflectivity (SR) from convection allowing 
models has proven to be a very useful diagnostic 
output field because it provides important clues 
about a variety of circulations and processes in a 
model forecast (e.g., Xue et al. 2003; Koch et al. 
2005).  The SR was computed from the three-
dimensional hydrometeor field as described in Kain 
et al. (2008), with all relevant parameters (such as 
those describing particle size distributions) set to 
the values used by the Thompson microphysical 
parameterization that was used during model 
integration. 
 
For this study, composite SR was used, meaning 
that gridded values represent the largest computed 
simulated reflectivity at any level in each vertical 
column.  The observed reflectivity (OR) data came 
from the National Severe Storms Laboratory 
(NSSL) national 1 km radar mosaic (Vasiloff et al. 
2007).  Model SR and precipitation fields were 
extracted from the experimental model datastream 
at the HWT and transferred to the DTC, along with 
verifying reflectivity and precipitation fields from the 
NSSL national radar reflectivity and National 
Multisensor quantitative precipitation estimate 
(QPE) mosaics (also refered to as NMQ Q2).  
These datasets were ingested at the DTC and 
several different types of verification statistics were 
computed.  This paper focuses on a specified 
(moveable) regional domain where active weather 
was expected at model initialization time (0000 
UTC) each day.   
 
c. Subjective Evaluation 
 
Graphical displays of the statistical results were 
posted to an internal web page along with selected 
output fields such as simulated reflectivity in time 
for subjective assessments and critical examination 
by forecast teams during the SE2009 daily 
activities.  This group evaluation was led by a DTC 
scientist each day, as the DTC rotated several 
scientists through SE2009 on a weekly basis.  The 
group was instructed to focus on assessing 1) the 

degree to which objective verification metrics 
corroborated subjective impressions and 2) the 
potential utility of the various objective metrics in an 
operational environment. 
 
d. Objective Evaluation 
 
Verification procedures at the DTC used the 
Meteorological Evaluation Tools (MET) software 
package (Brown et al. 2007).  Traditional 
verification metrics, such as the Gilbert Skill Score 
(GSS) and Critical Success Index (CSI), bias, and 
false alarm ratio, were computed using the MET 
Grid-Stat package.  Additional verification statistics 
designed to quantify the correspondence between 
objects, or features, in forecasts and observations 
were computed using the MET Method of Object-
based Diagnostic Evaluation (MODE) package 
(Davis et al. 2006; Brown et al. 2007). MODE relies 
on user-specified parameters to identify coherent 
objects and match them to identify similar features 
(such as precipitation elements) in forecasts and 
observations.  In this study, the matched features 
were overlaid to enhance visual comparison of 
forecasts and observations.  Matched object pairs 
were also used to calculate but traditional statistics 
as well as attributes such as centroid distance, 
difference between object angles, ratio between 
object areas, and median (50th percentile) and near-
peak (90th percentile) intensity. 
 
Results 

Output from this forecasting system incorporating 
radar assimilation was visually compared to output 
from forecasts with no assimilation of radar data 
during the HWT 2009 Spring Experiment.  The 
differences were scrutinized in order to assess the 
impact of the radar-data assimilation.  In addition, 
the impact was measured after the close of the 
experimental periods using various objective 
verification metrics.   
 
The GSS start out at a high level in the CN runs, 
with the magnitude depending on the reflectivity 
threshold.  But GSSs from the CN and C0 runs 
converge at about the 10 h time (Fig. 2).  Although 
the convergence point may be a few hours earlier 
than seen with the previous (i.e., 2008) dataset 
(which was verified on the basis of accumulated 
precipitation), it is not clear whether there is any 
real significance to this difference.  In a broad 
sense, traditional verification metrics indicate a 
decrease in the impact of the radar assimilation 
after 6-12 h. 
 



 
Figure 2.  Gilbert Skill Score for simulated 
reflectivity forecasts as a function of time for all 
forecasts initialized at 00z during SE2009.  The red 
(blue) curves are derived from the run with (without) 
assimilation of radar data, solid (dashed) lines 
represent scores using a 20 (40) dBz reflectivity 
threshold.   
 
