
Space weather prediction via complexity measures in the solar-terrestrial record 
 
J. A. Wanliss, Michael Watke, Thomas Bitner, James Johnson, Ali Knaak 
Presbyterian College 
503 S. Broad Street 
Clinton, SC, 29325 
USA 
 
P. Dobias 
DRDC CORA 
101 Colonel By Dr. 
Ottawa, ON 
Canada 
 
Abstract  
In this paper we present evidence that the magnetosphere-ionosphere system is always in 
a critical state. This idea has been previously considered for magnetospheric substorms, 
but here we present evidence that even global space storms feature self-similarity and 
scaling behavior. Whereas prior to the onset of the space storm the nonlinear scaling 
exponent was varying only slowly and continuously, reminiscent of a second order type 
phase transition from one critical state to the next, the onset of the storm resulted in a 
dramatic change such as might result from a dynamical instability characterized by a 
first-order-like topological phase transition. 



1. Introduction 
 
Space storms characterize the most dynamic plasma and field behaviour in the 
magnetosphere. Storms include a wide variety of electromagnetic processes extending 
from the surface of the earth into the deep magnetosphere, with the primary locus of 
activity in the near-earth geospace environment [Baker et al., 1997; Li et al., 1997; 
Reeves, 1998]. Important processes include energetic particle injection and precipitation 
[Horne 2003], acceleration of relativistic electrons [Li et al., 2001; Meredith et al., 2003], 
ring current enhancement, decay, and composition changes [Daglis et al., 1999; Liemohn 
et al., 2001; Kozyra et al., 2002]. Recent studies on the causes of space storms have 
found that coronal mass ejections and extreme values of the southward interplanetary 
magnetic fields appear to be key factors in storm development [Gonzalez et al., 1994; 
Richardson et al., 2001]. Long-range interactions between the ionosphere and 
magnetosphere also play an important role in the initiation and development of space 
storms, and interaction between these two spheres is highly nonlinear [Lui, 2002; Daglis 
et al., 2003 and the references therein]. Storms thus form a system of nonlinear 
phenomena that include components of solar and terrestrial origin [Daglis et al., 2003]. 
The connection between solar wind fluctuations and storms is so strong that the almost 
instinctive reaction of space physicists is to minimize the role of internal magnetospheric 
dynamics and to place virtually all the blame on the solar wind. It is therefore often 
considered that the problems of space weather can be solved in the main via accurate and 
more complete monitoring of the solar wind. 
 
In this paper we will investigate the statistical nature of the magnetosphere prior to, and 
during, space storms via the SYM-H index. SYM-H is different from the DST-index 
which is traditionally used for characterization of space storms; SYM-H uses data from 
different magnetometer stations, has a cadence of one-minute rather than one hour, and 
convolves the station data in a slightly different manner than DST. These differences 
notwithstanding, the two indices are effectively interchangeable in an operational sense 
[Wanliss and Showalter, 2005]. Recently Wanliss [2004, 2005] and Wanliss et al. [2005] 
analyzed the storm index SYM-H in terms of nonlinear statistical properties. They found 
that for extremely quiet intervals and extremely active intervals the nonlinear statistical 
behaviour is quite different. This is not merely a fancy way of saying that storms are 
different from quiet times. It says this, and more -- that the fractal scaling properties are 
different during these times. The significance of this has previously been recognized for 
the substorm, which is a smaller scale magnetospheric activity frequently related to 
storms.  
 
Magnetospheric substorms develop most dramatically upon disruption of the crosstail 
electric current; this results in rapid dipolarization of the inner magnetotail magnetic field. 
The period prior to dipolarization features steady stretching of the inner magnetotail and 
thinning of the current sheet [Kaufmann, 1987; Wanliss et al., 2000]. Ohtani et al. [1995] 
and Consolini and Lui [2000] examined scaling properties of magnetic fluctuations in the 
magnetotail, the latter finding a fractal scaling exponent   0.48  0.02  before current 
disruption, changing to   0.70  0.02  afterward. They concluded that the post-
disruption statistics implied a persistent signal that may be the result of reorganization 



during current disruption. In other words, there may be a phase transition-like behaviour 
of the magnetosphere during substorms [Sitnov et al., 2000].  
 
The work of Wanliss [2005] considered quiet times separate from active times, and in the 
majority of cases the active times were not substorms but were full-fledged space storms. 
They analyzed the space storm index SYM-H for the epoch 1981-2002 and separated 
quiet intervals from active intervals on the basis of the Kp index. Although this is not the 
same situation as considered the by Ohtani et al. [1995] and Consolini and Lui [2000], 
Wanliss [2005] found some similarity in that active intervals generally had larger scaling 
exponents than the quiet intervals. This may be important because it suggests the 
possibility that there is a common statistical behaviour during quiet intervals that is 
different from the typical statistical behaviour observed during active (storm) intervals. 
An overall trend towards higher scaling exponents was also discovered for increasing 
magnetospheric activity, possibly implying an increase in organization with 
magnetospheric activity. 
 
