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1. Introduction  

 The goal of source inversion is the 
calculation of unknown source parameters from 
information obtained by a network of gas or 
particle detectors and meteorological sensors. 
That is, from a spatial and temporal distribution 
of concentration and wind measurements source 
inversion is used to identify the unknown source 
location, the release amount, perhaps the 
duration and time of the release, and in some 
instances the number of sources as well. Source 
inversion has been used for determining where 
airborne industrial contaminants originate and 
could be used by first responders in the case of 
accidental releases of hazardous materials or for 
homeland security needs if chemical, biological 
or radiological agents were deliberately released 
into the air. Development of robust, accurate, 
and fast algorithms is important since it could 
provide critical situational awareness during an 
event,  reduce the population’s exposure to 
dangerous airborne contaminants, lead to better 
evacuation route planning, and help with the 
assessment of the magnitude of the clean-up 
problem. 
 As part of a national biological agent 
detection program, the Bio-agent Event 
Reconstruction Tool (BERT) is used to estimate 
the magnitude and extent of an airborne 
biological release based on measurements from 
wind sensors and biological agent sensors 
distributed around a city (Brown et al., 2007; 
Linger et al., 2008). The BERT is used to find 
potential release areas and eliminate others, 
and if possible to put upper and lower limits on 
the amount of material that could have been 
released. The tool can then be used to predict 
the potential downwind hazard areas, to 
compute the total number of persons at risk, and 

to locate hospitals, school, police stations, fire 
stations and other infrastructure that might be 
impacted by the release.   
 The basic components of the BERT system are 
a diagnostic wind solver, a source inversion model, 
a segmented Gaussian plume model, a population 
exposure assessment tool, and a graphical user 
interface. The tool is built within the ESRI ArcGIS 
mapping environment so that the user can display 
wind conditions, sensor measurements and model 
output on top of topography, street maps, population 
and other geospatial data of interest.  A dedicated 
server downloads hourly wind measurements for 
different cities from AIRNOW, MESOWEST and 
other city-specific servers. The diagnostic wind 
solver reads in these data and produces a mass 
consistent interpolated wind field which is afterwards 
used by the source inversion code. The method 
used for source inversion, however, only works for 
point source releases.  In this paper, we describe a 
line source inversion model that is being developed 
for inclusion into the BERT so that a wider range of 
problems can be addressed.  Preliminary testing of 
the inversion model using artificial data will be 
shown as well.      
 

2. Background 

 During the last decade, a large number of 
research papers in the area of source inversion have 
been published that describe many different 
approaches. Most of the source inversion work 
published-to-date applies to point source releases. 
The forward dispersion models used range from fast 
Gaussian plume and puff codes that enable rapid 
calculations of concentrations and dosages to 
computational fluid dynamics (CFD) codes that 
provide more detailed and precise calculations but at 
the same time are expensive with respect to time 
and computer resources. Optimization methods like 
simulated annealing and genetic algorithms have 
often been used to more rapidly find optimal 
solutions.  
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 Thompson et al. (2007) used a simulated 
annealing optimization algorithm in combination 
with a Gaussian plume model to estimate source 
location and strength in a desert area in order to 
help find new oil and gas reserves. They also 
tested the model’s performance for different cost 
functions as well as its sensitivity to randomly 
introduced noise and offsets to the concentration 
data. Allen and Haupt (2007) and Allen et al. 
(2007) used another stochastic optimization 
approach called genetic algorithms to estimate 
locations and strengths of multiple sources. The 
model was successfully applied for estimation of 
pollution emissions from multiple industrial 
facilities in urban areas.  
 One of the popular approaches for source 
inversion and estimating the probability 
distributions of source parameter values has 
been Bayesian inference in combination with 
Markov Chain Monte Carlo (MCMC), e.g., Keats 
et al. (2007), Chow et al. (2006), Yee (2007), 
Senocak et al. (2007). The probability 
distribution is obtained by running a dispersion 
model with a series of guesses for the source 
location and source strength and based on 
agreement or disagreement with the sensor 
measurements the new source parameters are 
either accepted or rejected after comparison 
with the results from the previous set of source 
parameters. The advantage of this approach 
when compared to the previously mentioned 
optimization methods is that it provides a 
probability distribution for source parameters 
instead of giving a single solution.  

