
HPC Design for Estimating High Resolution Weather Conditions

Dorren R. Schmitt
1

The Weather Channel

Atlanta, GA

And

John V. Matthews

The Weather Channel

Atlanta, GA

Introduction
1

The Weather Channel (TWC), based in Atlanta,

Georgia, designed and deployed a system called

High Resolution Aggregate Data (HiRAD) that

produces near real-time reports of current

conditions within the Conterminous United

States (CONUS). Within this domain, HiRAD

estimates values for 61 surface variables at high

resolution in time and space. The HiRAD system

was described in detail in Neilley and Rose

(2006).

This paper describes the operational

infrastructure used to execute HiRAD on a high-

resolution 2.5km grid and how the hardware

and software specifications were measured.

This paper describes the methods of integrating

commercially available software in a non-

traditional manner to provide the basic

distributive infrastructure to allow HiRAD to run

in near real time.

HiRAD uses a parallel high performance

compute cluster designed to distribute the work

of computing the current condition variables

across 124 CPUs. This was accomplished

through employing scheduling job software

1
 Corresponding and presenting author. Dorren R.

Schmitt, TWC, 300 Interstate North Pkwy, Atlanta,

GA 30339, USA; email: dschmitt@weather.com

(PBSPro and MOAB), maximizing Network File

Systems (NFS), and the scaling of the HiRAD

software. The system was designed to

maximize the server hardware for deriving the

observation data and executing additional jobs

to render and distribute the data to external

systems for display and product creation.

The end result is 1.9 million observations across

CONUS in less than six minutes. The HiRAD

system synthesizes the raw data into 61 fields

and distributes all but 18 for each of the 1.9

million points.

This paper is divided into four sections. Design

Considerations describes the requirements

driving the design. Design Implementation

describes the design choices. Scheduling of

Jobs describes how PBS and MOAB were

employed to run HiRAD. Design Expansion

describes the extensibility of the design for a

growing application.

Design Consideration

In addition to computing observations in less

than six minutes, HiRAD required four nines of

availability. This availability requirement

impacted many choices in the design as robust

solutions were needed.

2

HiRAD is an application that divides CONUS into

irregular polygons (called tiles). The tiles are

designed to most efficiently use the available

data to derive all necessary calculations for the

61 fields. Figure 1 displays how CONUS was

subdivided into tiles.

Figure 1 Neilley and Rose (2006)

The first consideration was how to design the

distribution of the tiles. The software used for

this needed to serve these present needs but be

extensible for future growth. The software

needed to be able to provide automated

deployment but also have capabilities of

allowing for interstitial deployment either for

testing or for over-coming operational issues.

Although similar to a Beowulf cluster, the

parallel computing cluster was not designed for

processing to be explicitly shared. Each tile runs

as an independent “application”. This design

feature of the software greatly impacted the

software choices.

The second design consideration was the

computer hardware. The obvious objective was

to minimize the number of nodes. But, at the

same time, there was the need to ensure

expandability and fault tolerance without

significant future capital purchases.

Considerations included types of CPUs, RAM,

network interoperability, storage requirements,

and data distribution.

Another key aspect of the design was the

operating system. The operating system

needed to be one that allowed flexibility for

doing parallel processing and provided

opportunities to be able to choose from a

variety of scheduling software. This was

integral both for determining the clustering

software but also for application writing.

With an application that was still being

developed, there was a certain level of needing

to take an educated swag at these

requirements. So, a key feature of designing

the core infrastructure was to enable it to be

expanded at minimal cost to accommodate

application requirements that were not yet well

defined.

The next design consideration was the ingestion

of the necessary input data. The amount of

data and the number of data sources would be

important factors in establishing how ingestion

would be optimized. It was also clear in the

beginning, that numerous protocols would be

necessary (i.e. LDM, FTP, sockets connections).

Data unification was the next design

consideration. The challenge was to determine

the most robust and efficient method to make

all of the data ingested available to all of the

nodes in the cluster. And likewise, how to allow

the results of the computation be available,

synthesized, and then distributed. As part of

data availability, the distribution method of the

synthesized results was integral. The results

needed to be available to other systems as soon

as possible. Thus, the distribution choice was

critical.

