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1 INTRODUCTION 
The Concentration Level Uncertainty 

Ensemble System (CLUES) is a tool for 
estimating uncertainty in modeled atmospheric 
concentrations derived from transport and 
dispersion (T & D) models. CLUES comprises 
several models that attempt to characterize the 
uncertainty of predicted results from the 
mesoscale model Regional Atmospheric 
Modeling System (RAMS) (Pielke et al., 1992; 
Walko and Tremback 2006) and the dispersion 
models Short-range Layered Atmospheric Model 
(SLAM) (Atchison and Kienzle 2002; ENSCO 
2008) and CALPUFF. CLUES calculates the 
uncertainty in these model results using a 
variant of the Monte Carlo method where winds 
from RAMS are perturbed with simulated errors. 
The perturbed winds are then used as input to 
the selected T & D model. The resulting output 
can be used to determine the possible errors 
due to input data uncertainties.  

For this evaluation, SLAM dispersion model 
concentrations were calculated using input 
meteorological data from CLUES and from an 
NWP ensemble. The NWP ensemble consisted 
of a total of eighteen RAMS and Weather 
Research & Forecasting (WRF) (NCAR 2008) 
model configurations where model physics 
options were varied. The modeled 
concentrations were compared to concentrations 
collected during a tracer study conducted in the 
Mojave Desert region during July 2007. Various 
statistical and graphical comparisons were 
performed and an assessment of the CLUES 
and NWP methodologies was conducted. The 
preliminary results indicate some differences 
between CLUES and NWP ensembles but 
neither one did significantly better than the other 
when compared to measured concentrations. 
This presentation will present a description of 
CLUES, the methodologies used in this 
evaluation and the results of the comparisons.  

 
 
_________ 

 
 

 

 

2 CLUES BACKGROUND 
The CLUES-RAMS system adds random 

perturbations to a deterministic RAMS gridded 
wind field independently at each time period, 
thus generating individual members for an 
ensemble of runs for SLAM. Additional 
perturbations of the original RAMS output wind 
field are used to generate each additional 
member of the ensemble, so only a single 
RAMS run is needed. The method provides an 
efficient way to generate ensembles of 
trajectories and concentrations to be used for 
estimating uncertainty in the model results 
(ENSCO, Inc. 2001). 

CLUES-RAMS does not perturb the winds 
independently at each of the model grid points, 
as might be done in a classical Monte Carlo 
implementation.  Instead, an uncertainty model 
was formulated that allows the simulated RAMS 
wind errors to be spatially correlated across the 
grid. The nature of this correlation is similar to 
that used in the data assimilation process at 
Goddard Space Flight Center (Dee and Da 
Silva, 1999 and Gaspari and Cohn, 1999). 
Qualitatively, this correlation has the property of 
being large for pairs of grid points that are close 
to each other, but gradually decreases to zero 
for pairs of grid points separated by increasingly 
larger distances. The statistical model used for 
the simulated wind errors is that of a three-
dimensional Gaussian random field having the 
correlation structure just mentioned.  Efficient 
implementation of this uncertainty model is 
based on the weighted average method (Oliver, 
1995).  

A method often used in state-of-the-art 
weather forecasting that is more realistic, but 
more computationally demanding, is to produce 
a true meteorological ensemble system.  In this 
scenario numerical weather prediction (NWP) 
mesoscale models are run multiple times, using 
different or perturbed initial and/or boundary 
conditions or model physics. Therefore, for each 
member of the ensemble suite, initial errors or 
differences between members propagate and 
grow as forecast time increases. This error 
growth is due to the uncertainty in the initial 
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conditions, model parameterizations and 
nonlinear nature of the fundamental 
meteorological model equations as they are 
solved over time.  The spread of the resulting 
ensemble member solutions can then be used 
as input to T&D models to quantify uncertainty in 
concentration fields.   

