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1. Introduction

Staggered PRT (pulse repetition) is a popular tech-
nique to mitigate the range-velocity dilemma of
weather radars. The unambiguous range is based
on the longer PRT while the largest time interval
that divides evenly the two PRTS gives the unam-
biguous velocity (Zrnić and Mahapatra 1985). The
major limitation of the staggered PRT technique has
been clutter filtering. Since the time-series for a res-
olution volume is not equi-spaced, traditional filter-
ing techniques such as time domain IIR (infinite im-
pulse response) filtering or spectral domain filtering
(based on the Discrete Fourier Transform (DFT)) are
not immediately applicable. Recently Sachidananda
and Zrnić (2000; 2002) introduced a staggered PRT
clutter filtering algorithm based on the interpolation
of the time-series to equi-spaced samples. This is
done by interleaving zeros into the time-series to
create equi-spaced time-series. The interpolated
time-series is then transformed with a DFT. The re-
sulting spectrum contains 5 replicas of the intrin-
sic underlying spectrum. Fairly complicated matrix
mathematics is used to filter the spectra and esti-
mate the power, mean velocity, and spectrum width.

In this paper we discuss a novel technique in
which the time-series is separated into two equi-
spaced time-series and then a spectral notch clutter
filter can be employed. The two filtered sequences
are then recombined to once again create a stag-
gered PRT sequence. The velocity and power can
then be calculated in standard fashion. Another sim-
ilar technique based on regression filtering (Torres

and Zrnić 1999) is also proposed.

2. Alternative SPRT Clutter Filtering
Techniques

A typical staggered PRT sequence is shown in Fig.
1. Sequence (A) is the staggered PRT sequence
with the two staggers periods T1 and T2; in this
paper, the 2/3 stagger is assumed, which means
that T1 = 2T2/3. Denote the time-series samples
s1, s2, . . . , sM (where M is the total number of sam-
ples). Two sequences are created by taking alter-
nate samples and separating them as indicated by
the red and blue lines and the even and odd sam-
ples. The resulting two sequences have have a pe-
riod of T1 + T2. These equi-spaced sequences can
then be filtered in the time domain or the frequency
domain. If they are filtered in the frequency domain,
the sequences are subsequently transformed using
an inverse DFT. The resulting time-seres are then
interleaved to produce the filtered staggered PRT
sequence corresponding to Fig. 1A.

It is instructive to compare the Sachidananda
and Zrnic (2002) technique (SACHI) and the sim-
plified staggered PRT technique (SSPRT) via a nu-
merical example. Let T1 = 785 µs and T2 = 1177
µs so that T1 + T2 = 1962 µs. The SACHI zero-
interpolated sequence has a period Tu = 393 µs.
Therefore, the unambiguous velocity for SACHI is
67 m s−1 while the unambiguous velocity for SSPRT
sequence, based on period of 1962 µs, is 13 ms−1.
The SACHI technique creates 5 “replicas” (phase
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and amplitude modulated) of the true clutter sig-
nal spectrum equi-spaced over the entire unambigu-
ous velocity range of 134 ms−1. Thus the spectrum
replicas are separated 27 ms−1 intervals. The per-
formance of the SACHI clutter filter degrades when
there is weather located at these 27 ms−1 intervals
(i.e., weather can be eliminated by the clutter filter
causing biased velocity and reflectivity estimates).
For SSPRT, if weather signal is located close to 0
ms−1, this weather signal can also be attenuated
causing biased estimates. Since the unambiguous
velocity is 13 ms−1, weather with 27k ms−1, where
k is an integer, will “wrap back” to 0 ms−1 and thus
these weather signals can also be attenuated by the
clutter filter. Therefore, both SACHI and SSPRT can
suffer performance degradation when weather has
velocity close to 27k ms−1 (depending on the width
of the clutter filter).

Figures 2-5 show various spectral representa-
tions for a simulated weather and overlaid clutter
case. The original spectra sampled at 393 µs with
160 samples is shown in figure 2. This can be
thought of as the spectrum that the staggered PRT
techniques are trying to recover. In figure 3, the
spectra from the SACHI technique is shown (i.e. the
original time-series is down-sampled using SPRT,
the missing values are then “interpolated” back in
with 0’s, and then the spectrum is calculated). With
the SSPRT technique, the SPRT time-series was
separated into even and odd time-series, and the
spectra are calculated. The resulting spectra are
shown in figure 4, zoomed into the 13 ms−1 Nyquist
interval, and in figure 5, shown on the extended
Nyquist interval like figures 2 and 3.