 
A visual inspection of the radar (CN) runs compared 
with no-radar (C0) runs indicated an initial positive 
impact from the CAPS assimilation system during 
the first 6 h of integration. As this time period being 
during which precipitation features were spinning up 
in the C0 runs, this is not too surprising.  After the 6 
h time the evaluation teams focusing on visual side-
by-side comparisons often found it difficult to 
discern which forecast was better. 
 
However, a simple overlay techniques introduced 
through the use of MODE output (see Figure 3) 
seemed to indicate a small yet systematic phase 
lag in the C0 forecasts, similar to the phase shift 
identified in MCS simulations by Dawson and Xue 
(2006). Therefore, not only did precipitation 
systems require 3-6 h of integration time to spin up 
when radar and other observational data were not 
assimilated, these features were often displaced 
slightly upstream compared to corresponding 
features in observations and the CN forecasts. 
 
This phase lag is also indicated by examining the 
mean distance between the centroids of the 
matched forecast and observed objects identified 
by the MODE tool (see Figure 4).  At the 1hr lead 
time, the CN model on average had a 10 grid-point 
(40 km) difference between the centroids of the 
20dBZ objects.  In contrast, the C0 model  has a 22 
grid-point (88 km) mean distance between centroids 
of similarly thresholded objects.  The difference 
between mean distances decreases significantly 

during lead time 2-4 hr but still represents a 2-3 
grid-point (8-12 km) slow bias in the C0 model.  The 
sample size for this plot is on the order of 30-40 
matched objects and no statistical significance can 
be attributed at this time.  The implied phase lag in 
the C0 model may help to explain why the CN 
forecasts earned slightly higher aggregate objective 
verification scores after approximately 6 h when any 
advantage in overall convective evolution and 
morphology past this time was not readily 
discernible in side-by-side subjective assessments. 
 
Summary 
 
In a general sense, the objective evaluation 
performed during the HWT 2009 Spring Experiment 
supported the subjective conclusions drawns from 
the comparing no-radar (C0) and radar (CN) runs.  
In some cases, the objective evaluation helped 
identify and potentially explain difference in the two 
fields. 
 
Traditional evaluation methods indicate there is an 
improvement in skill scores on short-term forecasts 
(0-6 hr) of Simulated composite Reflectivity (SR) 
when radar assimilation is included in the initial 
conditions for a convective allowing model.  The 
magnitude of increased skill score depends on the 
reflectivity threshold.  However, skill scores for the 
no-radar and radar assimilation methods appear to 
converge by the 10hr forecast. Although the 
convergence point may be a few hours earlier than 
seen it is not clear whether there is any real 
significance to this difference.  In a broad sense, 
traditional verification metrics indicate a decrease in 
the impact of the radar assimilation after 6-12 h. 
 
Object-based verification metrics, such as those 
available in MODE, are capable of diagnosing 
systematic biases, such as the upstream lag 
proposed above. Time series of attributes derived 
from MODE-defined objects may help with 
quantifying the model response.  However, 
generation of statistically significant inferences from 
these metrics is quite challenging due to sample 
size constraints (i.e. number of identified objects is 
small over a 4-6 week time period) and is the 
subject of ongoing work. 
 
Finally, application of traditional verification metrics 
to reflectivity fields rather than the more traditional 
accumulated precipitation fields provides an 
example of how simulated forecast fields may 
provide meaningful evaluation metrics to help 
forecasters synthesize the model output. 
 



 

 
Figure 3.  Comparison of observed and simulated composite reflectivity for forecast hours 0, 2, 4, and 6, 
beginning at 0000 UTC 14 May 2009.  Observations are in the top row, with the CN and C0 forecasts in the 
second and third rows, respectively.  In the bottom two rows, the location of observed features is outlined in blue 
and the features predicted by the CN (fourth row) and C0 (fifth row) are overlaid and color filled.  Objects filled 
with a single color have been grouped (or merged) by the MODE software as a collection of related objects.  
Each time period is analyzed independently by MODE. 
  



 

 
Figure 4.  Distance between centroids of matched 
simulated reflectivity forecast/observed reflectivity 
object pairs as a function of time for all forecasts 
initialized at 00z during SE2009.  The red (blue) 
curves are derived from the run with (without) 
assimilation of radar data, solid (dashed) lines 
represent scores using a 20 (40) dBz reflectivity 
threshold.   
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