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1. INTRODUCTION 

The uncertainty in meteorological (MET) predictions 
is of great interest for a large number of applications, 
ranging from economic to recreational to public safety.  
It is therefore important that numerical models and 
forecasts provide accurate estimates of their uncertainty 
along with their best or most likely prediction (NRC 
2007).  One common method for determining this 
uncertainty is the use of ensembles, with multiple 
numerical forecasts produced using slightly different 
initial conditions and/or model parameterizations.  The 
goal of using an ensemble is to span the possible 
outcomes given the uncertainties in the initial state of 
the atmosphere, the limited observations and the 
modeling system (Leith 1974).  The mean of the 
ensemble has also been shown to often outperform any 
individual ensemble member compared to observations, 
even for low-level variables (e.g. Jones, Colle and 
Tongue 2007). 

While ensemble forecasting is a significant step 
toward forecasting the most likely outcome and the 
uncertainty in the forecast, the size of operational 
ensembles is insufficient to fully represent the 
probability density function (PDF) of possible forecasts.  
An ensemble capable of doing so is impractical with 
current computing resources.  Therefore, any MET 
ensemble provides a sampling of the full forecast PDF 
and any measures of the uncertainty from the ensemble 
(such as variance) should be evaluated for applicability 
and calibrated if necessary.  Many studies, including 
Houtekamer et al. (1997), show that most MET 
ensembles are under-dispersive (the ensemble spread 
is consistently smaller than the spread in the forecast 
errors).  Several studies attempt to determine a 
correlation between ensemble spread and some 
measure of the error for various variables (Kalnay and 
Dalcher 1987, Murphy 1988, Barker 1991, Houtekamer 
1993, Buizza 1997, Hamill and Colucci 1998, Stensrud 
et al. 1999), but these studies generally find an 
unacceptably low correlation between spread and errors 
(Grimit and Mass 2007).  Houtekamer (1993) explains 
this low correlation using a stochastic model that 
showed that, even in idealized cases, the correlation 
between ensemble spread and absolute error will not be 
large. 

Grimit (2004) proposes that, rather than a simple 
spread-to-error correlation, a more probabilistic  
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approach should be used to evaluate ensemble 
uncertainty.  Specifically, Grimit stresses the distinction 
between forecast error and forecast uncertainty.  
Because each forecast results in only one realization of 
the forecast error (one random draw from the forecast 
PDF), the error of any particular forecast provides little 
information about the distribution from which it was 
drawn.  However, if the relationship between the spread 
of the MET ensemble and forecast uncertainty is 
constant within a sample, we can group multiple 
samples with similar ensemble variance and use the 
distribution of the associated group of errors as a 
measure of the underlying uncertainty in the errors. 

Grimit (2004) and Grimit and Mass (2007) use an 
idealized stochastic model that shows a strong linear 
relationship between ensemble spread and error 
variance.  Kolczynski et al. (2009) uses a similar method 
derived from Roulston (2005) on low-level wind data 
from the National Centers for Environmental Prediction 
Short-Range Ensemble Forecast (NCEP-SREF).  
Kolczynski et al. (2009) also finds a strong correlation 
between ensemble variance and error variance, and 
uses this linear relationship as a calibration (denoted 
Linear Variance Calibration or LVC) for wind variance 
input into an atmospheric transport and dispersion 
model.  However, unlike the Grimit and Mass study 
using an idealized model, Kolczynski et al. (2009) finds 
that the slope of the linear fit is less than the ideal value 
of one, and that the y-intercept is larger than the ideal 
value of zero (Fig. 1).  The study also finds that these 
parameters change substantially depending on the 
length of the forecast.  When applied to dispersion 
calculations in a case study, the calibration improves the 
resulting dispersion forecast in most of the metrics used 
in the study. 

This study further explores possible influences on 
the LVC slope and intercept.  This is done using a 
stochastic model adapted from that used by 
Houtekamer (1993) and Grimit and Mass (2007).  
However, this new stochastic model allows the variance 
of the error distribution and the ensemble distribution to 
vary from each other, allowing for the creation of 
“imperfect” ensembles, but in such a manner that a 
linear relationship between the variances is maintained.  
Since we are interested in the variances of low-level 
wind speed for atmospheric transport and dispersion, 
the new model also uses a Weibull distribution instead 
of a log-normal distribution as the underlying 
“climatology”, as a Weibull approximates the climatology 
of surface (10-m) wind speed (Wilks 2006).  Section 2 
provides the details of the new stochastic model.  
Section 3 presents the results of the model for six 
 



 

 
 

 
Figure 1: Scatterplot showing the relationship between 
error variance and ensemble variance (adapted from 
Kolczynski et al. 2009).  The linear best-fit line from the 
LVC (not shown) has a slope of 0.502 and a y-intercept 
of 3.007. 
 
experiments using an ensemble size of 20, typical of 
operational MET ensembles.  The same six experiments 
are then repeated using varying ensemble size for 
results in Section 4.  Section 5 details a theoretical 
approach to determining the variations in LVC slope 
with ensemble size.  Conclusions and directions for 
future work are offered in Section 6. 