In contrast, the CLUES-RAMS system 
applies the same level of perturbation 
independently for each time period, with no 
possibility of error propagation correlated 
through time in the wind fields. Also, since the 
gridded winds are perturbed from a deterministic 
RAMS run, there is no possibility for higher-
order effects from other perturbed 
meteorological parameters to influence the 
resultant wind field through the complex model 
equations as in true mesoscale model ensemble 
systems.  The tradeoff is in RAMS execution 
time, which must be multiplied by the number of 
members in the true ensemble in comparison to 
CLUES, which uses only a deterministic RAMS 
run. The use of multiple RAMS runs in CLUES 
would be prohibitively expensive in terms of 
execution time for most operational applications.  
It should be noted that even though errors do 
not propagate forward in time within the 
perturbed wind fields, CLUES does allow error 
propagation within SLAM, since those models 
are run separately for each member of the 
ensemble. 

There are two additional sources of error 
that are not considered by CLUES, since they 
cannot be simulated when using only a single 
RAMS run.  One is the effect of errors in the 
initial and boundary conditions, which will 
produce changes in the wind field as RAMS 
makes use of data from outside the initial grid.  
This effect can be simulated by perturbations in 
the boundary conditions, which must be different 
for each RAMS simulation.  A second source of 
error is the physical model used for generation 
of wind fields.  Its effect can be estimated by 
perturbing various parameters and options in the 
model.  However, most state-of-the-art 
meteorological ensemble systems focus on the 
“free” forecast problem where the NWP model is 
initialized using a set of observations to form a 
“best estimate” of the true atmospheric state and 
then run out to a given time.  In the current 
application, RAMS is continually nudged to both 
gridded analyses and observations (surface and 
upper air) to form the “best” re-creation of the 
actual meteorological record.  Therefore, the 
errors that grow considerably large in “free 
forecast” mode are somewhat constrained by 
the observations and analyses that are brought 
into the model at given times.  Even though the 

gridded analyses and observations constrain the 
RAMS simulation compared to reality, error 
propagation still occurs through the uncertainties 
related to the model physics and dynamics, 
lateral boundary conditions, data assimilation 
scheme, and the observations themselves. 

The goal of this task was to compare the 
results from CLUES-RAMS to a full mesoscale 
model ensemble system. 

 

3 METHODOLOGY 
The methodology for the CLUES validation 

was based on the data collected during a tracer 
field test which is described in detail in Tracer 
Environmental Sciences & Technology, Inc. 
(2007).  

 
3.1 Tracer study 

An atmospheric tracer study was conducted 
in July 2007 in the Mojave Desert region. Three 
different perfluorocarbon (PFT) tracers were 
released from three different locations for 
release durations of four hours. Twenty-five 
samplers were arranged in two downwind arcs 
and collected samples in 30-minute and 60-
minute increments. A map showing the source 
and sampler configuration is shown in Figure 1. 

source1

source2

source3
35 km

 
Figure 1. Map of the SLAM domain used 
in the tracer test in the Mojave Desert region.  
The three source locations are shown by the red 
circles and the various sampler locations are 
denoted by the green squares. 
 
3.2 CLUES Configuration 

A baseline RAMS run was made that 
covered the period of the tracer Test 2 and 
another RAMS run was made that covered the 
period of the tracer Tests 3 and 4. The physics 
and grid options selected for the RAMS baseline 
were based on previous runs made for this area. 
CLUES-RAMS was run with an ensemble of 50 
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CLUES members to provide sufficient 
convergence of the results.  

Once the CLUES-RAMS runs were 
completed, the CLUES-SLAM runs were made. 
These CLUES-SLAM runs used the 50 
members of the CLUES-RAMS runs as input 
meteorological data. The runtime configurations 
for the CLUES runs for the validation study are 
shown in Table 1. 

 
3.3 NWP Configuration 

In order to design a realistic ensemble 
system multiple uncertainties in the model must 
be examined. This includes the model initial and 
boundary conditions, data assimilation schemes, 
model physics, and land surface interactions. 
The ensemble methodology used here follows 
that of the Mesoscale Model 5 (MM5) system 
described in Liu et al. (2007). They found that 
there was an advantage of multi-model 
ensembles based on varying the dynamics 
formulations such as in using two different 
mesoscale models. They found that the physics 
diversity and other perturbation approaches 
appear to be less dispersive, though important 
also. 
 
