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1. INTRODUCTION 
 

Accurate and highly resolved forecasts of 
aviation weather hazards are needed by today’s 
air traffic flow planners and the automated 
decision support tools of NEXTGEN. Both 
current users and NEXTGEN require information 
about the likely distribution of storm sizes, their 
intensities, organization, connectedness, and 
orientation to make better-informed air traffic 
routing decisions up to eight hours in advance 
(depending on the length of the route).  
 
Toward meeting these requirements, an 
advanced storm prediction algorithm called 
CoSPA has been developed.  CoSPA is a 
collaboration between the National Center for 
Atmospheric Research (NCAR), the 
Massachusetts Institute of Technology Lincoln 
Laboratories (MIT-LL), and the National Oceanic 
and Atmospheric Administration (NOAA).  
CoSPA is funded by the Federal Aviation 
Administration (FAA).  The goal of CoSPA is to 
produce a rapidly updating short-term 
forecasting system that optimally blends 
heuristic extrapolation forecasts with high-
resolution model forecast data.  Details of 
CoSPA and recent enhancements are given in 
Dupree et al. (2009) and Pinto et al. (2010). 
 
An important aspect of the blending is the 
alignment of the nowcast with the model forecast 
prior to the blending. This is done by comparing 
model forecast images to the most recent 
available observations and determining the 
offset or phase shift between the two images. 
The work presented in this paper describes the 
methodology for producing the phase correction 

vectors and the optimization of parameters used 
in the calculations. 
 

 
 

2. METHODOLOGY 
 
The data used in this study are MIT-LL CIWS 
VIL analysis mosaic and forecasts from the 
rapidly-updating High-resolution Rapid Refresh 
(HRRR) model run at NOAA/GSD.   
 

 
CIWS data are available every 2.5 min at 1 km 
resolution. These data are sub-sampled in space 



and time to 15 min and 3 km, respectively. The 
data are re-gridded to the model grid using a 
Cressman distance weighted average 
interpolation approach. 
 
The HRRR model is currently being run 
experimentally by NOAA/GSD. The HRRR uses 
the ARW core of the Weather Research and 
Forecasting (WRF) model at 3-km resolution 
without convective parameterization.  It is 
initialized and driven at the lateral boundaries 
with the 13-km Rapid Update Cycle (RUC).  
Forecasts are generated every hour with output 
at 15-min lead times out to 12 hours. The model 
VIL data are calibrated using a frequency 
matching technique (see Pinto et al. 2010) and 
converted to the same digital scale (0-255) as 
the CIWS observed VIL mosaic. This calibration 
procedure is done so that the distribution of 
intensities in the model and the observations are 
similar. 
 
Position errors in the model forecasts are then 
determined using a method described previously 
by Brewster (2004) which is further detailed 
below. 
 
2.1 PHASE CORRECTION DESCRIPTION 
A technique originated by Brewster (2004) is 
used to correct position errors in the HRRR 
model forecast.  For each model generation 
time, the phase correction is performed at a lead 
time of 3 hrs (due to HRRR latency of 3 hrs). 
Then that calculated correction is applied to the 
rest of the lead times from that generation time 
out to 8 hrs. 
 
Before phase correcting, the model and 
observations are smoothed and sub-sampled to 
reduce computation time.  Sub-sampling is 
controlled by a parameter called “low_res”, 
which is the resolution of the sub-sampled grid 
(Table 1). 
 
The model domain is then divided into N tiles, 
where N is determined by the tile size, the 
overlap, and the size of the domain.   The tile 
overlap is typically about half of the tile size (see 

Figure 1).  Each tile is shifted in both x and y 
directions using an increment of dx = dy and a 
maximum shift distance of Ms.  After each tile is 
shifted, the squared difference between the 
shifted model field, F(x+dx) and the 
observations, O(x) is computed and weighted by 
a distance penalty, D (see Brewster 2004 for 
description).  
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Scores are calculated for each possible shift of  
a particular tile. The shift with the minimum score 
gives the phase correction vector for that tile. 
This minimization is performed for each tile 
across the entire model grid.  A final smoothing 
step is performed on the resulting grid of phase 
vectors resulting in a smoothly-varying gridded 
product (see Figure 2). 
 

