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INTRODUCTION
Air quality problems produced by high levels of ozone affect human health and are related to respiratory
problems. Ozone is a reactive gas and presents concentrations which are dependent both from the
meteorological conditions and seasonal effects. The time forecasting of Ozone levels is very complicated to
obtain as described in different studies [2] [5]. For Ozone models the most difficult problems to deal with are
the simulation of chemical reactions that occur in atmosphere, the contribution due to long range transport
and the turbulence conditions [3]. Among the complex systems, an important tool in order to forecast air
pollution data is the neural network (NN) [8] that can be used in assessing the non linear dynamics of such
systems.
Another tool we used to forecast ozone is the support vector machine (SVM).
Both models (NN and SVM) have been used to forecast ozone using data at different temporal lags, and
utilizing different input during training phase.

1. DATASET DESCRIPTION AND METHODOLOGY

In our work, NN and SVM methods have been developed to forecast hourly ozone levels using data from

one to ten days in advance (T1-T10). We have analyzed data recorded by monitoring stations for the city of
Rome for the calendar year 2005.

The objective of our work concerns the study of various benefits when considering in addition to conventional
variables some exogenous variables as inputs for the NN and the SVM models. The role of exogenous
variables is to optimize the convergence of mathematical models and to reproduce the ozone at different
temporal lags.

As a consequence, as input variables we considered two sets of simulations, the first using only conventional
data as pollutants and meteorological measurements (Conventional Data Set - CDS), and the second
including some external data (e.g. time of the day, Julian day, day of the week, month of the year) in addition
to the other conventional variables (Extended Data Set - EDS).

The data used in our simulations came from the monitoring stations of the ARPA LAZIO (Regional Agency
for Environmental Protection in Lazio) network in the urban centre of Rome (Largo Magna Grecia), which
recorded hourly data throughout the calendar year 2005.

The conventional variables (CDS) used for the simulations are:

1.monitored pollutants variables:
e Carbon monoxide (mg/m3) -CO
* Nitrogen oxide (pg/ms) —NO
+ Nitrogen dioxide (ug/m® — NO,
« Ozone (ug/m®) — O; — (Input/Output variable)

2.meteorological variables:
e Temperature (CY)-T
+  Global Solar Radiation (W/m? — GSR
* Relative Humidity (%) — RH
* Pressure (mbar) — P

The additional external variables (EDS) used for the second simulation set (e.g. time of the day) take into
account seasonal effects and periodical turbulence conditions, and are to be considered as exogenous
variables.
The inclusion of these variables:

a) takes account of hourly and seasonal average conditions

b) takes into consideration a simple periodic mathematical formulation as well as the trend of

conventional variables
c) assists the conventional variables during the training of NN and SVM
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1.1 Statistical considerations on input variables

Before carrying out the simulations using Neural Networks and SVM, we performed basic statistical analysis
to examine in more detail the characteristics of pollution and meteorological input variables. We calculated
the correlation matrix of the dataset at our disposal in order to assess the relationships between physical

guantities.

Table 1 Correlation matrix

CO-mg'n? NO-ug'n?® NOZ-ug'm® O3-pg'm® TMed-C" URMed-% PresslMed-mbar RadSolWim*
CO-mgfm® 1.00
M O-pogdm® 0.83 1.00
MO2-pgim® 0.76 0.65 1.00
03-pgdrr® 045 .48 .52 1.00
Trded-C* 0.27 0.34 0.25 0.53 1.00
URMed-% 0.14 012 o 0.52 0.33 1.00
Fresshed-mbar 0.24 0.26 0.25 0.19 0.0 -0.04 1.00
Radsal-yWim? 0.1 0.15 -0.19 0.49 0.53 -0.54 -0.02 1.00

By a preliminary analysis of the correlation matrix it can be seen that ozone in absolute value is correlated
with other quantities at equal values (= 0.50), except for the mean pressure, which has a much lower level.

The values in Table 1 indicate specifically a positive correlation of ozone with the average temperature and
solar radiation, and a negative correlation between ozone and the remaining quantities.
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Figure 1 Typical week for the pollution variables

Figure 1 shows the levels of mean pollutants expressed in pg/m® (CO in mg/m®) at different times during
different day of week.

These trends represent a typical week for each pollutant. From the figure we can see a different trend by
type of pollutant, i.e. whether it is a primary pollutant (CO, NO) or secondary (Os).