Table 1. Runtime configurations for CLUES runs 
for validation study. 

Run RAMS 
start 

RAMS   
duration 

(hrs) 

CLUES-
RAMS 
start 

CLUES-
RAMS 

duration 
(hrs) 

CLUES-
SLAM 
start 

CLUES-
SLAM 

duration 
(hrs) 

Test 
2 

14 
July 
0000 
UTC 

84 16 
July 
1900 
UTC 

13 16 
July 
1930 
UTC 

12 

Test 
3 

17 
July 
1200 
UTC 

96 18 
July 
1600 
UTC 

16 18 
July 
1630 
UTC 

15 

Test 
4 

17 
July 
1200 
UTC 

96 20 
July 
2000 
UTC 

14 20 
July 
2000 
UTC 

14 

 
Currently, RAMS has a limited number of 

physics options and data assimilation choices.  
Given these limitations a multi-model ensemble 
system was developed using different 
configurations of RAMS and the Weather and 
Research Forecast (WRF) model to generate 
the uncertainty of using a single RAMS run. This 

is often done in the modeling community and is 
quite common in the literature. Using more than 
one mesoscale model allows for many more 
perturbation methods (e.g. physics and data 
assimilation) to be applied to the ensemble 
enabling a far more robust system. 

To address the uncertainties associated with 
using a single mesoscale model run, a number 
of perturbation methods were applied in the 
multiple-model ensemble approach. A list of the 
perturbation methods used in the RAMS/WRF 
ensemble system is outlined in Tables 2 and 3. 
It was important to keep the number of RAMS 
and WRF members in the ensemble about equal 
to avoid one model from causing bias in the 
outcome. Additionally, while constructing the 
multiple-model ensemble system it was 
important not to choose schemes that are 
inferior to others therefore biasing the results 
(e.g. comparing dry microphysics to the full 
mixed-phased schemes). To satisfy both these 
requirements and to complete the task within the 
time allotted, an 18 member ensemble system 
was developed; nine members from each model 
were developed.  A key assumption in an 
ensemble is that each member outcome is an 
equally likely scenario as the next. For the 
analyses in this study the baseline RAMS run 
was considered member one in the NWP 
ensemble system. 

 
Table 2. List of physics variations used for 
RAMS ensemble runs. 

RAMS 
Global Forecast System (GFS) Initial Conditions (IC) 
and Boundary Conditions (BC) with standard options 
GFS IC and BC with data assimilation weighting 
tweaked upward 
GFS IC and BC with data assimilation weighting 
tweaked downward 
GFS IC and BC with data assimilation radius of 
influence doubled 
GFS IC and BC with Kuo convection scheme 
GFS IC and BC with LEVEL=2 microphysics 
scheme 1 
GFS IC and BC without 1-km inner nest (i.e. 5 km) 
GFS IC and BC with Mahrer/Pielke shortwave/ 
longwave- radiation scheme 2 
North American Reanalysis IC and BC with standard 
options 
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Table 3. List of physics variations used for WRF 
ensemble runs. 

WRF 
GFS Initial Conditions IC an BC with standard 
options 
GFS IC and BC with data assimilation weighting 
tweaked upward 
GFS IC and BC with data assimilation weighting 
tweaked downward 
GFS IC and BC with data assimilation radius of 
influence doubled 
GFS IC and BC with Betts-Miller convection scheme
GFS IC and BC with WSM microphysics scheme 
GFS IC and BC with Mellor Yamada Planetary 
boundary layer scheme 
GFS IC and BC with CAM3 shortwave/longwave 
radiation scheme 
North American Reanalysis IC and BC with standard 
options 

 
3.4 SLAM Configuration 

The configuration of the SLAM runs were 
matched with the actual tracer Tests 1, 2, and 3 
so that the release times, release rates, and 
sampling times agreed with actual release and 
sampling data. Source and sampler locations 
were the same and were shown in Figure 1. 

Concentration data were computed as 
hourly averages to match the collection period of 
the samplers. The samplers collected hourly 
samples on the outer ring of samplers (Samplers 
8 through 25) and half-hourly samples on the 
inner ring (Samplers 1 through 7). To keep 
sampling periods uniform and to match SLAM 
modeled concentrations with actual sampled 
concentrations, the half-hour samples were 
merged into hourly samples.  

