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1. INTRODUCTION 
 
   The importance of sea surface temperature 
anomalies (SSTA) for the climate of the North 
Atlantic region has been documented in previous 
studies (for instance, see Marshall et al., 2001; 
Sutton and Hodson, 2003, 2005; Desser et al., 
2003). Over ocean regions, there is significant 
covariance between SSTA and the anomalies of air 
temperature at surface, in monthly, seasonal and 
annual average values. Such covariance is due to 
exchange of heat and momentum between the 
upper ocean layer and the air near surface (Desser 
et al., 2003). Oceans have significant thermal 
inertia and provide slow variations of the lower 
boundary  of the atmosphere (Saravanan, 1998). 
This feature is useful in studies of climate 
predictability at time scales from season to decade. 
   SSTA variations have been linked to climate 
variations in North America and Europe. Such 
studies are supported by statistical analysis of 
observations as well as by recent modeling studies 
(Marshall et al., 2001). A notable phenomenon for 
the long term SST behavior in North Atlantic in the 
Atlantic Multidecadal Oscillation (AMO) which 
provides support for climate predictions at decadal 
time scale (Knight et al., 2005; 2006).  It has been 
reported that some climate predictability might be 
possible at various scales, as long as strong SST 
signals or oscillations are identified (such as ENSO, 
events, for example) (Keller, 1999; Marshall et al., 
2001; Andronache and Phillips, 2008).  Research is 
underway to address the climate prediction at 
seasonal scale and develop practical applications, 
where such forecasts can have significant impact 
(Palmer, 2010; Timofeyeva, 2010; Tugrul Yilmaz, 
2010). In the context of the climate predictability, 
we address the problem of SSTA persistence at 
seasonal scale in North Atlantic ocean. The data 
and methodology are presented in the next section. 
 
2. SST DATA 
 
   There are complete global monthly SST analyses, 
used extensively in climate studies (Reynolds and 
Smith, 1994; Kaplan et al., 1998). Such data sets 
are constrained by quality, quantity and distribution 
of the original measurements (Hurrell and 
Trenberth, 1999).  
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   Before the satellite era, observations did not 
cover the whole ocean, and various techniques 
have been employed to produce global data sets. 
Since the 1980s satellites have been increasingly 
utilized to measure SST and have provided an 
enormous rise in the ability to view the spatial and 
temporal variation in SST. Such advances in 
observations contribute to improvement of model 
initial and boundary conditions specification, as well 
as in statistical analyses of climate variations 
(Marshall et al., 2001). In this study we use the 
NOAA SST monthly time series (1856 – 2008), and 
the NCEP/NCAR SST data sets (1948 – 2008) for 
the North Atlantic ocean.  
 
3. METHOD 
 
   Three methods are used to obtain the monthly 
SST residuals of importance for seasonal climate 
variations at the time scale of interest. These 
methods aim to obtain approximately stationary 
yearly time series of the monthly SSTA. We are 
particularly interested in the correlation between 
SSTA between various months, in the stationary 
time series (Wilkis, 1995; von Storck and Zwiers, 
1999). The presence of the long term trend and 
AMO type variations in the original SSTA time 
series tends to produce high correlations. We 
attempt to describe the SSTA correlations at short 
time scales (such as season), which might become 
more evident after achieving stationary conditions. 
These three methods are briefly described here. 
 
   1) For each month, from the yearly time series: a) 
remove the linear trend; b) remove the AMO type of 
oscillation (Andronache, 2009). The long term trend 
is largely attributed to increase of global 
temperature over the last century (Andronache and 
Phillips, 2008). The AMO phenomenon is an 
internal oscillation of the ocean circulation, driven 
by a natural mode of variability in the thermohaline 
circulation in the North Atlantic, with possible 
alterations due to climate change (Delworth and 
Mann 2000; Knight et al., 2005).  
 
   2) Remove the linear trend between breakpoints 
(BP) in the time series. This method does not make 
any assumptions about long term trend over the 
whole time interval, and does not consider explicitly 
any low-frequency oscillation. Instead, it finds the 
local min and max SST values over few decades, 
and does a linear regression between two such 
consecutive local extreme values. Thus, it removes 
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the linear trend established between such BP, as 
will be illustrated in Figure 4.  
 