Pudykiewicz (1998) used the solution of the 
adjoint tracer transport equation to estimate the 
source parameters and evaluated the model for 
use in monitoring of nuclear testing. Yee (2008) 
developed a system for source inversion when 
the number of sources is unknown using the 
reversible-jump MCMC algorithm originally 
introduced by Green (1995) in the context of a 
Bayesian model determination problem. 
  Due to the fast turn-around required for 
the BERT mission, our team developed a fast-
running source inversion model based on the 
collector footprint idea.  The so-called collector 
footprint method (Brown et al., 2007; Zajic and 
Brown, 2008) is fast because the number of 
plume calculations required to perform is equal 
to the number of biological agent detectors.  In 

this approach, the analytical concentration equation 
solution is inverted and instead of solving for a 
concentration field based on a point source of 
strength Q, one solves for the Q field based on the 
sensor concentration.  Contours of Q – or upwind 
collector footprints – are computed for each sensor 
using a reversed wind field, including those that did 
not register detections.  Potential point source 
locations and possible release amounts are 
determined by overlapping contour intervals from hit 
sensors, and regions are excluded by using the 
upwind footprints of the null collectors.   
 
 
3. Description of the Line Source Inversion 
Model 

 As mentioned earlier, the current source 
inversion tool in BERT only works for point source 
releases.  Although the collector footprint approach 
might be adaptable to deal with line sources, it is not 
clear if it is possible.  Using forward modeling 
approaches with an optimization routine is also 
possible, but fraught with difficulties due to the 
unbounded nature of the problem (i.e., many 
different line source solutions can be hypothesized 
for a given network of concentration measurements 
and a given wind field).  To make the approach 
tenable, we make four very simplifying assumptions:  
1) the line source is located at ground level; 2) the 
line source release must be aligned with the road 
network; 3) the source strength is not allowed to 
vary over the length of the line source; and 4) the 
meteorological conditions do not change over the 
duration of the release.  Although these 
approximations guarantee that we will not find all 
possible solutions, they are pragmatic choices that 
will allow us to find a sub-set of likely potential 
solutions in a reasonable amount of time. 
 The goal of our work, presented here, is to 
develop the system for performing line source 
inversion where the sources coincide with a road 
network within a given city. Information on the road 
network is obtained from the Census Bureau’s 
TIGER/Line database which contains the name of 
the road, the coordinates of starting and ending 
points of road sections, as well as the speed limit. 
The source inversion tool reads the road network 
data in and creates a network of possible line 
sources where the length of line segments is 
prescribed by the user. Each line source segments 
is made up of equidistant point sources where the 



distance between point sources is defined by the 
user. The downwind dosage (or concentration) 
from the line source is obtained by summing up 
the dosages due to each point source belonging 
to the line source. As expected, the line source 
is better approximated with a higher density of 
points (i.e., a smaller distance between points). 
 The model reads in wind speed and wind 
direction information from available sensors and 
then calculates the wind field using the Barnes 
Objective Mapping scheme to interpolate non-
uniformly spaced wind data. This wind field is 
then utilized by the segmented Gaussian plume 
model which then calculates the dosage at each 
sensor for each line source previously defined. 
The Gaussian segmented plume model treats 
dispersion with spatially-varying winds by 
approximating the plume trajectory as a series of 
line segments with a Gaussian plume 
description of the each segment. For each 
segment a virtual source position is estimated by 
projecting upwind from the start of the segment. 
The distance to the virtual position is calculated 
from the wind speed, cross-wind standard 
deviation, and vertical standard deviation of the 
plume concentrations from the end of the 
previous segment and the wind speed at the 
start of the new segment. The requirement is 
that the virtual distance must be chosen so that 
the centerline concentrations at the end of the 
previous segment are the same as those of the 
start of the current segment. Consequently, a 
virtual distance is chosen so that the product of 
the wind speed, horizontal standard deviation, 
and vertical standard deviation at the end of the 
previous segment is equal to product of those 
values at the start of the new segment.  
 The source inversion code performs plume 
calculations for each line segment created from 
the imported road network for a source strength 
of 1 g. For these preliminary tests, the line 
source length in the source inversion routine 
was fixed at 2 km in length.  In normal practice, 
the line source length will be allowed to vary 
over a user-specified range of lengths. The 
source strength is then normalized by the ratio 
of the measured and calculated dosages at the 
sensor with the maximum measured dosage. 
After dosage values at all sensors are corrected 
using the same factor, the error of the model 
with respect to the measurements is estimated 