 
3.5 Statistical Tests 

Because the 25 samplers collected samples 
for a relatively short time period (8-12 hours), it 
was decided to conduct some of the 
comparisons between modeled and collected 
concentrations using the sum of the 
concentrations for the full length that the 
sampler was collecting for each of the three 
tests. The time-integrated concentrations with 
example units of g-hr/m3 were computed by 
summing the concentrations over the period of 
sampling to compute a total concentration in 
units of g/m3. The summed concentrations were 
adjusted to account for the half-hour samples 
that were collected in the inner ring of samplers. 

There have been many papers that address 
the quantitative comparison of model predictions 

to observational data.  Different statistics have 
been proposed that highlight the central 
tendencies and variability of these model/data 
comparisons.  Some of these statistics are 
calculated using scaled data because of the fact 
that concentration or sum concentration data 
very often differ by orders of magnitude.  We 
decided to apply four of these established and 
accepted statistics, along with one additional 
statistic, to the comparisons of the CLUES and 
NWP data. 

Although the main interest for this report is 
the comparison of the CLUES data to the NWP 
(9 RAMS runs and 9 WRF runs) data, graphs 
were created that compared the RAMS and 
WRF ensembles along with the data from the 50 
CLUES member runs.  Doing this gives some 
idea of the variability within each of the different 
NWP ensembles and whether there were any 
major differences between the two NWP 
ensembles with respect to the five statistics 
studied. 

There is a certain intuitive appeal to 
statistically comparing data from competing 
models where these statistics are based on how 
these models relate to real observational data 
(truth).  These observational data give a 
reference point from which the comparisons 
between the CLUES and NWP data can be 
made.  Without a reference point, differences 
between the two models would be difficult to 
interpret; even if there were differences between 
the two models, there would be no way of saying 
which model was more accurate. 

When making these types of comparisons, 
observation and model data can be paired in 
space, time or both space and time.  A decision 
was made to pair the observed and modeled 
data in space. For a given sampler, sum 
concentrations were created by integrating the 
concentration data over time.  One unintended 
consequence of temporally combining the data 
is the reduction of the effective sample size.  
This becomes important when calculating the 
variability of the different statistics because less 
data implies more variability. 

There were many observed concentrations 
that were missing, and the vast majority of these 
missing data were non-detects (concentrations 
below the detection limit of the sampler).  Adding 
the data over time helped this condition to a 
degree, but there were still many data points left 
with no numerical value.  These data were 
deleted from the observation dataset before 
being paired with the modeled sum 
concentrations.  A similar problem existed with 
the modeled data; there were many zeros.  
Granted, the majority of these values were 
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probably true (modeled) zeros, but some of 
these would also be values that fell below the 
modeled detection limit.  With the exception of 
one of the calculated statistics, Measure of 
Effectiveness (MOE), modeled data having a 
sum concentration value of zero were also 
deleted prior to pairing with the observed sum 
concentrations. Thus all of the paired data used 
for calculating the various statistics consisted of 
observed and modeled sum concentrations with 
non-zero values. 

The final paired sum concentration dataset 
consisted of data from all three tracer tests and 
all three sources combined for all 25 samplers.  
One could argue for separating the data 
according to test and source, but doing this 
would have made the statistical comparisons of 
CLUES and the NWP very questionable 
because the dataset sample sizes would have 
been too small for reliably calculating the 
variability of the statistics. 

Figure 2.  Explanation of Measure of 
Effectiveness (MOE) graph from Warner et al 
(2004). 

 
Confidence intervals for each of the 

statistics were calculated using the method of 
bootstrapping (Efron and Tibshirani, 1993).  This 
is a popular technique for calculating standard 
errors and confidence intervals for statistics that 
have no handy analytical formula for calculating 
them.  The simplest form of the bootstrap is 
performed by sampling the dataset with 
replacement and calculating the statistic of 
interest.  This re-sampling is done many times 
(1000 or more), and a distribution of statistics is 
the final product.  There are different ways of 
calculating confidence intervals from this 
distribution of statistics, and the method that was 
used for these data is called the BCa method, 
which stands for bias-corrected and accelerated.  
With sufficient sample size, this method gives 

accurate confidence intervals with respect to 
coverage and probability. 