For primary pollutants type, we may notice an increase in the levels at the hours when there is a peak of the
emission, i.e. the time slot in the morning (7- 9) during which the contribution is tied to the traffic source.

We can also see from the figure that the trends for the primary pollutants that have lower levels correspond
to Saturday and Sunday, where typically there are less traffic sources.

Ozone (0O,) instead is a pollutant that is not produced by man and his activities, and has to be considered a
secondary pure.

Its presence is linked to the reactivity of the atmosphere. It is a marker of photochemical activity.

Its background levels are high in unpolluted atmospheres, and are low in those polluted.
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This is mainly due to the reactivity with nitrogen oxides (NO, NO,) and the OH radicals produced by pollution,
leading to lower concentrations due to the photochemical activity (at high temperatures and sunlight, typical
of the Mediterranean climate).

From Figure 1 it can be observed that its concentration level decreases in correspondence of the peaks of
the oxides of nitrogen, namely in the morning time, it increases during the hours of highest insolation in
which is lower the emission-related component of these oxides and again it changes during evening hours
where there is a new increase of the traffic source.

Table 2 shows the corresponding values of the pollutants that confirm what has previously been observed in
the Figure 1.

Table 2 Typical week: pg/m® of O3, NO, NO, (average), mg/m? of CO (average)

Average 03p9/m* _|Time |

Day 0 1 2 3 4 a B 7 g 9 m N 120 13 14 15 18 17 18 19 20 21 2 23
MON 2493 2932 2903 2754 27 94 26684 1765 12.08 1268 1636 2016 25.53 40.04 50.35 57.33 BOBS 6129 54 63 5057 44.00 35.44 29.92 2522 26.593
TUE 2668 21.60 2363 24.39 2518 22561716 11.30) 11.44 1414 1915 26.98 3576 46.92/54.43 57.83 56.18 53.59 47,50 41.79 35.80 30.19 29.31 25.64
WED 2262 2429 2706 2716 27 26 28.07 2075 /13,72 1262 1671 2226 31.45 41.11/51.06 57.86 B2.59 £9.22 6515 4518 41.61 34.73 26.43 26.44 24 45
THU 2204 2044 2282 2415 2526 245831753/ 12.33) 1218 1688 21596 28.65 37 .44 47 43 5546 59.09 57 .02 5333 47 62 41.32 3374 26.681 2566 25.04
FRI 25451977 18.80 18.98 12.16 18.83/14.54 11.03| 11.36 1413 21.18 28.31/35.13 43.65 5575 BO.09 59.21 55.16 50.17 4465 38.47 31.55 2876 27 6B
SAT 3016 2210 22.02 21.04 20,07 2074 19.41 /1573 14.84 1826 25612 34.54 44.93 53.37 56.09 B4.44 b5 .45 62.83 5516 52.26 44.82 38.13 35.62 34.60
SUN 3202 26,56 2763 27.00 26.47 27 32 2363 21.31 2147 2799 3529 4265 51.73 B0.35 B6.37 BE.50 6615 61.16 55,13 49.22 41.97 3566 34.08 32.06

Average CO-mg/m?°® [Time |

Day 1] 1 2 3 4 5 B 7 g 9 m n 120 13 14 15 16 17 18 19 200 2 223
MON 125 113 094 076 067 064 077 115 164 219 1.90 146 1.20 1.09 093 080 0597 103 1.24 1458 165 167 152 138
TUE 114 118 097 077 067 066 0768 121 1.83 230 206 156 135 1.26 121 108 111 115 138 153 162 159 137 1.20
WED 136 107 0924 081 068 062 072 113 168 209 197 145 125 113 105 084 099 113 132 149 164 175 180 1.37
THU 141 1200 1.04 088 071 064 075 114 175 215 1.95 143 127 114 105 085 1.00 112 135 163 192 193 175 150
FRI 130 1300 113 087 082 074 083 118 183 238 212 1685 134 1.27 119 102 1.07 115 1.40 150 162 1.79 152 1.34
SAT 124 127 147 107 093 083 081 029 121 130 132 1.26 113 112 110 053 084 091 109 116 1.27 135 117 1.1
SUN 112 1.24 118 112 1.00 092 0683 087 0597 102 1.08 1.03 093 090 081 072 073 081 097 110 1.22 141 130 1.21