The significance of a change in the scaling exponent is that it suggests a symmetry-
breaking in a system in a state of self-organized criticality (SOC). This may occur when a 
system is perturbed near a critical point [Chang, 1992]. None of the results from the work 
cited above directly prove SOC, but they are consistent with SOC – they are a necessary, 
but not sufficient, condition for SOC. The difference in scaling exponents from quiet and 
active intervals seems to suggest that the magnetosphere exists in a critical configuration. 
This is hard to accept in the case of space storms, because as mentioned previously, these 
are generally understood to be a direct result of solar wind fluctuations. The classical 
view of storms seems to be mostly correct in that one can often link coronal mass 
ejections to subsequent space storms [Huttunen et al., 2002]. But if it is mostly correct 
that means, at the least, that there are features that cannot be sufficiently explained by 
traditional models. While the development and gross morphology of space storms is 
fairly well understood, a consensus has not been reached regarding the trigger/s of space 
storms. Coronal mass ejections and extreme values of the southward interplanetary 
magnetic fields appear to be among the leading factors in storm development, although 
neither of these factors by themselves are sufficient nor necessary for storm occurrence or 
development. For example, during solar minimum different factors seem to drive storms 
[Webb et al., 2001]. The solar wind is clearly the driver of storms, but the precise 
development and trigger mechanisms are cloudy. 
 
In this brief paper we will consider the possibility that a space storm can be modeled as a 
phase transition that is described by a multifractional Brownian motion (mfBm). We will 
present observational evidence together with a theoretical outline that supports this 
hypothesis. We must emphasize that we are not in any way trying to suggest that space 
storms are an example of SOC -- we consider this to be highly unlikely because of the 
driven nature of the solar-terrestrial interaction. In the context of this mfBm hypothesis 
one can think of the pre-storm magnetospheric state as being highly disordered, until the 
statistical state of the system passes through the critical point that precipitates the mostly 
ordered and imitative state of the space storm. The system goes critical when local 
influences propagate over long distances and the average state of the system becomes 



exquisitely sensitive to a small perturbation; that is, different parts of the system become 
highly correlated. 
 
2. Fractional and multifractional Brownian motion and methods 
 
A signal   B(t)  that displays fractional Brownian motion (fBm) is one for which both the 
real and imaginary components of the Fourier amplitudes are Gaussian-distributed 
random variables [Hergarten, 2002]. In addition, the mean of the Fourier amplitudes

 ()  0  and   ()( ')*  P() (  ') , where P() ~| |2 1 .  This means that for 
the special case α=1/2, fBm reduces to the well-known random walk with a power law 
spectrum varying as an inverse square. Signals with scaling exponents above α=1/2 are 
called persistent, because if the data at some point have B(ti+1)>B(ti), for example, then 
the probability is greater than 0.5 that B(ti+2)>B(ti+1). Signals with exponents below 1/2 
are called antipersistent because if B(ti+1)>B(ti), the probability is greater than 0.5 that 
B(ti+2)<B(ti+1). Typically, fBm is nonstationary, and thus detection of the presence of 
memory is a delicate task. Nonstationarity means that the statistical properties are not 
constant through the signal, and traditional analysis methods, that assume stationarity (e.g. 
power spectra), cannot be used. Notwithstanding the difficulties, fBm has been 
recognized in a variety of fields, including hydrology, geophysics, biology, 
telecommunication networks, and others. Figure 1 shows examples of fBm calculated 
from the Wood-Chan circulant method [Wood and Chan, 1994]. The roughness of the 
curves is greater for smaller values of the scaling exponent. 

 
Figure 1. Examples of fBm for different values of the scaling exponent. The axes are 
arbitrary. 
 
Multifractional Brownian motion (mfBm) is a generalised version of fBm in which the 
scaling exponent   is no longer a constant, but a function of the time index of the 
original process [Peltier and Levy Vehel, 1995]. In this case the increments of mfBm are 
nonstationary and the process is no longer self-similar. Figure 2 shows a simple example 
of a mfBm. In this example the scaling exponent does not change continuously but as a 
step functional parameter; it has a value 5.0  for the first half of the series and 

7.0  for the rest. The abrupt transition is clear from Figure 2a because the smoothness 



of the series changes suddenly in the middle of the series. An abrupt change like this is 
characteristic of systems that undergo a phase transition. For instance a phase transition 
in water (evaporation/condensation) brings about a change in long-range correlations in 
molecular motion. Obviously, the free Brownian motion of gas molecules is not 
reproducible in a fluid. In this case the motion of molecules is highly correlated due to a 
presence of strong intermolecular forces. Therefore, the phase transition in this case is 
characterized with a change in scaling parameter that characterizes correlation of 
molecular motion. 
 