The first two statistics that are listed below 
come from Chang and Hanna (2004).  FAC2 
stands for the fraction of the modeled sum 
concentration that were within a factor of two of 
the observed sum concentrations.  MG is called 
the geometric mean bias, and it is simply the 
ratio of the geometric mean of the observed data 
to the geometric mean of the modeled data; 
geometric means are useful for describing log-
normally distributed or skewed data.  The third 
statistic listed, FAC10, is a variant of FAC2, and 
it is simply the fraction of the modeled sum 
concentrations that were within a factor of ten of 
the observed sum concentrations: 

FAC2 = fraction of data that   

satisfy 0.25.0 ≤≤
o

p

C
C

,  (1) 

MG = )lnlnexp( po CC − , (2) 

FAC10 = fraction of data that  

satisfy 0.101.0 ≤≤
o

p

C
C

,  (3) 

where: 
Cp: modeled sum concentrations, 
Co: observed sum concentrations, 
( Cln ): average of the log-transformed 

values over the dataset. 
 
If the model perfectly predicted the observed 

data, all three statistics above would be equal to 
one.  The FAC and MG statistics attempt to 
show how close the observed and modeled sum 
concentrations match up in space, and MG can 
give an idea of directional bias.  There was 
another statistic studied that had the same goal:  

MEDRATIO = )(
p

o

C
C

Median , (4) 

This is the median of the ratios of observed 
to modeled sum concentrations.  This statistic 
can also determine whether the modeled sum 
concentrations tend to over-predict or under-
predict the observations.  The median is used 
instead of the mean because of the wide spread 
of the ratios.  A perfect model would also have 
MEDRATIO = 1. 

One final statistic that was used to compare 
the CLUES sum concentrations to the NWP sum 
concentrations is called a Measure of 
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• RAMS trajectories from source 1 
consistently travel left of the samplers and 
left of WRF trajectories for all three tests, 
possibly due to the models not handling 
terrain interaction with the flat desert to the 
south and higher, rougher terrain to the 
north. 

Effectiveness (MOE) by Warner et al (2004).  
This is a two-dimensional statistic that is shown 
on a Cartesian graph, and the two components 
are the false-positive fraction (over-prediction) 
and the false-negative fraction (under-
prediction).  Figure 2 was taken from Warner et 
al (2004), and it illustrates some aspects of the 
MOE graph.  Both axes are labeled, and their 
scale is from zero to one.  The gold circle in the 
figure represents an estimate of the MOE for 
some set of data (Model A).  If another estimate 
of the MOE was made and compared to Model 
A’s prediction, the four shaded areas show how 
the new estimate would compare in relation to 
Model A: green area would be better, orange 
area would be worse, two gray areas leave room 
for subjective interpretations.  Of course, the 
boundary lines themselves are subjective, but 
they serve as a good general rule. 

• Comparing trajectories from source 2 
indicated that CLUES and NWP trajectories 
overlapped  

• A few of the RAMS and CLUES trajectories 
occasionally went to the west from sources 
2 and 3 while the majority of the trajectories 
for those runs went to the east. The 
westward movement of the few trajectories 
was opposite the direction of most of the 
trajectories.  

• Comparing the dispersiveness of the 
trajectories, CLUES trajectories generally 
covered an area as wide or even wider than 
the NWP trajectories. The difference was 
primarily due to CLUES runs contained 50 
members while NWP runs contained only 18 
members. When the NWP trajectories 
covered an area not covered by the CLUES 
trajectories it was when the WRF trajectories 
differed distinctly from the RAMS 
trajectories. 
 

The MOE statistic would be shown as one 
point on the graph, but the bootstrapping 
procedure produces a cloud of points showing 
the likely variability of the statistic.  The clouds 
from the CLUES and NWP statistics will be 
statistically compared by looking for cloud 
separation between the models. 
 

