Linear and Nonlinear Postprocessing of Ensemble Forecasts

Ranran Wang1 and Caren Marzban1,2

1Department of Statistics
2Applied Physics Laboratory
Univ. of Washington, Seattle, Washington
Generalities

NWP forecasts have problems.

Correction of forecasts = post-processing = MOS.

Long history:
- Glahn, Lowry 1972
- Wilson, Vallee 2002
- Marzban 2003
- Pasini et al.
- Marzban, Sandgathe, Kalnay 2005
- Marzban, Leyton, Colman 2007
- Gneiting, Raftery 2005
- Berrocal, Raftery, Gneiting 2007
- Wilson, Beauregard, Raftery, Verret 2007
- Sloughter, Raftery, Gneiting 2007
- Gneiting, Kleiber, Schlather 2009
- Bao, Gneiting, Raftery, Grimit, Guttorp 2009
Method

Here, we postprocess ensemble forecasts.

At a given station, at a given time, one has
- M forecasts (from an M-member ensemble),
- of meteorological variables (temp, wind, etc), and
- surface observations.

Goal: Develop a map from forecasts to obs.

Statistical Models:

Regression: temperature and wind (U and V)
Classification: yes/no prcp.

Raw: ensemble mean and ensemble proportion.
Linear: multiple regression (LM) and linear discriminant analysis (LDA)
Nonlinear: Neural Network (NN), minimizing MSE or cross-entropy.
Method ...

Reduce dimensionality of input data.

2-level hierarchical approach:

Step 1:
\[
T_{\text{fit}} = \text{regress}(T_{\text{obs}} \sim T_1 + T_2 + \cdots + T_{10})
\]
\[
U_{\text{fit}} = \text{regress}(U_{\text{obs}} \sim U_1 + U_2 + \cdots + U_{10})
\]
\[
V_{\text{fit}} = \text{regress}(V_{\text{obs}} \sim V_1 + V_2 + \cdots + V_{10})
\]

Step 2:

LM1
\[
T_{\text{obs}} \sim T_1 + T_2 + \cdots + T_{10}, \quad T_{\text{obs}} \sim T_1 + T_2 + \cdots + T_{10} + U_{\text{fit}} + V_{\text{fit}},
\]
\[
U_{\text{obs}} \sim U_{\text{fit}} + V_{\text{fit}}, \quad U_{\text{obs}} \sim U_{\text{fit}} + V_{\text{fit}} + T_{\text{fit}},
\]
\[
V_{\text{obs}} \sim U_{\text{fit}} + V_{\text{fit}}. \quad V_{\text{obs}} \sim U_{\text{fit}} + V_{\text{fit}} + T_{\text{fit}}.
\]
LM2

LDA1
\[
P_{\text{obs}} \sim P_1 + P_2 + \cdots + P_{10} \quad P_{\text{obs}} \sim P_1 + P_2 + \cdots + P_{10} + T_{\text{obs}} + U_{\text{obs}} + V_{\text{obs}}.
\]

LDA2

Similarly, for NNs.

Input data = residuals (to filter out seasonality).

residuals = observed - conditional median.

Input data = residuals (to filter out seasonality).

residuals = observed - conditional median.
Performance

Measures:
Mean Squared Error (MSE) for regression,
Area under ROC curve (AUC) for classification.

Assessment:
Cross-validation (on years) → sampling distribution of training and validation performance measures.

Compare ensemble mean, LM, and NN.
Compare ensemble proportion, LDA, and NN.

In cross-validation, models are paired.
Must look at pair-wise difference of models.
E.g. Where is zero on the distribution of \(\text{MSE}_{vld}(\text{LM}) - \text{MSE}_{vld}(\text{NN}) \) ?

Vary \(H = \) number of hidden nodes.
Data (from Fanyou Kong and Steve Leyton)

Regional fine-scale ensemble based on WRF-ARW Version 3.0.1

Ten members, each with unique initial perturbations and varying physics options and land-use tables.

Initial perturbations = bred vectors produced by 6-hourly breeding cycle, using the North America Regional Reanalysis (NARR) as background fields.

Three-domain, two-way nesting, innermost domain = 15 km grid spacing.

19 years (1987-2005), 48-hr re-forecasts of temperature, wind, and prcp, at 90 stations across the continental US.

5-day intervals, leading to 1387 cases.

Plus surface obs (analysis, for prcp) at each station.
Surface obs at KSEA

Temperature

Wind U

Wind V

Precipitation
Conditional Medians

Temperature

Wind U

Wind V
NNs Overfit!

KOKC MSE Temp vs. ensemble mean, LM, and NN with $H = 2, 4, 8, 16, 32, 64$.

Training

Validation
KSEA

Training

Validation
Conclusion I

Temperature, Wind U, Wind V:

- LM improves T, U and V predictions over ensemble means in terms of MSE.

- For wind U/V, adding T as additional covariate improves on MSE significantly for only a few stations. Forecasts of T are improved by adding wind U/V for most stations.

- For wind U/V, NN does not improve over LM in terms of MSE; forecasts of T from NN are worse than LM for all stations.
Conclusion II

Precipitation:

• LDA improves over ensemble proportion, except for a few stations in the Northwestern region.

• NN makes no improvement over LDA.

• A clear East-West spatial pattern observed when we compare LDA w/ additional covariates (LDA2) with LDA w/o additional covariates (LDA1).

We thank Fanyou Kong and Steve Leyton for the data.