   3) Remove a polynomial fit of the SST time series 
(Andronache et al., 2008). This method does a 
least squares (LS) fit with low order polynomials, as 
an approximation of the data over the whole 
observation period. The method works well for short 
time series, and for low order polynomials. High 
order polynomials tend to present too much detail 
of the original time series, and have large errors at 
the end of the time interval.   
 
Notations used in this study: 
y    – the yearly time series of the monthly average 
SST for a given month; 
yLT  – the linear trend of y; 
yAMO  – the sine LS fit of the (y-yLT); 
r1 = y- yLT – yAMO     – the SST residual of y after 
removal of linear trend and AMO approximation. 
 
For method 2, the residual r2 is defined as 
r2=y-yBP  (the difference between y and the LS 
linear fit between breaking points of y). 
 
For method 3, the residual r3 is 
r3=y-yP (the difference between y and the 
polynomial fit of y, where the order of the 
polynomial used in this study is n = 7). 
  
   The three methods provide similar results, and 
they were used to check the robustness of the first 
one which is illustrated here in detail. The time 
series of the SST residuals obtained by the above 
methods are stationary in weak sense (the mean 
and the variance are constant in time). We illustrate 
how SST residuals are obtained by removing the 
linear trend and the AMO type oscillation. 
 
 
4. RESULTS AND DISCUSSION 
 
   Figure 1 shows the SST time series for each 
month. Due to the annual cycle, there are pairs of 
months with very similar variations. For instance, at 
the bottom of the plot, February and March SST 
have very similar behavior, and they seem highly 
correlated. These months correspond to the lowest 
SST values during the cold season in North Atlantic 
region. At the top of the plot, August and 
September SST have similar variations, 
corresponding to the highest values in the warm 
season. Few characteristics are evident: a) the long 
term positive trend; b) the multidecadal oscillation. 
We are interested to find out a statistical 
relationship between SST in various months, and 
we have to produce SST time series that are 
stationary. These conditions are illustrated in 
Figures 2 and 3 for the month of January. Figure 2 
shows: (a) the time series of monthly SST for 
January, versus time in years. The LS linear trend 
is shown; (b) the monthly SST residual for January, 

which is the difference (y – yLT), versus time, in 
years. This residual SST has no trend but exhibits a 
multidecadal oscillatory component. Figure 3 
shows: (a) The January monthly SST residual (y – 
yLT) and the least square of a sine function, versus 
time, in years; (b) The January monthly SST 
residual r1, versus time, in years. This residual time 
series is approximately stationary. 
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Fig. 1. Time series of the monthly SST versus time, 
in years.  
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Fig. 2. (a) Time series of monthly SST for January, 
versus time in years. The linear trend in least 
square sense is shown; (b) The monthly SST 
residual for January, (y – yLT), versus time, in years.  
 
This procedure in applied for all months. We note 
that yAMO, approximated by a sine function with 
three parameters (amplitude, period, and phase) is 
the first Fourier component of the time series, which 
correspond to a well defined physical phenomenon 
(AMO). By taking more Fourier series terms, we 
can obtain a better approximation of the (y – yLT) 
data, at shorter time scales, but our purpose here is 
to remove only the dominant multidecadal 
oscillatory features (such as AMO).  The application 
of this method for all twelve months produced some 
variability in the fitting parameters (amplitude, 
period, and phase), consistent with previous 
results. 
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Fig. 3 (a) The January monthly SST residual (y – 
yLT) and the least squares of a sine function, versus 
time, in years; (b) The January monthly SST 
residual r1, versus time, in years. 
 
Next subsection provides a brief account of AMO 
as a physical low-frequency oscillation in the North 
Atlantic ocean. 
 