The MOE is the only statistic used in this 
study that was calculated for each row of 
samplers separately (samplers 1 through 7 and 
samplers 8 through 25).  This had to be done 
because of the way that the statistic is 
calculated.  Data for all three tests and all three 
sources were still combined to calculate the 
MOE for each set of samplers. 

4.2 Statistical results 
The comparison of the NWP and CLUES 

RAMS ensembles is performed by looking at all 
three MOE graphs within Figure 4.  The 
considerable variability present in all three 
graphs does not allow any differences to be 
detected statistically.  The variability seen in 
these MOE graphs was due to a combination of 
having relatively few samplers to calculate the 
MOE statistic and having only nine records (3 
tests and 3 sources) available for the 
bootstrapping algorithm.  

These five statistics are certainly not an 
exhaustive list for comparing the CLUES and 
NWP data, but they should be satisfactory at 
testing whether the central tendency of the 
CLUES and NWP data are different. 

 

 4 RESULTS 
 

4.1 Trajectory comparisons 
For the trajectories that were created for this 

study, maps were produced to compare the 
CLUES-SLAM trajectories versus the NWP-
SLAM trajectories. Additionally, the NWP-SLAM 
trajectories were color-coded to indicate the 
difference between the RAMS-SLAM and WRF-
SLAM trajectories since the trajectory results 
showed that there was a marked difference 
between RAMS and WRF trajectories in this 
study.  

Figure 3 shows examples of trajectories 
from some of the runs. Some of the key results 
were: 
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Figure 3. SLAM Trajectories from NWP (top) and CLUES (bottom) for Test 2, Source 1, 2330 UTC, Test 
3, Source 2, 1830 UTC, Test 4, Source 3, 0000 UTC. In the NWP figure, red trajectories are from RAMS 
and blue trajectories are from WRF. 
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Figure.4.  MOE clouds for: (a) 
NWP RAMS, (b) NWP WRF 

PIMIX, (c) CLUES RAMS.  The 
different colors within each 
graph are for the individual 

members (9 for the two NWP 
graphs and 50 for the CLUES 

RAMS).  Samplers 8 - 25. 

(a) (b)

(c) 



 
 
4.3 Box and Whisker Plots 

As a way to compare the CLUES-predicted 
data and the NWP-predicted data and to 
visualize the range of concentrations produced 
by the different ensemble members, box and 
whisker plots were produced for each test, each 
source and each sampler. These plots are a 
good way to determine if the ensemble 
members were able to encompass the actual 
concentrations when looking at the sum 
concentration at each sampler. The box and 
whiskers show the median concentration along 
with the 25th-75th percentile, and the effective 
range. An example box and whisker plot is 
presented in Figure 5. The box and whisker 
plots show logarithmic sum concentrations.  

Figure 5.  Box and whisker plots (5, 25, 50, 75, 
95 percentiles) for 50 CLUES members and 18 
NWP members at each of the 25 samplers 
compared to the observed concentration sum 
(●) for Test 2 Source 1. Sum concentration 
scale is logarithmic base 10. 

 
Therefore, when comparing the differences 

between two different concentrations of higher 

percentiles located in the top of the graphs there 
is a much greater actual difference than 
comparing the difference between two lower 
percentiles located in the lower part of the 
graphs.  
 

5 CONCLUSIONS 
The statistical results showed that there 

were no significant differences between the 
NWP and CLUES results with respect to the five 
statistics studied.  There was considerable 
variability with the data that precluded detection 
of any differences, if in fact there were any true 
differences between the NWP and CLUES 
RAMS.  Relatively low samples sizes 
contributed to the width and size of the 
confidence intervals and confidence clouds. 

Box and whisker plots were used to show 
the variations of the NWP and CLUES 
ensembles compared to observed 
concentrations. When comparing predicted to 
observed concentrations that were summed 
over the tracer experiment duration we found 
that the CLUES ensembles were not 
significantly different from the NWP ensembles. 
There were several exceptions and these were: 

 

Log 
Sum 

Concen- 
trations 

• NWP predicted concentrations in general 
produced more concentration variation 
than CLUES. The box and whisker plots for 
the NWP runs were generated from the sum 
of the concentrations from 18 different 
ensemble members while the CLUES plots 
were from 50 ensemble members. The 
wider variation of the NWP plots was most 
likely due to the NWP runs were based on 
ensembles of two different models—WRF 
and RAMS, whereas the CLUES ensembles 
were based on wind perturbations of just 
one model—RAMS. 