 
2. METHODOLOGY 

In order to investigate the relationship between 
ensemble variance and error variance, we construct a 
stochastic model in which we control the variance from 
which the data are drawn.  This will allow us to compare 
the results of the model directly with the expected 
values given the underlying distribution. 

For each simulation, we first generate a random 
value of “speed” 𝑠𝑖  from a Weibull distribution with a 

shape parameter of 1.8 and a scale parameter of 5.0.  
We choose this distribution because we are interested 
in the low-level winds important for atmospheric 
transport and dispersion, and Kolczynski et al. (2009) 
focused on low-level winds.  The shape and scale 
parameters fall within the common range of values 
empirically determined for the distribution of wind 
speeds. The error distribution and ensemble distribution 
are then both defined to be normal distributions with a 
mean of zero and a variance that depends on 𝑠𝑖 .  The 

relationship is a simple linear one, with the variance of 

the errors (𝜎𝑎
2) defined as 
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and the variance of the ensemble (𝜎𝑒
2) defined as 
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Because the variance of the product of normals is the 
sum of the individual normal variances, the 𝑏𝑎  in (1) can 

also be thought of as the observation error. Using these 
variances, we pick one number at random from the 

normal distribution 𝑁 0, 𝜎𝑎
2  as our observed error, and 

M numbers from the distribution 𝑁 0, 𝜎𝑒
2  to serve as our 

ensemble.  This process is repeated one-hundred 
thousand times to create a population of error/ensemble 
pairs. 

A modified version of the LVC presented in 
Kolczynski et al. (2009) is then used to calculate a 
relationship between the ensemble variance and error 
variance.  First, the error-ensemble pairs are ordered 
based on the ensemble variance.  Then the data are 
binned into groups of 1000.  In each bin, the ensemble 
variance is averaged to obtain a representative 
ensemble variance for the bin, and the variance of the 
errors in the bin is computed.  The philosophy is that, if 
the relationship between ensemble variance and error 
variance remains constant within the sample, errors 
from cases with similar ensemble variance should be 
drawn from similar error distributions.  Thus, we can 
take the variance of the errors from many different 
realizations and it would be similar to the variance if we 
could compute it over many errors for the same case.  
We then perform a linear regression on the mean 
ensemble variance/error variance pairs for each bin to 
determine the slope (𝑚 𝐿𝑉𝐶 ) and intercept of the 

relationship (𝑏 𝐿𝑉𝐶 ). 

Because we specify the underlying distribution, we 
can also compute the expected LVC slope and intercept 
algebraically.  The slope of the LVC regression (𝑚𝐿𝑉𝐶 ) is 

expected to be 

 

a
LVC

e

m
m

m


 

(3)

 
and the y-intercept of the LVC regression (𝑏𝐿𝑉𝐶 ) is 

expected to be 
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We can compare these theoretical values to those 
calculated from the simulated data. 

 
3. EXPLORATION WITH ENSEMBLE SIZE OF 20 

In order to explore the behavior of the model with 
typical operational ensemble sizes, we first consider 
several configurations using a constant ensemble size 
of 20 members.  Each experiment is summarized in 
Table 1 along with the 20-member ensemble results.  
Experiments A and B are both “perfect” ensembles, with 
the ensemble being drawn from a distribution identical 
to that from which the errors are drawn.  The only 
difference between A and B is that the variances of B 
are three times bigger than those of A relative to 𝑠𝑖 .  
Experiments C and D explore simple over- and under-
dispersive cases, with the ensemble being drawn from 
distributions with three times larger or one third smaller 
variances, respectively.  Experiments E and F 



 

 
 

Table 1: Summary of the experimental configuration and corresponding results for an ensemble size of 20.  The color 
of each row corresponds to the color used in Figs. 3 and 4. 