Average NOjig/m® [Time |

Day 1] 1 2 3 4 ] 8 7 g 9 m n 120 13 14 15 168 17 1§ 18 200 A 2 23
MON G485 40.94 28.98 2250 20.88 1919 41.90 81.57 107.02 106.75 88.57 59.35 47.665 33.20 29.47 29.03 30.27 3232 41.67 52.82 B3.55 B8.55 72.12 62.71
TUE 4681 B1.03 46.34 32,91 29.92 26.93 46.05 93.83 129.63 126.75 104.16 B0.08 62.06 51.43 4219 38.61 39.84 35.59 43.87 52.46 53.61 59.35 55.16 50.92
WED 7160 4360 33.77 28.43 24.17 19.91 38,54 §2.03 113.06 11060 95.94 51.99 53.00 54.42/33.19 29.90 35.00 43.43 4964 5574 G370 70.42 77.42 70.34
THU G577 5467 4455 36.46 31.05 2564 4378 82.50 122,46 11213 91.89 5356/ 55.88 43.34 36.01 33.51 36.96 4068 50.03 59.63 77.54 B2.92 8982 76.60
FRI 60.35 B1.88 50.52 40,92 35.18 31.11/54.13 90.30 129.19 137.60 113.28 B4.58 60.97 50.79)39.80 35.86 36.46 39.56 49.84 57.08 63.57 78.77 72.88 61.55
SAT 47 45 55,46 47.93 40,21 34.95 2971/ 41.685 5875 7902 7142 5737 47.66/30.18 33.0231.96 29.39 2263 2466 34.41 37.01 4360 49.41 4276 37.16
SUN 3851 48,96 43.46 38.43 33.37 2819 30.60 36.21 4339 4042 34.03 31.62 25,53 22.74 19.90 18.35 19.40 2232 29.60 36.08 4226 £3.31 5523 46.48

Average NO21g9/m® [Time |

Day 0 1 2 3 4 a B 7 g 9 m " 120 13 14 15 18 17 18 19 20 2 2 23
MON 7H43 61.22 54.084 4573 44.25 4277 55,30 69.58) 7812 84.01 84.06 78.72 70.38 66.47 B0.89 50.60 61.3167.25 72,56 78.40 85.07 050.23 0446 78.23
TUE B3.87 70.71 B0.44 60.26 43.90 47.64 54.97 71.85 ©3.60 57 92 B7.34 6328 76.83 75.78 B9.09 B5.14 BB.53 B5.45 7286 79.18 81.67 84.74 79.79 7276
WED 7516 BE.99 6726 5227 47 .82 43.37 53.97 69.37 7990 8363 86.00 74.47 70.20 B2.26 59.10 55.14 58.16 63.75 7065 76.52 §53.60 §7.99 83.96 77.50
THU 7654 70,43 62.04 56.03 51.92 47815566 69.35 81.29 8435 §1.40 77.06 75.05 B9.31 63.01 59.05 63.59 65.18 75,18 81.19 8212/ 93.34 63.00 79.50
FRI 7248 7224 B6.03 66.91 5546 £1.63 58.25 B8.08| 7/8.76 BH48 8556 7996 74.05 72.05 B6.50 B2.47 B4bB6 6733 7301 78.61 8202 &7.49 8263 75.88
SAT 67 40 70.89 B5.656 60.09 55.94 5179 54.37 61.63 67.75 6563 66.01 6206 55.81 57.79 57.75 51.56 5065 55.09 61.02 6539 70.96 76.24 7273 B6.53
SUN 6400 G816 6218 59.64 54.21 4973 50.35 52.73 5540 5314 50.21 4910 48.67 47.77 4373 39.681 4363 458.19 5576 62.13 BB.15 74.19 7263 65.60

Figure 2 shows the values of measured variables in according to time of day and month of the year. Time of
the day usually is linked to the main turbulence conditions related to solar elevation, geographical positions,
and seasonal effects and so on.

Synthesizing, each hour can be strictly connected with turbulence distributions that are typical of each site.
The hour of the day and the month have to be considered as exogenous variables and they allow to increase
the performance of neural networks and support vector machines during training, as allow to discriminate
different situations for the meteorological and pollutants linked to seasonally and hourly variations.

In Figure 2 are evident the effects of these situations, that happen when high gradient of the variables
appear on the maps. The maps suggests us how to optimize the NN and SVM models by an additional
information respect to the conventional variables.

We could observe that the exogenous variable "time of the day" induces a discriminating level stronger in the
daytime than at night.
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Figure 2 Surface maps

All variables that are constant in the map are not discriminating variables.

Among all, the variable whose map varies more is the ozone that has an absolute maximum of about 90
pg/m? for the summer months from 14 p.m. to 16 p.m.