 
 
Figure 2. (a.) Model mfBm calculated by splicing together two fBm series with 5.0  
and .7.0  The change is apparent from the smoothness change at the middle of the 
series. (b.) Scaling exponent )(t  computed from DFA. 
 
To examine these data, shown in Figure 2a, one can study how a fluctuation measure, 
denoted here by ,F  scales with the size n  of the time window considered. Specific 
methods, such as Hurst’s rescaled range analysis [Hurst, 1951], power spectral analysis, 
structure function analysis [Abramenko et al., 2003], or detrended fluctuation analysis 
[Peng et al., 1995], all essentially calculate such a fluctuation measure, although the 
measure is different for each technique. Typically, F  n , where   is the scaling 
exponent. Power laws like this are the signature of a propagation of information across 
the system. For a time series that follows a fBm the relationships between the scaling 
exponents of the various methods are simple. Several of these methods have been used 
previously to analyze data relevant to space physics [Takalo et al., 1993; Consolini and 
De Michelis, 1998; Freeman et al., 2000; Wanliss and Reynolds, 2003; Wanliss, 2004, 
2005]. 
 
In this paper we employ a detrended fluctuation analysis (DFA). Novel ideas from 
statistical physics led to the development of DFA [Peng et al., 1995]. The method is a 
modified root mean squared analysis of a random walk designed specifically to be able to 
deal with nonstationarities in nonlinear data, and we use it since it is among the most 
robust of statistical techniques designed to detect long-range correlations in time series 



[Taqqu et al., 1996; Cannon et al., 1997]. DFA has been shown to be robust to the 
presence of trends [Hu et al., 2001] and nonstationary time series [Chen et al., 2002] and 
is thus a good choice for analysis of mfBm. In short, the technique begins by the division 
of the time series into boxes of different length, n. After this, a least squares quadratic fit 
to the data signal is performed for each box; this quadratic fit represents the local trend in 
each box. Next, for each box the root mean squared deviations, F(n), of the signal from 
the local trend is determined. Different box sizes are selected and the procedure is 
repeated. Finally, if the fluctuation is a power law, the scaling exponent is computed from 
the slope of the log-log plot of deviation versus box size. 
 
Rather than simply probe the existence of correlated behaviour over the entire SYM-H 
time series, what we wish to do here is to obtain a "local measurement" of the degree of 
long-range correlations described by the variations of the scaling exponent during a space 
storm. The probe that we use is the observation box of length 8192 minutes (5.7 days); 
this box is placed at the beginning of the data, and then the scaling exponent (ti ) is 

calculated for the data contained in the box. The time it  that is associated with the scaling 

exponent is the universal time of the last point in the box. The first value for the scaling 
exponent therefore occurs at i=8192. Following this step, the box is shifted one point to 
the right along the time series, and the scaling exponent for the new box is calculated. 
This procedure is then iterated for the entire sequence; for the space storm this will 
encompass the quiet time preceding the storm through to the end of the recovery phase, 
and some hours beyond. This procedure was followed in order to calculate Figure 2b 
which shows the variation of the calculated scaling exponent, )(t , from the mfBm data. 
One can see from this figure that the DFA technique accurately recovers the scaling 
exponent of a mfBm that is comprised of long periods of fBm-like behaviour. 
 
3. Analysis and results 
 
We now present results from our analysis of a space storm as observed via changes in 
SYM-H. As mentioned previously, although DST and SYM-H are different the two 
indices are effectively interchangeable in an operational sense [Wanliss and Showalter, 
2005]. Use of SYM-H allows one to examine the statistical variation of one aspect of a 
space storm in relatively high-resolution because of its 1-minute cadence. The storm we 
look at occurred during the interval January 1-11, 1999. SYM-H data are shown in Figure 
3a, with the arrow marking the approximate time of the start of the main phase. The 
storm in this case was intense with perturbations reaching below -100 nT. It was selected 
because of its isolated nature; the several days preceding the main phase were very quiet 
with little notable changes in SYM-H that would indicate dynamic magnetospheric 
activity. Data from ACE (not shown) indicate a spike in proton density and jump in solar 
wind velocity that can be associated with the storm onset. 
 



