
1 INTRODUCTION 
Spatial quality control tests compare a 

measurement against neighboring measurements to 
determine whether the measurement is reasonable. This 
paper describes a robust automated method for making 
these spatial comparisons, and presents preliminary 
results on performance of the algorithm applied to Road 
Weather Information System (RWIS) data from the 
Clarus network (Pisano et al, 2007). The Clarus System, 
built by Mixon Hill Inc. and funded by the Federal 
Highway Administration (FHWA) collects, quality checks 
and disseminates RWIS data. This paper analyzes 
algorithm design considerations, including appropriate 
weather variables for spatial testing, defining neighbors, 
the minimum number of neighbors to require, and how 
to use observations from the neighbors to define a 
range of reasonable values for the observation to be 
tested (i.e., the target observation).  

 
In order to achieve accurate quality control, a 

minimum number of neighboring stations must be 
available in order to perform any spatial quality control 
test. In this study, several minimum neighbor sizes were 
considered. When too few neighbors are used by the 
test, the results are poor. When too many neighbors are 
required, many stations cannot be tested as they lack 
sufficient neighbors. In general for spatial testing, this 
minimum size will depend on the density of the network 
and the spatial continuity of the measurement. In this 
situation, five neighbors was determined to be a good 
compromise between these considerations.  

 
The real-time nature of this test also causes 

difficulties in neighbor comparisons. Measurements from 
neighboring stations cannot be quality checked by basic 
tests prior to their inclusion in the spatial quality check 
since all tests are run simultaneously. Though a gross 
error in measurement at neighbor will almost certainly 
be flagged by this or some other test, that bad neighbor 
can also skew the test on good measurements at its 
neighboring sites. In this situation, the spatial algorithm 
must be somewhat robust to gross errors. Thus, the 
median and inter-quartile range, both robust statistics, 
are used to define the range of reasonable values for a 
target measurement. The algorithm was tested on a set 
of cases. Overall performance is good, though it varies 
somewhat by location, type of measurement, and 
weather condition. 

 
Section 2 of this report describes the data used in 

these analyses. In Section 3, the quality testing 
algorithm is specified. The results are presented in 
Section 4. Finally, Section 5 contains the conclusions. 

 

2 DATA  

2.1 Clarus RWIS data 
Clarus collects weather and pavement 

observations from many states via the RWIS network. A 
variety of quality control procedures are applied to the 
observations. Not all measures lend themselves to a 
spatial test. The observation types that employ an 
operational spatial quality control test include air 
temperature, dewpoint temperature, relative humidity, 
visibility, surface temperature, ice percent, average wind 
speed, and average wind direction. The development 
phase of the spatial quality control algorithm was very 
short. Thus, the developmental data included only air 
temperature, dewpoint, and average wind speed.  
During the testing phase, confirmation that each variable 
is appropriate for spatial quality control will be 
determined.  
 

2.2 Neighbors 
Neighboring measurements were required to have 

been recorded within the last hour from RWIS or 
METAR stations within a 111 km radius of the target 
station, with a difference in altitude of no more than 350 
meters. The 111 km (69 miles) radius is in operational 
use for the spatial test in the current Clarus System. 
Further, examination of the number of neighbors 
available within various radii of a target suggests that 
the majority of stations have at least 5 neighbors within 
that distance. Figure 1 shows an example for Iowa. The 
fraction of Iowa stations having between one and five 
neighbors at distances from 20 to 140 km is shown. The 
turquoise line shows that nearly all stations have 5 
neighbors within 90 km.  

 

 
Figure 1: Proportion of Iowa stations having at least 
k =1 to 5 neighbors within some radius.  
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Further, because the samples sizes are small, 

distance weighting is not used. When a station has only 
a small number of neighbors, using a distance weight 
can cause one or two close neighboring stations to 
dominate the calculations while stations that are farther 
away contribute very little. In essence, this reduces the 
sample size.  With very few neighbors for most stations, 
this is likely to yield an unreliable test, especially since 
the neighbors are not quality checked prior to 
performing the spatial test.  