 
 
2.2 PHASE CORRECTION OPTIMIZATION 
For phase correction optimization, various 
parameters were adjusted in numerous case 
studies over the summer of 2009.  Table 1 lists 
the values used for the summer of 2009 and the 
optimized values after extensive testing.  Some 
of the more important variables in this study are 
low_res, tile_size, tile_overlap, phase_shift_res,  
and threshold.  Examples of the process by 



which the phase correction was optimized are 
given in the Case Studies section. 
 
3. CASE STUDIES 
 
31 July 2009 – Line Storm 
A prominent line storm was situated over the 
eastern part of the continental US (CONUS) on 
this day, causing delays in excess of 3 hrs at 
some airports.  Figure 3a shows a 2-hr forecast 
from the HRRR model with no phase correction 
overlaid on the observations.  In Figure 3b, 
phase correction has been applied, correcting 
some of the errors in the forecast while still 
depicting a physically and visually realistic 
forecast.  Note the correction of false alarms 
over the southwestern part of the map.   
 
Critical Success Index (CSI) and bias scores for 
all model generation times sorted by lead time 
are plotted in Figure 4.  Low_res9 and 
Low_res15 represent a sub-sampled grid 
spacing of 9 and 15 km, respectively;  “combine” 
identifies the phase correction calculated using 
all optimized parameters shown in Table 1; and 
No Phase Correct is solely the HRRR model with 
no phase correction. The CSI scores exhibit that 
more skilful forecasts are a function of 
decreasing the sub-sampled grid spacing.  It is 
also important to note that the combined set of 
optimized variables is the most skillful.  Thus, 
optimizing all variables together provides a 
cumulatively improved forecast.   
 
A decrease in the bias by each of the phase 
correction tests can be seen in the first 4 hrs of 
the forecast lead times.  The phase correction 
sometimes tends to over-correct the model, 

converging many vectors into one spot and 
causing areas of convection to seemingly 
“disappear.”   A convergence algorithm is 
currently being developed to mitigate this 
problem. 
 

 
 
11 June 2009 – Low Pressure 
A strong low pressure system was centered over 
the Illinois/Indiana border on this day.  Airport 
delays were reported across the country 
because of this storm.  Figure 5a shows the 2-hr 
HRRR forecast initialized at 10 UTC overlaid by 
the 12 UTC observations.  Note the HRRR’s 
over-expanding of convection in this area.  
Figure 5b shows the model forecast after phase 
correction has been performed.  The phase 
correction diagnoses the errors in the forecast 



and corrects accordingly, reducing the area of 
the convection to match the observations. 
 
Figure 6 shows the CSI and bias scores of 
various threshold sensitivity tests.  Lowering the 
threshold proves to be more skilful here while 
combining the optimized parameters again 
provides the best forecast in earlier lead times.  
No phase correction outputs the least skilful 
forecast once again.  
 
4. SUMMARY / FUTURE WORK  
 
Brewster’s phase correction technique can be a 
useful tool for correcting position errors in 
forecasts, especially in earlier lead times.  It 
seems to be most valuable for large, organized 
systems with continuous convection over large 
areas.  The algorithm tends to improve skill 
scores by reducing the bias. This bias reduction 
occurs to excess at times (as seen in Figure 4).  
Current work is underway to mitigate this 
problem by reducing the amount of convergent 
motion allowed in the phase error field.  
 
In the tests done for this study, an Eurlerian 
approach was taken, wherein corrections were 
developed by comparing the model with the 
observations at a single forecast lead time and 
applying to all forecast lead times. Future 
versions of the phase correction will employ a 
Lagrangian technique, in which the corrections 
will take into account motion of the precipitation 
areas as well as trends in the phase errors.  
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