 
Figure 3. (a.) SYM-H index for January 1-11, 1999. An intense space storm is evident 
from the large negative perturbation whose main phase beginning is approximately 
indicated by the arrow. (b.) Plot of (t)  computed from DFA. Note the dramatic change 
in the scaling exponent that occurs around the start of the main phase. 
 
Figure 3b shows the time dependent scaling exponent. Before the start of the main phase 
it ranges between values of 0.6 and 0.5 with a decreasing trend noticeable early on in the 
data. Near the approach of storm onset the scaling exponent seems to settle down and 
fluctuates around a value of 0.5, highly suggestive of Brownian motion. Close to onset 
the exponent rapidly jumps up to a value near 0.7 and stays approximately constant for 
several days. The rapid jump is an indication of a transition from a highly random state to 
one that is more ordered and predictable; the shape of the curve for )(t  is reminiscent of 
the model data in Figure 2b. Even though the energetics of the main and recovery phases 
are quite different the scaling exponent remains constant indicating that the 
magnetospheric response to reduced solar wind energy input is statistically similar. It is 
only after SYM-H returns to pre-storm values, near 0 nT, that the inner magnetosphere 
appears to undergo another sharp transition in scaling exponent. Just after 2.5x104 
minutes the scaling exponent attains values that are very similar to the pre-storm situation.  
 
4. Phase transitions in the magnetosphere 
 
The analysis and results presented above show an amazing parallel between space storms 
and systems featuring phase transitions. We analyzed the storm occurring in early 
January 1999 and detected a strong, apparently discontinuous, transition from 
uncorrelated to correlated statistics around the start of the storm main phase. This 
transition was indicated by the change from a relatively constant scaling exponent of 
α~0.5 prior to the storm onset and α~0.7 immediately after the onset, followed by a return 
to a smaller value of the scaling exponent after the recovery phase. This behavior 
corresponds to a phase transition in the magnetosphere-ionosphere system.  
 
There is a connection between entropy of a physical system and correlation in the system. 
Both of these quantities describe a degree of organization of a system. The standard 



definition of entropy in statistical physics [Landau and Lifshitz, 1980] is ),ln( kS
where   is the number of possible microstates. Apparently, the number of microstates is 
a measure of organization of a system. The more possible microstates for a given 
macrostate, the less organized the system is. For example, for a solid, there is a limited 
number of states in which atoms/molecules can be (limited by Pauli exclusion principle 
etc.). On the other hand, in a gas the typical number of states is 1026! (factorial) – a huge 
number that is impossible to even imagine. At the same time an uncorrelated system is 
such that is characterized by a random (Brownian) motion ( �= 0.5). Increase in the 
level of correlations in the system (  > 0.5) means that the motion is not random 
anymore, that a dynamics in one part of the system has a strong influence on other parts. 
In other words, the number of available states (and thus entropy) decreased. 
 
In turn, entropy is related to a heat exchange in a system ( TdSQ  ). A phase transition 
characterized by a release or absorption of heat (and therefore discontinuity in entropy) is 
called a phase transition of the first kind. As mentioned already, the simplest example of 
such a phase transition is evaporation or condensation. Going back to storms, there is a 
tremendous amount of energy released at the onset of storm (on the order of 1017 J 
[Vichare et al., 2005] are transmitted from the solar wind into the magnetosphere). 
Combining this fact with the observed discontinuity in correlations (Fig. 3), and therefore 
likely in entropy too, we consider it plausible that the storm onset is a type of phase 
transition of first kind happening in the magnetosphere-ionosphere system.  
 

 
Figure 4. Plot of DST against Kp for 1963-2003. Only negative values of DST are shown 
for ease of comparison with storm associated values below -30 nT. The gray lines 
indicate the -30 nT, -50 nT, and -100 nT boundaries delineating the range for small, 
moderate, and intense space storms. 
 
We shall attempt to take this analogy one step further, stressing that the following 
argumentation is more speculative. Nevertheless, we consider that there are good 
qualitative reasons for arguing this way. One can consider Kp and DST to be two 
independent parameters characterizing the magnetosphere-ionosphere system. The one 
represents mid- to high-latitude activity, and the other represents low-latitude activity. 



This assumption does not mean that these are the only independent parameters; quite the 
opposite, there may be a number of other suitable parameters. The space storm situation 
we are considering is analogous to a system close to a gas/fluid phase transition. Such a 
system is well characterized by pressure P and temperature T. At this point, the 
comparison is purely formal, based on analogous behavior. Connecting Kp with P and 
DST with T, we shall demonstrate that this analogy will be able to explain one of the 
paradoxical features observed in storm dynamics [Wanliss, 2005, and references therein].  
 