3 METHODS 
Both the proposed and the current operational 

algorithms are supported by the Vysochanskij–Petunin 
inequality, which states that for any unimodal data 
sample, about 5% of the values are further than three 
standard deviations from the mean (Vysochanskij and 
Petunin, 1980; Pukelsheim, 1994). This theorem 
requires known values of mean and standard deviation. 
In practice, means and standard deviations are not 
known and must be estimated. The usual estimators are 
the average and sample standard deviation calculated 
from the neighboring observations. In some cases, 
these estimates may not be very accurate, especially if 
some bad values are included. 

 
In applying this theorem to the spatial testing 

problem, there are several assumptions. The most 
obvious is that the neighboring observations represent 
the same conditions (e.g., come from the same 
statistical distribution) as the target observation. Clearly, 
this may not be the case in mountainous and coastal 
regions. Further, the boundary of a weather system may 
fall between neighbors, so stations on one side are 
measuring very different conditions than those on the 
other side. No spatial testing algorithm can overcome 
these difficulties.  

 
However, most of the time, the neighbors roughly 

represent the same conditions as the target, making 
spatial testing quite sensible. The difficulty comes in 
estimating the mean and standard deviation, especially 
with small samples and neighbors that have not been 
quality controlled prior to inclusion in spatial testing.  

 
The problem of including a few bad values in an 

estimate is a common one in statistics, and has been 
largely remedied by the use of robust statistics, i.e. 
statistics that do not change substantially when a few 
bad observations are included. The trade off for using 
these types of statistics is that they are less efficient. 
That is, they require larger sample sizes to produce 
estimates with similar precision than the traditional 
methods.  
 

3.1 Robust Statistical Methods 
The Clarus System was designed so that neighbor 

values are not subject to quality control prior to being 
used in a neighbor test. Therefore, itʼs possible that  bad 
measurements could be used to quality check other 
measurements. In this case, a bad measure could 
cause an erroneous quality assessment at its 
neighboring stations.  

Many algorithms use mean and standard deviation 
estimates calculated from neighboring values. When 
bad or outlying values are among the neighbors, the 
mean and standard deviation estimates can be affected 
greatly. Figure 2 illustrates the need for robust 
estimates. The air temperature values for a selected 
station in Iowa are shown through time. There are a 
handful of values exceeding 150 °C. These values will 
be flagged, but they will still be used in quality checking 
their neighbors.  
 

 
Figure 2: Graph of air temperature over 2008 for one 
station in Iowa. 

 
For the proposed algorithm, the median is used 

to robustly estimate the location and the inter-quartile 
range (IQR) is used to robustly estimate the spread 
(Hoaglin et al, 1983). The median is the center point of 
the set of neighboring values, with half of the 
observations falling above it and the other half below. 
Similarly, the inter-quartile range is the distance 
between the top and bottom quartiles, the values with 
25% (75%) of the sample observations below (above) 
them.  

 
These robust estimates can prevent a small 

number of extreme values from influencing the test.  For 
example, when 5 neighbors are used in the test, the 
maximum and minimum values have no influence on the 
median or IQR. Thus, the test is robust to up to 2 out of 
5 bad values, no more than one on each side. With 
larger sample sizes, the percent of robustness 
increases. An example is shown in Figure 3. A set of 
“good neighbor” values is shown in blue dots, and a 



single bad value (26) replaces one neighbor (6) for the 
values in red.  Ranges, based on mean and standard 
deviation, or median and IQR, are indicated by the 
asterisks and whiskers. For the blue “good neighbors”, 
the two ranges are very similar. However, for the set of 
red neighbors with one outlier, the single bad value 
inflates both the sample mean and standard deviation, 
making the range very wide. The range based on the 
median and IQR is identical to the case with only good 
neighbors, that is, it is robust.  
 

 
Figure 3: A contrived example comparing quality 
control limits based on standard versus robust 
statistics.  

 
In the IQR test, a target observation fails the IQR test 
when  
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The minimum tolerance bounds shown in Table 1 
are the allowable differences between a target and the 
median of its neighbors. So, an air temperature value 
will never fail if it is within 3.5 °C of the median of the 
neighbors. This bound was implemented because in 
some cases, the neighbor values were very close, 
making the IQR value very small. Then the target would 
fail even though it was very close to the neighbor 
values. 