Log 
Sum 

Concen- 
trations 

 
• For the most northern of the three 

sources, source #1, for all three tests, 
CLUES under-predicted concentrations 
compared to observations. The reason for 
the underprediction was because many of 
the CLUES trajectories missed the sampler 
rings and traveled to the north of the 
samplers. NWP runs did better than CLUES 
at matching the observed concentrations 
because the NWP runs included the WRF 
data as input and the WRF-based 
trajectories traveled toward the east from 
source #1 into the samplers. . These 
differences between CLUES and NWP were 
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due primarily to RAMS poorly modeling 
trajectory directions from source #1 and 
causing CLUES-modeled trajectories, which 
are based on RAMS trajectories as its 
baseline, to inaccurately miss the samplers.  

 
• For the middle of the three sources, 

source #2 for all three tests, both NWP 
and CLUES ensembles produced 
concentration patterns that matched 
observations as indicated by the box and 
whisker plots. The plots showed that the 
concentration range between the 18 NWP 
runs and 50 CLUES runs were distributed 
similarly between lowest and highest 
concentration and that for most of the 
samplers the observed concentration fell 
within that distribution.  

 
• For the most southern of the three 

sources, source #3, the NWP runs 
showed slightly larger concentration 
variation than the CLUES runs. This 
difference is probably attributable to the fact 
that the NWP runs were derived from two 
different models and the CLUES runs were 
derived from one model. Compared to sum 
of observed concentrations for the source #3 
runs, neither the NWP or CLUES did 
significantly better that the other.  

 
When comparing spread of trajectories 

between CLUES and NWP runs, the trajectory 
plots indicated that spatially they were very 
similar. The differences that were noted were 
due to the NWP WRF runs which varied from 
the NWP RAMS and the CLUES trajectories. 
This result was not surprising because the 
CLUES runs use RAMS as its baseline run. 

Because the three tracer tests were 
conducted mostly during the daytime (all 
releases occurred during the daytime and 
sampling continued into nighttime in two of the 
tests), we were not able to compare diurnal 
differences between CLUES and NWP in this 
evaluation. In earlier study, we found that 
CLUES and NWP trajectories were similar 
during the nighttime but tended to differ 
somewhat during the daytime. We also found 
both CLUES and NWP trajectories at the 
sources in the rugged terrain were more strongly 
influenced by the terrain in the nighttime and 
early morning stable conditions than in daytime 
unstable conditions. 

The WRF and RAMS ensembles were 
generated by varying the input model physics of 
each model based on other researchers’ 
studies. Eighteen NWP model runs were 

generated (nine WRF and nine RAMS). To 
summarize the conclusions and to answer the 
question of whether CLUES ensembles or NWP 
ensembles do a better job of capturing the 
uncertainty for concentration predictions when 
using observed concentrations as the basis for 
the comparison we found the following:  
• CPU and wall clock time to generate CLUES 

ensembles is considerably less than NWP 
ensembles (hours vs. days) and disk space 
required is less as well. For these runs 
CLUES data used approximately 50 
gigabytes of disk space for a 50-member 
ensemble versus approximately 650 
gigabytes for the 18-member NWP 
ensemble.  
 

• NWP produces wider variation in predicted 
concentrations than CLUES and its 
variability incorporates observed 
concentrations slightly better than CLUES. 
The wider variation in NWP results is 
attributed primarily to using two different 
models. 
 

• CLUES ensemble trajectories, in general, 
favorably compare with the NWP ensemble 
trajectories. 
 

• Occasionally but not always, at different 
times and/or different sources, RAMS 
ensembles differed from WRF ensembles in 
both trajectories and concentrations 
predictions. However, the variation within 
the nine WRF model results and within the 
nine RAMS model results were not that 
different. 
 

• There was a tendency for the all of the 
models used in this study to under-predict 
the observed data. 
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