Exp. 𝒎𝒂 𝒃𝒂 𝒎𝒆 𝒃𝒆 𝑹𝟐 𝒎𝑳𝑽𝑪 𝒎 𝑳𝑽𝑪 𝒃𝑳𝑽𝑪 𝒃 𝑳𝑽𝑪 

A 0.1 0.0 0.1 0.0 0.94 1.00 0.71 +0.00 +0.13 

B 0.3 0.0 0.3 0.0 0.95 1.00 0.72 +0.00 +0.38 

C 0.1 0.0 0.3 0.0 0.98 0.33 0.24 +0.00 +0.13 

D 0.3 0.0 0.1 0.0 0.96 3.00 2.15 +0.00 +0.39 

E 0.1 0.0 0.1 0.4 0.99 1.00 0.45 - 0.40 +0.07 

F 0.1 0.4 0.1 0.0 0.92 1.00 0.72 +0.40 +0.52 

 
 

 
 
Figure 2: Relationship of ensemble variance (abscissa) to the error variance (ordinate) for each experiment, using an 
ensemble size of 20.  Insets: rank histogram of each experiment 

 
demonstrate more complicated relationships, where the 
variance of the error distribution or ensemble distribution 
includes a constant.  Figure 2 shows the scatterplot and 
rank histogram from each experiment. 

The most important result is that the slope calculated 
using the LVC (𝑚 𝐿𝑉𝐶 ) is smaller than the slope expected 

from algebra (𝑚𝐿𝑉𝐶 ).  Similarly, the y-intercept computed 

using LVC (𝑏 𝐿𝑉𝐶 ) is higher than the theoretical value 

from algebra (𝑏𝐿𝑉𝐶 ).  However, the R
2
 for every 

experiment is high (above 0.92), indicating a strong 
linear correlation between ensemble variance and error 
variance even though the coefficients of the linear fit do 
not match the theoretical values.  Interestingly, the slope 
computed by LVC is 72% of the theoretical value for 
every experiment except E, which is the only one to use 

an additive constant for the ensemble variance.  There 
also seems to be a functional relationship for the y-
intercept calculated by LVC, with the LVC y-intercept 
being 1.3 ∙ 𝑚𝑎  larger than the theoretical value for every 

experiment except E. 
 
4. EXPLORATION OF ENSEMBLE SIZE 

To investigate the possible effect of ensemble size 
on the ensemble variance/error variance relationship, 
particularly the deviation from theoretical values, we 
repeat each experiment for a variety of ensemble sizes 
ranging from five to five thousand (5, 10, 20, 50, 100, 
200, 300, 400, 500, 1000 and 5000).  This should reveal 
any sampling limitations due to ensemble size, as well 
as indicate any fundamental problems with the LVC if it 



 

 
 

is unable to obtain the theoretical values at very large 
ensemble sizes. 

Figures 3 and 4 show the calculated LVC slope and 
y-intercept respectively for each experiment at varying 
ensemble sizes.  The LVC-calculated values of slope 
and y-intercept for each experiment approach the 
theoretical value as ensemble size gets larger.  This 
indicates that the deviation from the theoretical values in 
the experiments when using 20 members is likely due to 
sample size issues and is not a byproduct of LVC.  
Furthermore, the plot shows that much larger ensemble 
sizes than those currently used operationally are 
 

 
  
Figure 3: Calculated LVC slope for each of the 
experiments listed in Table 1 using variable ensemble 
sizes.  The theoretical slope is 1 for Exps. A, B, E and F; 
1

3
 for Exp. C; and 3 for Exp. D.  Data are plotted at 

ensemble sizes of 5, 10, 20, 50, 100, 200, 300, 400, 
500, 1000, 2000 and 5000. 

 

  
Figure 4: Calculated LVC y-intercept for each of the 
experiments listed in Table 1 using variable ensemble 
sizes.  The theoretical y-intercept is 0 for Exps. A-D; -
0.4 for Exp. C; and 0.4 for Exp. D.  Data are plotted at 
ensemble sizes of 5, 10, 20, 50, 100, 200, 300, 400, 
500, 1000, 2000 and 5000. 

needed (> 200) in order to obtain the theoretical slope 
and y-intercept.  This is an important outcome, because 
it means that even with a perfect ensemble, the 

ensemble variance should be calibrated for any 
ensemble with fewer than several hundred members.  
Additional “climatological” distributions of the wind 
speed were also considered (not shown) with similar 
results.  Scientists exploring applications of ensemble 
variance ranging from ensemble generation to its use as 
a proxy for uncertainty should be mindful of this result. 