using a simple root mean square error defined as: 
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where n is the number of sensors that were hit 
(D>0), while D’s are dosages obtained by 
measurements and plume dispersion calculations.  

The non-hit sensors provide information on the 
plume behavior as well.  Each sensor type has a 
non-zero detection threshold, or a minimum 
detectable limit.  If a postulated line source results in 
a dosage above the detection threshold at any non-
hit sensor, the line source is said to not be possible 
and is thrown out.   In future versions of the code, 
the source strength Q will be reduced until the 
dosage is below the detection threshold and then 
the RMS error metric will be recalculated.    

The approach presented here estimates source 
parameters quickly but it is important to mention that 
location of possible sources is limited by the road 
network and currently assumes a steady wind field.  
Also, the estimation of source strength depends on 
the ratio of the measured and calculated value at the 
sensor with the maximum measured value, so the 
accuracy of a particular sensor will play an important 
role in source strength estimation. The segmented 
Gaussian plume model has the advantage of being 
fast and able to account for spatially-varying winds, 
but it can be inaccurate, for example, in highly 
complex terrain, where wind direction varies 
significantly with height, and under calm wind 
conditions. 

 
 

4. Testing of the Line Source Inversion Model 

4.1 Creation of synthetic collector measurements 

 As a preliminary step, we have tested the source 
inversion scheme by creating synthetic detector 
dosage measurements using the Quick Urban and 
Industrial Complex (QUIC) plume dispersion model.  
The QUIC dispersion model is a Lagrangian 
random-walk code (Williams et al., 2004) that more 
closely represents reality as compared to the 
segmented Gaussian plume model used in the 
source inversion process.   

For simplicity, an array of dosage or time-
integrated concentration agent sensors was 
arbitrarily placed within the existing road network of 



the city of Miami, FL.  The first scenario 
simulated by QUIC was of a 10 kg release over 
a line source 2 km in length.  The wind profile 
was set to logarithmic with a wind speed of 3 
m/s at 10 m agl, a constant wind direction of 225 
degrees, and neutral atmospheric stability.  The 
surface was assumed to be flat with no 
buildings.  Figure 1 shows the locations of the 
sensors, the major roads in Miami, FL and the 
location of the line source used for this test 
case.  Figure 2 shows the dosage field 
calculated using QUIC, with red stars indicating 
locations of two sensors that detected the 
release while the remaining sensors were not 
hit. 

  The second case was for a straight line 
source of 8 km in length close to the previously 
used road segment not coinciding with the road 
network segments. The amount released (10 kg) 
and wind conditions were the same as in the first 
scenario. In this case three sensors were hit, the 
same two as in the previous case plus the one 
at the southeast vertex of sensor array (see Fig. 
5).   
 
4.2 Evaluation Results  

 For the first case, the best 10 line sources 
(i.e., those with the smallest RMSE) are shown 
in Fig. 3. The ten best solutions are found near 
the actual release location and the release 
amount ranges from 0.66 to 11 kg (recall that 
the actual release amount was 10 kg).  Table 1 
gives the RMSE values and the estimated 
source strengths for the ten best results. Note 
that the actual release location, line source ID 2, 
was only 3rd best in terms of RMSE. Figure 4 
shows a zoomed in view of the locations of the 
ten line sources along with their respective ID 
numbers. The 2nd best solution from Table 1 is 
next to line source ID 2 and since it is slightly 
closer to the hit sensors its source strength is 
lower and closer to the actual value. The 
solution with lowest error was line source ID 19 
but its source strength is only 67% of the actual 
released amount which is expected since this 
source is much closer to the sensors that 
detected the agent. 
 The results for the second case are given in 
Table 2 and Fig. 5. The locations of the best 
results are very close to the actual line source 
and are placed between the source and hit 

