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INTRODUCTION

Real-time operational hydrological forecasts are needed for 
several  reasons,  including hydroelectric  power generation, 
water  resource  planning  and  warning  of  possible  water-
related disasters. There are several modeling approaches to 
real-time hydrological forecasts, each having strengths and 
weaknesses. In an attempt to assess the costs and benefits of 
one model approach as compared to another, we compared 
the  performance  of  real-time  forecasts  produced  by  a 
statistically  based  model  with  forecasts  produced  by  an 
explicit  distributed  hydrological  model  for  both  long  and 
short-term forecasting.
The approach employed for the statistical forecasts used  a 
type  of  constructed  analogs approach with  nonparametric 
resampling. The explicit model being used in the evaluation 
was  the  Distributed  Hydrology  Soil  Vegetation  Model 
(DHSVM). DHSVM is a spatially distributed hydrological 
model  that  explicitly  represents  the  effects  of  diverse 
topography and heterogeneous subsurface conditions on the 
downslope  redistribution  of  subsurface  moisture  that 
provides a dynamic representation of the spatial distribution 
of soil moisture, snow cover, evapotranspiration, and runoff.
The statistical forecasting method has two advantages; it is 
easier  to  implement  and  computationally  very  efficient. 
However,  initial  results  indicate  that  this  method  may 
underestimate  the  rate  of  runoff  and  streamflow  as 
compared to the distributed model.
The results  of  the 2007 water  year  from historical  model 
simulations run for the Lewis River basin in Washington, 
with both methods run in forecast mode (that is, only data 
available  in  real-time  were  used  in  the  simulations)  are 
compared  in this paper.  

2.  FORECASTING METHODS 
2.1. Statistical Method.  The statistical method uses a type 
of  constructed  analogs  approach  (Devineni  and 
Sankarasubramanian,  2010,  Sankarasubramanian  et  al. 
2009)  as  shown  in  Figure  1.   Constructed  analogs  is  a 
statistical approach to climate downscaling that constructs 
an analog from a linear combination of past patterns. This 
methodology has shown good forecasting skill in the past.  
______________________
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In this  method observational  precipitation and streamflow 
data  are  used  to  provide  initial  conditions.   Precipitation 
from a reforecasted data set is used for future conditions. 

Fig.  1: A schematic  illustration of the components of  the 
statistical forecast method.

2.2.  Distributive Method.  The  DHSVM was used as  the 
distributive model. It  is a distributed hydrology model that 
was developed at the University of Washington (Wigmosta, 
et al., 2002). It has been widely applied both operationally 
for streamflow prediction for hydropower and in a research 
capacity  to  examine the  effects  of  changes in  vegetation, 
forest management, etc. on streamflow.

The  DHSVM is a spatially distributed hydrological model 
that explicitly represents the effects of diverse topography 
and  heterogeneous  subsurface  conditions.  The  effects 
represent  the  downslope  redistribution  of  subsurface 
moisture  that  provides  a  dynamic  representation  of  the 
spatial  distribution  of  soil  moisture,  snow  cover, 
evapotranspiration, and runoff. (Figure 2)  

Fig.  2: A schematic  illustration of the components of  the 
DHSVM distributed forecast model.



The  observational  input  data  for  the  DHSVM  initial 
conditions  are  streamflow,  precipitation,  snow  water 
equivalent  (SWE),  temperature,  relative  humidity,  wind 
speed, temperature lapse rate, and terrain height.  The input 
data for the forecast times were from the numerical model 
called  the  Mesoscale  Atmospheric  Simulation  System 
(MASS) (Kaplan et al. 1982; Manobianco et al. 1996). The 
variables  from  the  NWP  model  are  precipitation, 
temperature,  relative  humidity,  wind  speed,  shortwave 
radiation, longwave radiation and temperature lapse rate.
 
3.  EVALUATION RESULTS

The comparisons were made for the Lewis River Basin in 
the southwest corner of Washington (Figure 3).  The three 
sites evaluated were Merwin reservoir, Swift reservoir and 
Yale reservoir dams.  The results for the Merwin reservoir 
dam are presented as they were representative of the results 
of all three sites.

Fig. 3.  The Lewis River Basin, location of the study area.

The period of study was for the 2007 hydro year which ran 
from October 2006 to September 2007. The model forecasts 
and observational  verification  were  by necessity  different 
for  the  statistical  versus  the  distributed  model.  For  the 
statistical  model,  the  seven  day  average  flow  rates  were 
used  and  for  the  explicit  model  instantaneous  flow rates 
were used.