3

Design Implementation

Designing the HiRAD infrastructure was one

that entailed several Proof of Concepts (POC).

After trying several potential software

packages, TWC decided to use a two application

approach. The primary scheduling software

was PBS Professional (PBS Pro) by Altair

Engineering. The decision was made because

this software provided economical and reliable

job scheduling. Totally unsupported open

source software, such as OpenPBS, was not an

option because of the robustness of the design

that needed to be executed. Additionally,

another derivation of OpenPBS called TORQUE

was available, but TORQUE did not have any

failover capability of the scheduling head nodes.

There were also other commercial products

available but either those software packages

did not provide the level of robustness that was

desired and/or the cost was prohibitive.

PBS Pro provided a good balance of support,

significant development initiatives, and cost.

The entry price point for PBS was reasonable

and allowed for future growth without

significant incremental costs. PBS Pro was used

for the submission of the jobs to the compute

nodes. One issue with PBS Pro was the

difficulty of creating an automated job

scheduling. PBS Pro was very good for

submitting jobs and doing manual scheduling

but unattended scheduling was not PBS Pro’s

strength.

To supplement PBS Pro, TWC also decided to

implement MOAB from Cluster Resources.

MOAB was a meta-scheduler that not only

supported TORQUE but also PBSPro. MOAB

provided the needed aspect of automated

scheduling along with failover capabilities.

With this scheduling design, two head nodes

were built to be the PBS and MOAB head nodes

for the distribution of the jobs. Because these

machines were solely dedicated to job

submission, these servers are standard servers

with 4 GB of RAM and two single core AMD

CPUs. Because of the failover requirements of

PBS, an NFS mount for the PBS software was

created to allow both head nodes to share the

same software install.

The second design consideration was the

compute node hardware itself. The focus was

to use the latest hardware available to minimize

the hardware footprint and maximize the

utilization. At the same time, fault tolerance

needed to be built in to the design.

In considering servers, dual core AMD CPUs

were chosen to minimize the number of

machines. At the time of design, these were

the first dual core CPUs. Additionally, it was

determined that HiRAD was going to be a

memory intense application. At the time of

design, AMD system board and CPU design

optimized memory more efficiently than Intel.

Because of this, AMD chips were the choice for

all systems in the design.

With the determination of the high memory

usage, machines were purchased with 4 GB per

core in the compute nodes. Thus a two socket,

dual core machine would have 16 GB of RAM.

Additionally, HiRAD was written on a 32-bit

Linux OS and each job was being written to be

single threaded. The software was designed

that, a single job would not use more than 3.8

GB of RAM. This decision choice would ensure

not to exceed the 4GB limit per process for a

32-bit OS. This compute node design would

allow for a maximum of four simultaneous jobs

to run on a single compute node most

4

efficiently without having the OS invoke page

swapping because of limited memory resources.

To provide sufficient CPU resources for running

all jobs at the same time and provide fault

tolerance, 112 cores were decided for

computing the tiles and running post processing

jobs to render the results for distribution. At

any point of time during a HiRAD run, there are

at least 20 cores available in case of hardware,

power, or network failure.

Figure 2 displays the hardware infrastructure

for the HiRAD HPC. Two servers provided all

the scheduling capability. There were three

computers for the ingestion of data. One of the

machines was a failover that could be used for

either text or graphical data ingestion. And

finally, a farm of compute nodes with spares

provided the computing capability for the

various tile and deployment jobs.

The operating system early on was decided to

be Linux. The next decision was to determine

which distribution. The various distributions

have their unique strengths and weaknesses.

The decision was made to use CentOS. This is

generally a stock distribution of Red Hat but

without out the support and maintenance.

CentOS provided a low cost OS while using a

standard distribution that allows for system

administrators to support the OS. CentOS also

provided the greatest breath of distribution

software to choose from.

The fourth design decision was the ingestion of

the raw input data. This process included

determining appropriate data sources both

public and private. Then for each vendor of

data, what were the possible methods of

receiving the data and finally, what was the

most reliable method of the available choices.