If at sufficiently low Kp (i.e. quiet at high latitudes) one finds that DST can increase to 
storm-associated values there is clearly not global storm activity because if there were 
then Kp would reflect that. Figure 4 shows a plot of DST against Kp from 1963 to 2003, 
but only for negative DST values so that we can observe the Kp values associated with 
storms. Since DST is calculated exclusively from low- to middle-latitude magnetometer 
stations, and Kp includes higher latitude stations one finds during active times such as 
space storms, that Kp is generally large, and DST reaches large negative values. Large 
Kp is the result of the expansion of the auroral oval during magnetospheric activity, such 
as space storms and magnetospheric substorms. What Figure 4 demonstrates is that 
sometimes DST indicates an intense or smaller storm even though Kp ≤ 1. If one were to 
rely on DST alone one might conclude the occurrence of an intense global space storm, 
yet with Kp ≤ 1 we have the suggestion of no substorms or high-latitude activity. 
Substorms, with their associated larger Kp values, are a nearly ubiquitous feature of 
space storms, hence the name substorms. Yet Figure 4 indicates that large DST can occur 
without global storm activity.  
 
These observations suggest that there is some ambiguity in identification of storm onsets. 
Let us now utilize our analogy. In a thermodynamic system with a phase transition of the 
first kind, a situation can happen in which the phase curve on the P-T diagram abruptly 
ends at a critical point (Figure 5). For higher pressure and temperature, the distinction 
between the two phases is impossible unless they are in contact with each other [Landau 
and Lifshitz, 1980]. If we vary P and T along a path in P-T space that does not intersect 
the phase curve, it is possible to pass from one phase to another without noticing any 
abrupt change. Now, in a strictly formal sense we can use the same reasoning for Kp and 
DST parameters. In a formal Kp-DST space, if one keeps Kp low while increasing DST, 
it is possible to pass into an area corresponding to storm behavior without observing 
storm onset (phase transition). This could explain why at times DST apparently signals a 
storm while Kp signals a quiet time. There are also more physical reasons for connecting 
DST with temperature and Kp with pressure. DST corresponds to dynamics at lower 
latitudes, thus related to dynamics in the near-Earth plasma sheet, an area with a more 
significant thermal component of plasma. On the other hand, Kp characterizes the higher  
latitude region, corresponding to a more tail-like field and cooler plasma, where the 
magnetic stress (negative pressure) is more important. Thus energy can be released from 
the hotter region while the change does not cause simultaneous release of energy at high 
latitudes.  
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. P-T phase diagram. Point Pc, Tc is a critical point. If one follows for instance 
the path from state 1 to state 2 denoted by the dotted line, it is possible to change phase 
without ever going through a phase transition. The solid line denotes the phase curve. 
 
Transition to a lower energy state, such as during a storm, results in a higher degree of 
organization (larger scaling exponent) as the excess of energy is dissipated. In terms of 
the physics, the space storm is certainly an example of a process that results in drastic 
system collapse and reordering, reminiscent of all the arguments described. However, we 
must carefully note that treating storms as phase transitions is more or less a formal issue 
at this point. Space storms are significantly more complex than a water and vapor system, 
since huge numbers of topological structures exist within magnetosphere. Nevertheless, 
on the basis of our observations, one can hypothesize the existence of a critical transition 
between a mostly disordered state and an ordered one, separated by a phase transition 
which is the onset of the space storm. Although formal, this approach is helpful in 
explaining some of the observed features of storm dynamics that are difficult to explain 
in traditional models. 
 
5. Conclusion 
 
The self-similarity that exists near the critical point (e.g. Figure 3b) is why local imitation 
cascades through the scales into global coordination. The difference in scaling exponents 
from quiet and active intervals suggests that the magnetosphere exists in a critical 
configuration. Whereas prior to the onset of the space storm the nonlinear scaling 
exponent was varying only slowly and continuously, reminiscent of a second order type 
phase transition from one critical state to the next, the onset of the storm resulted in a 
dramatic change such as might result from a dynamical instability characterized by a 
first-order-like topological phase transition [Chang et al., 2003]. Transition to a lower 
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energy state, such as a storm, thus results in more organization (larger scaling exponent) 
as the excess of energy is dissipated. Once the excess of energy has been dissipated 
during the recovery phase it results in less organization, and the corresponding reduction 
in the scaling exponent to pre-storm values. This has possible operational value since the 
notion of a critical point has as one of its properties the ability to provide some universal 
predictions, even in the absence of a detailed model, by using what amounts essentially to 
generalized symmetry arguments. We will examine this idea in a future paper.  
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