 
 
 

Table 1: Minimum tolerance for spatial quality control. 

essAirTemperature  3.5 deg C 
essDewpointTemp 7.0 deg C 
windSensorAvgSpeed 4.5 m/sec 
essAtmosphericPressure 7.5 mbar 
All other ESS fields 0 

 
 

3.2 Remaining Problems with Spatial Testing 
Other problems besides bad observations can 

affect spatial quality control. Mountainous or coastal 
regions may not have neighbors representing similar 
conditions to the target stations. Sparsely instrumented 
areas lack sufficient information to perform neighbor 
checks. The robust quality control algorithm does not 
address these issues.  

 

4 RESULTS 
Assessments of quality control algorithms are 

difficult, because the true conditions are rarely known. 
However, some measures are bad enough to be 
identifiable by inspection of a single case. Thus, case 
studies are used to examine the behavior of the 
algorithm. The true test of a quality control algorithm is 
on large volumes of data, which makes the truth 
impossible to include. However, basic statistics about 
the total proportion of bad and good measures identified 

by the algorithm can give a reasonable 
assessment of performance. 
 

4.1 Dewpoint example 
An example case, depicted in Figure 4, shows dewpoint 
temperature measurements in Kansas. There appear to 
be several incorrect values of dewpoint within the 69 
mile radius from the target station, including dewpoints 
of -50.54 °C, 7.2 °C, and 18.34 °C. The dewpoint value 
of -7.5 °C for the target station at the center of the 
neighborhood also seems likely to be incorrect given 
that it is about 10 °C higher than the reasonable 
surrounding values, but it is less obvious than some of 

Median of neighbors 

Target observation 

Inter-quartile range: the 
difference between the .25 and 
.75 percentiles of the neighbors. 
The coefficient 0.7413 makes 
the IQR an unbiased estimate of 
the true standard deviation, σ. 



the others. The relative humidity value reported at the 
target station is 95%, much higher than the surrounding 
areas, further suggesting that the target dewpoint value 
is an error. The IQR algorithm flags the target value. In 
other words, it is robust, even to several bad neighbors 
in this small sample.  
 
 

 
Figure 4: Map showing dewpoint temperatures for 
an example case over Kansas. 

 

4.2 Statistical results for Iowa air temperature in 
2008 

The quality control outcomes for air temperature 
observations in Iowa for the entire year of 2008 were 
computed. The “truth” in these cases is not known. 
However, analysis of the proposed algorithm gives a 
good sense of whether it is performing in a reasonable 
way. If the algorithm flags a large percentage of values 
or none at all, then it is clearly not useful.  

 
Iowa has no coasts or mountains to complicate 

spatial testing. Also, the RWIS stations are distributed 
uniformly over state. Temperature is measured at all 
stations. Compared to many other measurements, 
temperature has statistical properties making it ideal for 
spatial testing. It has a roughly symmetric, continuous, 
Gaussian distribution and it is spatially coherent.  

 
Overall, the IQR algorithm flagged about 4% of all 
temperature observations and passed nearly 92%. The 
algorithm was unable to be run in about 4% of cases, 
probably due to an insufficient number of neighboring 
observations. The proportion of observations flagged is 
both reasonable and close to the expected value of five 
percent.  
 

5 CONCLUSIONS AND FUTURE WORK 
In the great majority of cases, the proposed robust 

algorithm performs identically to traditional algorithms. 
However, the robust algorithm does appear to perform 
better in cases with bad neighboring measurements. A 
limitation of this algorithm is that it can only be run for 
stations with at least five neighbors. 

  
The algorithm was developed and tested on a 

subset of the variables that currently have spatial 
testing. The behavior of the spatial quality control 
algorithm on other measurements needs to be 
examined. Further, spatial testing may not perform well 
on some of the included variable types. Prior to 
operational implementation, a more comprehensive test 
of this algorithm will be conducted.  
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