4.1 AMO 
 
   SST in North Atlantic show variations with a 
period of 65 – 80 years, a phenomenon called 
Atlantic Multidecadal Oscillation (Schlesinger and 
Ramankutty 1994; Delworth and Mann 2000). 
There is extensive literature on AMO and its effects 
on climate, and there is potential predictability at 
decadal time scales in the North Atlantic region 
based on this phenomenon.  
   AMO is associated with large scale precipitation 
changes in Sahel, US, and Brazil (Knight et al., 
2005, 2006). It is also associated with the variations 
in the frequency of severe Atlantic hurricanes 
(Goldenberg et al., 2001). AMO is correlated with 
Arctic temperature changes (Chylek et al., 2009). 
Based on results from model simulations, AMO is 
considered a natural mode of oscillation of the 
Atlantic Ocean thermohaline circulation (Delworth 
and Mann 2000) and this conjecture is supported 
by available observations. 
   Some caveats need to be noted concerning the 
present state of AMO understanding. The 
observational SST time series are too short to infer 
oscillations with a quasi-period of 60 – 80 years 
with high degree of reliability. Longer time series, 
extending in the past, using proxy data, would be 
beneficial to investigate AMO in the North Atlantic 
region. The coupled ocean-atmosphere models 
need to reproduce the thermohaline circulation and 
its characteristics. For such aim, long term records 
of deep ocean data becomes paramount. 
 
 
 
 
 

4.2 Correlation of SST residuals 
 
   We note first that the residuals obtained by the 
three methods are similar. Figure 4 a shows the 
SST and the linear regression between BP in the 
time series. Figure 4 b shows the polynomial fit 
(order = 7) of the same data.   Figure 4c compares 
the three residuals obtain using these methods. 
More detailed tests (not shown) were performed to 
determine any significant variations between these 
methodologies, and we found that they produce 
similar stationary time series of the SST residuals. 
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Figure 4. Residuals obtained by the three methods: 
a) BP; b) polynomial fit; c) comparison of residuals 
from the three methods. 
 
   Figure 5 shows the contour plot of the SST 
residual obtained above. For any given month, 
there are significant variations at time scales of 
several years, likely linked to ENSO events and 
teleconnections between Atlantic Ocean and other 
regions (Penland and Matrosova, 1998;  Marshall et 
al., 2001; Andronache and Phillips, 2008). For any 
given year, we note some persistence of the SST 
anomaly. This is more visible if we take a smaller 
time interval such as that shown in Figure 6 for the 
period 1988 - 2008. It is apparent that SSTA 
persistence at few months is common, while does 
not seem to be a simple rule.  
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Fig 5.  Contour plot of SST residual, r1 for the time 
interval 1856 - 2008. 
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Fig. 6. Contour plot of the SST residual r1 for the 
time interval 1988 – 2008. 
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Fig. 7 Contour plot of the correlation coefficient for 
the matrix r1 of the SST residuals. 
 
   We estimate the  correlation coefficients between 
r1 in various months. Figure 7 shows the contour 
plot of the correlation coefficients of the matrix r1 of 
SST residuals. It illustrates that significant 
correlation exist between consecutive months. 
Thus, for example, February, March, and April 
correlate well with January. Generally, in most 
cases, each month correlates well with previous 
three to five months. This result confirms that in the 
monthly SSTA anomalies (after removal of decadal 
trend and oscillations), there is significant 
persistence at season time scale (few months up to 
about six months or so). While this result is 
applicable for the average SSTA for the whole 
North Atlantic, preliminary studies show the 
importance of spatial distribution, well illustrated 
and documented by previous studies (Penland C, 
and L. Matrosova, 1998; Marshall et al., 2001).  
 
5. CONCLUSIONS 
 
   For the North Atlantic region, the monthly SST 
residuals obtained after removal of long term trend 
and AMO type oscillation, show significant 
persistence at seasonal time scale and beyond. 
The significant covariance in the SST residual 

matrix is valuable in studies of climate predictability 
at regional scale and will be explored in more 
details to account for the role of the spatial 
distribution of the SSTA. 
   Preliminary results show that the spatial 
distribution of SSTA provides a detailed structure of 
interactions between ocean and atmospheric 
circulation. Further work will address the connection 
between North Atlantic SSTA and tropical storms, 
the role of SST in Arctic climate variations, and the 
role of ENSO in North Atlantic region climate.  
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