Whenever possible, secondary sources of data

were investigated in case a vendor had either a

data outage or a distribution outage.

Whenever possible, the primary choice of data

receipt was to use Local Data Management

(LDM) software. LDM is a reliable, robust

delivery process that pushes data to ensure

minimum latency. After LDM, File Transfer

Protocol (FTP) was the most frequently used

method. TWC identifies and pulls the data from

a website or FTP server.

For data internal to the company that was

needed as input, cross NFS mounting of file

system and socket connections were the

methods of choice. It was determined that

these methods would provide data most

reliably and nearly instantly. Since this data

was internal, security concerns from these

methods were not an issue.

Given the volume of data that needed to be

ingested, two dedicated machines were

implemented for active data collection. The

first system ingested the vast majority of data.

This data included NWS text data, computer

5

models, and lightning and provided the core of

the information. This machine would run LDM,

have FTP open and several other services to

provide the flexibility to receive data in the

most timely but secure method. All other

systems would not have nearly as many services

open for security purposes.

The second ingest machine was used to ingest

and save graphical radar data. This machine did

not have the numerous sockets open, but NFS

was employed to ensure when the images were

available from another internal system, that

HiRAD received the data as soon as the images

were created.

To maintain a robust system, a spare failover

system was provided for redundancy. The

design of the ingestion of input data was such

that this third machine could run either the text

or graphical data ingestion software but could

not run both at the same time. The risk of this

design would be the loss of both systems at the

same time. This risk was determined to be low

and acceptable.

The fifth design decision was how to distribute

the input data to all the compute nodes for use

by the HiRAD software. Given the number of

machines that comprise the compute cluster,

there were three possible choices.

The first choice was to sync the input data from

the ingest server to all of the compute nodes

several times an hour. This seemed to be

inefficient. This method was prone to latency.

There could also be inconsistencies if one or

more compute nodes failed to get the new data

before a HiRAD run needed to take place.

There was also the issue of needing to purchase

machines with large local hard drives. If the

application grew, the compute nodes could run

out of disk space. Then, there were issues with

how would the compute nodes distribute the

results. This choice in data distribution was

eliminated quickly given the limitations.

The next choice was a global file system (GFS).

When HiRAD was being developed in 2005, the

choices of global file systems were not

sufficiently robust to meet the reliability

requirements. Global file systems were just

emerging in the early 2000s as an alternative to

NFS. Clusters had a file system, Red Hat had

one, and HP developed a distributed file

system. When these file systems were tested, it

was determined that to provided the reliability

necessary for this application, these file systems

had not matured sufficiently. Many of the file

systems actually stated at that time, they were

not designed for production use. After

sufficient research and POCs, using a global file

system was not supportable for this application.

Finally, HiRAD could use a network file system

(NFS). NFS has been a protocol of sharing

directories or volumes since the 1990s. NFS

was developed by SUN Microsystems and was

now on the third version. This was a mature

technology, well known by system

administrators, and commonly used in

information technology. NFS was determined

to be the most robust choice to distribute the

data.

Given NFS was chosen, the next consideration

would be where it would be serviced out and

the file system used needed to be decided. For

robust journaling, Veritas File System (VFS) as

opposed to Ext2 or Ext3 was determined to be

the file system. Veritas was chosen for the

robust journaling and proven history of being

easily moved from one system to another.

Additionally, since the text ingest server

receives most of the data, it was determined

that machine was the most appropriate one to

6

mount the file system locally and run the NFS

services to export the file systems.

The text ingest server mounted a Veritas File

System Volume from the Storage Area Network

(SAN). This SAN mount has sufficient space for

both the input data, but was also where the

output data from HiRAD compute nodes would

be written.

Each compute node uses NFS3 to mount the

volume exported by the text ingest server. All

compute nodes have the ability to both read

and write to this volume. The compute nodes

read in the data from the volume, places the

data in memory, runs the computations, and

then writes out the results to the same volume.

Additionally, all log files and other necessary

files needed to be shared with all nodes in the

cluster are on the SAN volume.