sensors as expected. But analysis of estimated 
source strength and locations of each listed line 
source shows that line sources closer to the hit 
sensors did not always give lower values of source 
strength as in the previous case. This likely stems 
from the actual line source being 8 km in length, 
while the source inversion code fixed the length at 2 
km. This peculiarity will be investigated further in 
future studies.  
 
 
5. Conclusions 

 A line-source inversion scheme using a 
segmented Gaussian plume model and a diagnostic 
wind model was described. The line source 
inversion problem is ill-posed, i.e., it can have more 
than one solution.  Hence, we made four simplifying 
assumptions: 1) the line source is located at ground 
level; 2) the line source release must be aligned with 
the road network; 3) the source strength is not 
allowed to vary over the length of the line source; 
and 4) the meteorological conditions do not change 
over the duration of the release.   
 The scheme was tested using synthetic sensor 
measurements created by the QUIC random-walk 
transport and dispersion model. For the first scenario 
the results were very encouraging, although we 
assumed that we already knew the length of the line 
source. Numerous line source solutions were found 
near the actual release location.  However, the best 
solution based on RMSE is much further away from 
the actual release location as compared to other line 
source solutions with larger RMSE.  This result is to 
be expected as the segmented Gaussian plume 
model used in the source inversion scheme 
describes transport and dispersion differently than 
the random-walk code used to create the synthetic 
measurements.   
 For the second case where we intentionally 
assumed the wrong line source length and placed 
the source outside the road network, the model also 
performed well in locating the line source but gave a 
broad range of values for the source strength.   

Since in real world applications we will not have 
information on the actual line source length, a 
module that searches for the optimal line source 
length will be implemented into the code.  Wind 
variability in time can significantly influence plume 
transport and dispersion and our plans include 
adding the capability to account for changing wind 
direction and wind speed. We will also investigate 



the performance of the system using different 
error measures and test the model’s sensitivity 
to introduced sensor noise and bias. 
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Figure 1. The major roads of Miami, FL with locations of sensors (red dots), wind direction (green arrow) 
and location of line source used for QUIC test simulation (open black circle).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 2. The dosage field obtained using QUIC. The red stars denote the two sensors that were hit. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The green ellipse encloses the 10 line sources with lowest RMS error, i.e., the best solutions. 
The red ellipse indicates two sensors that were hit during QUIC runs. 
 
 
 

Source ID RMS error Released mass [g] 
19 5.16E-05 6658.66 
29 5.8E-05 10784.99 
2 6.64E-05 11110.74 
20 7.36E-05 4644.8 

200 7.42E-05 4261.94 
21 8.72E-05 3389.62 
3 9.43E-05 2700.82 
22 9.59E-05 2387.56 
89 9.66E-05 657.19 
23 9.97E-05 1824.62 

 
 
Table 1. The ten best solutions showing line source IDs, RMS errors and corresponding source strengths 
for first test run (see Figure 4 for locations of line sources). 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Locations of the ten best-fit line sources listed in Table 1. 
 
 
 

Source ID RMS error Released mass [g] 
23 1.8E-05 5621.79 
22 2.04E-05 7356.27 
3 2.06E-05 8321.45 
51 2.09E-05 3780.65 
50 2.13E-05 3579.09 
18 2.44E-05 1542.77 
17 2.53E-05 30.54 
21 4.09E-05 10443.7 
20 8.21E-05 14311.01 
19 0.000171 20515.86 

 
Table 2. The ten best solutions showing line source IDs, RMS errors and corresponding source strengths 
for the second case. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Locations of the actual 8k long line source (red line) and the ten best-fit line sources as listed in 
Table 2 (green lines). The stars show sensors hit during the QUIC forward run. 
 
 
 
 
 
 
 
 
 
 
 
 
 