 
5. RESEMBLANCE TO ERROR-IN-VARIABLES 

MODEL 

The changing behavior of the LVC-estimated slope 
and intercept bring to mind the error-in-variables model 
(Casella and Berger, 2001).  In the error-in-variables 
model, two random variables 𝑋𝑖  and 𝑌𝑖  have expected 

values that have a linear relationship.   The expected 
values of variables 𝑋𝑖  and 𝑌𝑖  are often called latent 

variables and can be thought of as the “true” value 
subject to measurement error.  The system of equations 
becomes 
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where 𝛼 and 𝛽 are parameters of the linear relationship, 

𝜉𝑖  is the expected value of 𝑋𝑖 , 𝛼 + 𝛽𝜉𝑖  is the expected 

value of 𝑌𝑖 , and 𝜀𝑖  and 𝛿𝑖  are random variables with an 

expected value of zero (the “measurement error”).  
Commonly, 𝜀𝑖  and 𝛿𝑖  are considered to be normally 

distributed. 
If a linear regression is performed for Y on X, the 

resulting estimates of the parameters will be biased, 

with the estimated slope, 𝛽 , given by 
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Since variance is always positive, this means that the 
estimated slope is biased lower than the actual slope:  
this is commonly referred to as attenuation.  If we 

assume that only 𝜎𝜉
2 varies with ensemble size 𝑀 and 

that it varies as the inverse of ensemble size so that it 
approaches zero as the ensemble size becomes infinite, 
we can condense all of the non-parameter constants to 
a single constant 𝛾: 
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We can rearrange (7) into a linear relationship and 
substitute our previous notation for the beta parameters: 

 1 1
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where we can estimate 𝛾 by regression.  The ratio 𝛽 𝛽  
is often called the attenuation factor.  Thus this 
regression relates the attenuation factor to the 
ensemble size. 



 

 
 

For our situation however, the random variable X 
does not have normal (Gaussian) errors.  Instead, if we 
ignore the effect of the binning, the sample variance 
calculated from a random sample of points taken from a 
normal distribution (the ensemble) is actually a random 
variable proportional to a chi-squared distribution with 
degrees of freedom equal to the sample size minus one: 
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where 𝑆2 is the sample variance, 𝜎2 is the true variance, 
and n is the sample size. Eq. (9) has an expected value 

of 𝜎2 and a variance of 2𝜎2. 
Despite the different form of the random variable X, 

the regression of Y on X for our case can still be 
reduced to the form of (8), (but with a different constant 
𝛾).  For each experiment except E, it will be the same 

constant, and using the results from experiments A-D 
and F in a single regression yields an estimate for  𝛾 of 
7.865.  If we insert this estimate back into (8) to “correct” 
the estimated LVC slope to the true value for these 
experiments, we find that the corrected estimates are 
very near the true value for all ensemble sizes (Fig. 5). 

 

 
Figure 5: Dashed lines are as in Fig. 3 (excluding 
experiment E).  Solid lines represent LVC slope values 
corrected for attenuation by sampling error in the 
ensemble variance for the same experiments. 

 
6. CONCLUSIONS 

This study has explored the relationship between 
ensemble variance and error variance calculated by the 
Linear Variance Calibration (LVC) presented in 
Kolczynski et al. (2009) in a controlled way using an 
idealized stochastic ensemble.  The results show that 
the calculated LVC slope and y-intercept deviate 
substantially from the algebraically-derived values when 
ensemble size is less than several hundred members.  
This result implies that ensemble variances, even from 
otherwise “perfect” ensembles, should be calibrated if 
ensemble size is less than several hundred members. 

This study also derived a linear relationship between 
the inverse of ensemble size and the inverse of the LVC 
slope attenuation due to ensemble size.  This 

relationship is valid whenever 𝑏𝑒 , the portion of the 

ensemble variance independent of the forecast value 𝑠𝑖 , 
is zero.  Using linear regression, we estimated the 
constant for the linear relationship, then used the 
relationship as a correction to the LVC-determined slope 
to the true slope.  Corrected slopes fell close to the true 
LVC slopes at all ensemble sizes in each experiment 
where 𝑏𝑒  is equal to zero. 

Further research will determine if this relationship 
can be generalized for cases where 𝑏𝑒  is not equal to 

zero.  We will also determine if this method can be 
applied to cases where we don’t know the true LVC 
slope.  This would allow us to then apply the correction 
method to real-data LCV slopes.  Such a correction 
would more accurately determine whether an ensemble 
has an appropriate error/spread relationship and would 
allow for a fair comparison between ensembles of 
different sizes. 
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