The other advantage of the SAN volume is the

ability to grow the volume. Through the past

several years, the HiRAD application has

matured with how data is distributed, what

data is used as input data, and what data is

produced. This in turn has required more

storage. Unlike local storage, SAN storage has

been able to be grown several times to allow

for the expansion of HiRAD. Additionally, with

faster CPUs and newer machines, moving this

data would be simple. Instead of needing to

copy the data from one local machine to

another when new ingest servers were

installed; all that needed to be performed is

simply allow the new servers to see the storage

on the SAN and mount the storage on the new

servers. Instead of a day of copying, syncing,

and re-syncing with the potential data loss and

outage risk, the implementation of a new server

would take minutes. This results in a significant

reduction of risk and personnel time.

The last key design element of HiRAD is to

determine how to distribute the results.

Calculating the data does no good if the results

cannot be distributed quickly and efficiently to

all internal systems that have use of the data.

Once again, NFS, sockets, secure copy, and FTP

are the key methods.

The complication of cross mounting file systems

from one application system to another is

possible but not advisable. The biggest issue is

if the exporting system has issues then it could

produce issues for the mounting system. This

was an unacceptable risk so NFS was eliminated

as a viable option.

The second possible method was a socket

connection. Although this is a viable method of

distributing data, some of the applications the

data would go to were third-party systems with

no capability to have custom development to

integrate this mechanism of data ingestion. The

decision was made to at least initially use a

single method. Since all internal customers

could not use socket connections, this method

was discounted.

The third viable choice was secure copy (SCP).

This is certainly a secure method. The

disadvantage is that SCP is a common protocol

for Linux and UNIX but not as common for

Windows. Once again, because of the variety of

systems that need to have the data distributed

to them, SCP was an option but deemed not to

be the preferred method.

The preferred method to distribute data to the

internal customers was FTP. The technology

was a push technology. In other words, when

the data was ready, the data was sent to the

internal customers. The data was also sent as

part of the job. This provided no latency.

7

Thus the infrastructure of HiRAD consisted of

multi-core servers running CentOS and PBS

Professional. Data were ingested on two

separate server but all data were shared via NFS

to all machines in the HiRAD cluster. Finally

data were distributed to customers’ systems via

FTP.

Scheduling Jobs

Two software packages PBS Professional and

MOAB were used to schedule the jobs and

created all the data distribution.

MOAB was used for two purposes. The primary

purpose was easy deployment of scheduled

runs. HiRAD runs multiple times in an hour,

every hour of the day, every day of the year.

TWC needed a simple, configurable means that

could failover with PBS Professional to run the

master script that created the entirety of the

HiRAD run.

MOAB provided a simple configuration file that

allowed for the definition of a scheduled

deployment similar to cron. The deployment

can be configured to re-fire multiple times in an

increment determined by the customer. For

example, for a user hirad the script HiRAD

would run five minutes after the hour, and be

retriggered every 20 minutes. Thus, HiRAD

would run every hour at 5, 25, and 45 minutes

after the hour.

The advantage of doing this over cron was the

ability to fail over to the secondary PBS

Professional head node if something occurs to

the hardware or to the PBS Professional

software. There could be some possible ways

of using cron, but the risks for using cron was

determined to be not worth the difference of

using MOAB.

Another advantage of MOAB, albeit not often

used, was the graphical capabilities. The user

interface (UI) of MOAB was very good. MOAB

allowed for easy interaction for deploying jobs

through the UI as well as being able to see the

compute node usage and progress of the jobs.

Figure3 provides a graphical view of the inter-

relationship between PBS and MOAB. MOAB is

the external scheduler that triggers a master

script. PBS has all the core responsibility of

deploying and managing the jobs.

Configuring PBSPro to deploy jobs required

several deployment decisions. First it was

decided, for simplicity, to deploy using the

principle of “First in First Out” (FIFO). This is a

common deployment scheme. Jobs are run in

the order they are submitted. Since all jobs

were essentially being submitted

simultaneously and there were sufficient

resources for the jobs to run at once, the

method was not a critical decision. The second

decision was how to distribute the jobs across

the nodes. For this, the decision was to not

load balance across the nodes but to deploy as

many jobs on a single node as possible.