The  typical  results  of  the  performance  of  the  statistical 
model,  with  forecast  and  verification  observations  (both 
from the seven day streamflow averages)  are provided in 
Figure 4.  The results show that the statistical model does a 
very good job at representing the seven day averages, but 
the flow rates are much lower than the peak instantaneous 
rates typically needed for hydro power prediction, especially 
during periods of heavy precipitation. The statistical model 
actually  does  fairly  well  for  both  seven  day  and  as  an 

estimate of instantaneous flow rates during the warm season 
months  when flow rates  are  low and  consistent.  But  the 
statistical  approach  does  not  do  well  at  representing 
instantaneous flows during the heavy precipitation events of 
the cold rainy season, even though the seven day averages 
are well represented by the statistical model. 

Fig. 4. Statistical model comparison of 24-hr ahead stream 
flow  forecast  with  observed  streamflow.  The  statistical 
model forecasts (blue dashed line) are compared with the 
observed stream flow (red line) for the 2007 water year at 
Merwin Dam, Washington.

The DHSVM model for instantaneous streamflow rates had 
very different prediction characteristics from the statistical 
model as shown in Figure 5. The distributed model provides 
much  more  representative  instantaneous  flow  rates.  The 
distributed model  also does  a  better  job on capturing the 
extreme events.  However, there is an unexplained high bias 
in the warm season months. 

Fig. 5. Distributed model comparison of 24-hr ahead stream 
flow  forecast  with  observed  streamflow.  The  DHSVM 
model forecasts (blue dashed line) are compared with the 
observed stream flow (red line) for the 2007 water year at 
Merwin Dam, Washington.



Typical results  of the performance of the two models are 
summarized in Figure 6.  The figure compares the next day 
statistical model forecasts and the DHSVM model forecasts 
with the observed instantaneous stream flow for the 2007 
water  year  at  Merwin  Dam,  Washington.   The  statistical 
forecasts  are  taken  from the  seven  day  average  forecast. 
The DHSVM forecasts are for instantaneous streamflow.

Fig.  6.  Statistical  model  forecast  (green  dashed  line)  - 
DHSVM model forecast (blue dashed line) comparison 24-
hr  ahead  streamflow  forecasts  with  instantaneous 
streamflow observations (red line) for the 2007 water year 
at Merwin Dam.

This analysis highlights the fact that the statistical approach 
is  representative  of  the  instantaneous  streamflow  during 
times of slow streamflow changes. But the results also show 
it  does  not  do  well  in  capturing  extreme  events.  It  is 
interesting to note that the statistical model is able to obtain 
reasonable results with using coarse resolution precipitation 
(even poor quality) data as input as long as the data was 
consistent (i.e. consistently low or high).  

When  comparing  the  forecast  of  the  two  models,  the 
distributed model clearly does a better job on capturing the 
extreme  events,  especially  during  the  cold  rainy  season. 
However, the distributed model significantly over-predicted 
the streamflow during the dry warm season, which needs to 
be corrected in order to make useful streamflow forecasts.  

4. SUMMARY AND CONCLUSIONS

The results of this study show that the statistical model does 
well for averaged flow and times of slow changes. It does 
not do well in capturing extreme events.  Also, it does not 
provide  instantaneous stream flow rates.   But it  does  not 
require high resolution or quality precipitation data to obtain 
reasonable  results  as  long  as  the  data  is  consistent.  The 
statistical  model  is  able  to  obtain  reasonable  results  with 
coarse  resolution  precipitation  as  input.  So  this  is  an 

advantage  in  addition  to  the  fact  that  it  is  easier  to 
implement and computationally very efficient. 

The  distributed  model  does  a  better  job on capturing  the 
extreme  events.  Also,  this  option  is  required  for  high 
temporal resolution forecasts.  But there are times when the 
distributed model was consistently worse than the statistical 
model, such as during the high bias noted during the warm 
season. 

The statistical model could be used to improve distributed 
model forecasts. For example, the statistical forecast could 
be used in place of the distributive forecast in the warm dry 
season months. Another way the distributive model forecast 
could  be  improved  is  by  adjustment  thorough  a  Model 
Output  Statistics  (MOS) approach  technique  (Wilks,  D.S. 
1995).  This could be very effective in removing the warm 
season bias.
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