3. Algorithms

a. SSPRT

The SSPRT method works as follows. The time-
series is separated into even and odd time-series
(each with PRT T1 + T2). The time-series are win-
dowed using von Hann window function, and the
FFT is computed. To filter the clutter, we used Gaus-
sian Model Adaptive Processing (GMAP) clutter fil-
ter (Siggia and R. Passarelli 2004). If GMAP de-
termines that clutter exists, then GMAP not only at-
tempts to remove the clutter power, it also attempts
to reconstruct the weather by assuming a Gaussian
shape. However, care must be taken for staggered
PRT data because it is necessary to also recon-
struct the phases as well. Or more precisely the
difference between the phases of the two complex

spectra, since this contains important information.
Before GMAP is applied, using the phase angle be-
tween the complex spectra at a spectral bin as well
as the velocity value at that bin, a determination can
be made as to which of the 5 intervals the data in
that bin likely came from. There is some noise in
the estimate so a de-speckle type filter is applied to
fix isolated misclassifications. Continuing the simu-
lated clutter and weather case above, figure 6 shows
the interval determination for the spectra in figure
4. In theory, the spectrum can then be de-aliased,
which is shown in figure 7. GMAP could then be
applied and the moments could then be calculated.

Alternatively, GMAP can be applied to each
spectrum (even and odd), and then the interval de-
termination (made before applying GMAP) can be
used to assign the phases between the complex
spectra for the bins that GMAP modified. An in-
verse FFT is then applied to each spectrum, and
the time-series are “zippered” back together. The
power, mean velocity and spectrum width can then
be calculated using the standard techniques (Zrnić
and Mahapatra 1985; Sachidananda et al. 1999;
Torres et al. 2004).

b. Regression Filter

Another approach which has some significant
promise is to use a regression filter as described
by Torres and Zrnić (1999), instead of GMAP. Be-
cause the regression filter is a time-domain filter, a
few details change. A least-squares polynomial fit is
subtracted from the time-series data (real and imag-
inary parts are treated separately). This is a time-
domain high-pass filter. Spectral reconstruction can
then be performed. To do this the time-series can
again be split into even and odd time-series and the
spectra calculated for each. An advantage of the re-
gression filter is that it effectively removes, or at least
reduces, the need to use a window function when
calculating the spectra. For the spectral reconstruc-
tion, the 3 or 5 points centered at 0 velocity can be
linearly interpolated over. Something more complex
like what is done in GMAP could also be done. The
phases and then finally spectral moments are com-
puted as in SSPRT.

The even and odd spectra from the same ex-
ample after the regression filter (order 5 polyno-
mial) has been applied is shown in figure 8. This
is analagous to 4 except that the filter has already
been applied. The interval determination is shown
in figure b, and the de-aliased spectrum is shown in
figure 9. Again, the moments could then be calcu-
lated on this de-aliased spectrum.
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Figure 1: (A) A staggered PRT sequence. (B) and (C) show two equi-spaced sequences consisting of the even and
odd samples of (A).

Figure 2: Spectrum of a simulated weather and clutter echo. The simulation parameters are λ = 10.5 cm, PRT of 393
µs, 160 samples, 20 dB SNR.

Figure 3: SACHI Spectrum of a simulated weather and clutter echo. The simulation parameters are λ = 10.5 cm,
T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR.
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Figure 4: SSPRT Spectra (even and odd) of a simulated weather and clutter echo. The simulation parameters are
λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR.

Figure 5: SSPRT Spectra (even and odd) of a simulated weather and clutter echo on the extended Nyquist interval.
The simulation parameters are λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR.

Figure 6: SSPRT interval determination of a simulated weather and clutter echo shown in figure 4. The simulation
parameters are λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR.
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Figure 7: SSPRT de-aliased spectrum of a simulated weather and clutter echo shown in figure 4. The simulation
parameters are λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR.

Alternatively, the interval determination can be
used to assign the phases between the complex
spectra for the bins that the regression filter modi-
fied. An inverse FFT is then applied to each spec-
trum, and the time-series are “zippered” back to-
gether. The power, mean velocity and spectrum
width can then be calculated using the standard
techniques

4. Conclusions

The SSPRT and regression filtering techniques are
promising clutter filtering techniques in at least
some scenarios. It has the advantage that it is quite
simple to understand, building from more standard
techniques than does SACHI. A detailed study of the
scenarios in which these techniques are better than
SACHI, and vice versa, needs to be performed.
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Figure 8: SSPRT Regression Spectra (even and odd), with no window used, of a simulated weather and clutter echo.
The simulation parameters are λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR. The polynomial
order used was 5.

SSPRT Regression interval determination of a simulated weather and clutter echo. The simulation parameters are
λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR. The polynomial order used was 5.

Figure 9: SSPRT de-aliased regression Spectra (even and odd), with no window used, of a simulated weather and
clutter echo. The simulation parameters are λ = 10.5 cm, T1 = 785 µs, 64 staggered PRT samples, 20 dB SNR. The
polynomial order used was 5.