Deploying the maximum jobs to a given

machine allowed for spare idle machines and

was determined to be the most robust method

for this application. Additionally, all compute

8

nodes were configured as time-shared nodes.

This was the most appropriate mode since

multiple jobs would run on each machine. Each

job was locked to a single CPU.

The deployment of jobs used internal scheduler

and job queuing of PBSPro. The method HiRAD

used for exploiting the power of PBSPro was the

HiRAD launch script. By using a single script to

deploy all jobs, HiRAD runs were easily

deployed on the fly interstitially, if necessary.

The HiRAD script started off by running a pre-

processing job to establish the list of current

available data to be used in a run and format

the data as required. An additional function of

pre-processing was to determine if sufficient

data were present to merit a run. This was a

precaution in case of data outages by data

providers to ensure that any results provided

would have sufficient reliability. This single job

was deployed on a compute node and was

considered a blocking job. This means that the

execution script waits until this job exits before

submitting another job.

After the pre-processing job completes, the

polygon jobs and the post-processing jobs were

queued by PBSPro. The post-processing jobs

were submitted using PBS such that they

depend upon the completion of all the polygon

jobs.

The next step was the execution of the polygon

tiles themselves. These jobs run on the

compute nodes. There are sufficient numbers

of CPUs that all jobs run at the same time. Each

polygon requires one entire CPU and nearly 4

GB of RAM. That quantity of RAM is necessary

because data and libraries are loaded into

memory to reduce the computational time as

much as possible. Because of the varying sizes

of the tiles, the tiles finish at different rates.

Once all the tiles jobs have successfully exited,

then the post processing job executes. This job

renders the data into files to satisfy the needs

of customers. As this post processing job

completes, the resulting output files are FTP’d

to the appropriate customer. In total, there are

110 jobs that are run during each HiRAD run.

Figure 4 displays the process in which HiRAD is

deployed and executed. There are two blocking

jobs to ensure data integrity. There are also

other job dependencies built in to ensure data

integrity.

Design Expansion

Over the past several years there have been

numerous changes in the design of HiRAD.

Additional input data has been incorporated,

additional variables have been produced,

additional tiles have been incorporated, and

different formats for the output data files have

been created.

The strength of the initial design was the

flexibility and ability to grow. Outside of

9

changing some of the dependencies of jobs and

expanding the number of jobs, the numbers of

compute nodes, CPUs, RAM requirements,

third-party software such as LDM, PBS

Professional, and MOAB have remained

constant.

Given current technology, one area that is being

considered to change is the method of using

NFS. TWC is currently investigating eliminating

the use of NFS on the ingest server and moving

this capability to a device dedicated to doing

that work. Network Attached Storage (NAS) is

being seriously considered to provide enhanced

robust storage capability and provide additional

growth capabilities for the ingest server.

Summary

HiRAD is a parallel high performance compute

cluster designed to distribute the work of

computing the current condition variables

employing scheduling software and NFS. The

system was designed to maximize the server

hardware for deriving the observation data and

then submitting additional jobs to synthesize

the data for graphical systems and distribute

the data to the other systems for displaying the

data.

Designing of the HPC comprised several key

aspects to build a robust system to handle the

demands of producing results three times an

hour, 24 hours a day, 365 days a year. The first

design requirement was to produce results as

quickly and reliably as possible. Additionally,

the HPC needed to allow for expansion of

domain, variables, and data. And finally, the

HPC needed to ensure that if hardware failure

occurred that there was sufficient computing

power to automatically recover from a realistic

set of failure. The HPC was designed with the

latest technology available in 2005. And with

the exception of faster CPUs and more cores

per chip available today, this design is the most

efficient utilization of computer hardware.

References

Neilley, P. and B. L. Rose, 2006: A real-time

system to estimate weather conditions at high

resolution. Proceedings of the 22nd AMS

Meeting on Interactive Information Processing

Systems for Meteorology, Oceanography, and

Hydrology, Atlanta, GA.