For the same hours, it can instead be observed the minimum contributions of NO,, which are evidently
connected with the photochemical origin of the ozone itself, also evidenced by the absolute maximum
temperature and solar radiation.

CO map shows instead some minima at the same hours during the summer months, which indicates its
primary nature and the influence of turbulence on the levels of pollution.

Primary pollutants roughly have a limited variability, while for ozone is observed a marked seasonality in the
data.

In short we can say that from the observation of these maps, the exogenous variables are very important to
relate ozone with seasons and turbulence conditions during typical day.

In particular we can see from maps that the time of the day has a greater intrinsic variability than monthly
(tied to the seasons).

This consideration justifies in the present work, taking time of the day as the main and only external variable
to be considered in the simulations.

The above allows us to say that this variable may be very important to improve the performance of our
nonlinear models.
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1.2 Fundamentals considerations on the use of NN and SVM

The Multi Layer Perceptron (MLP) is the most commonly used neural network in the field of air quality
prediction [4]. Figure 3 shows schematically a typical MLP network where O3 (T) is the variable to predict at
time T, while | (T-dy. 10), M (T-d1. 10), Ex (T-d1. 10) and Oz (T-d;. 10) are the input variables to the network, from
1 to 10 days before.

It may lead to different results in accordance with the choice of activation function and number of neurons of
hidden layer. As activation function we use the standard sigmoid.

A different choice for the activation function could improve the network performance, but given the
complexity of our task, we focused essentially on patterns and variables of the net rather than on the
algorithm optimization itself.

We trained the network with 5, 10, 15, 20, 25 and 30 neurons for hidden layer, and finally we chose 20 that
gives the best performances in terms of minimizing the error function and computational efficiency.

INPUT LAYER HIODEN LAYER COUTPUT LAYER
I(T-dy_1n)
(DA T Jitarget )
I T-d1 10)
Ex(T-d1 10
Co(T-ch o)

“~°' Pt R J
dams I/H GBms H/O

Figure 3 MLP architecturefor Ozoneforecasting

We presented here the results obtained using a classical architecture for a neural network consisting of a
single MLP with one hidden layer of 20 neurons and an output layer with 1 neuron.

For all sets of simulations we used a 3-Layer Perceptron model, which is considered capable of
approximating any measurable function [1]. The first layer contains the input variables of the neural network
related to all relevant physical parameters, as well as the exogenous variable in the case of the second set.
The second layer consists of neurons of the hidden layer. The third layer is the output layer, which consists
of the target variable to be reproduced, i.e. the hourly Ozone concentration.

The NN parameters were obtained by a training procedure based on the use of an efficient unconstrained
minimization algorithm.

Table 3 Algorithmsfor training neural networks

Training Algorithms Epochs |Learning Rate Transfer Function
Hidden Layer |Output Layer

Gradient Descent Backpropagation 20000 0.05 Sigmoid Linear

Scaled Conjugate Gradient Backpropagation 1500 - Sigmoid Linear

[ evenberg-Marguardt Backpropagation 500 — Sigmoid Linear
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For training the network we used 60% of the original data for each simulation, leaving 40% as the testing
phase, to evaluate the performance of generalization of the model.

As confirmed by the literature, this partition is balanced enough to ensure good performance in
generalization.

In general, the task of NN training is to find the optimum weights of the NN by means of input/output pattern
presentation, thus enabling the Neural Network to simulate chemical reactions and turbulence dispersion of
the Ozone levels.

Support vector machines (SVM) are a set of related supervised learning methods used for classification and
regression [7]. Viewing input data as two sets of vectors in an n-dimensional space, an SVM will
construct a separating hyper plane in that space, one which maximizes the margin between the two dataset.
To calculate the margin, two parallel hyper planes are constructed, one on each side of the separating hyper
plane, which are “pushed up against” the two datasets.

Intuitively, a good separation is achieved by the hyper plane that has the largest distance to the neighbouring
data points of both classes, since in general the larger the margin the lower the generalization error of the
classifier.

We compared the results of NN and SVM for the ozone concentrations, considering the CDS and the EDS
separately.

x;@ i/I:Iarg“.iu

Figure 4 Linear separating hyper planesfor the separable case. The support vectorsarecircled

2. RESULTS AND CONCLUSIONS

Aim of the work is to demonstrate that exogenous variables may improve the NN and SVM models when
they are added to the conventional input variables.
To show this, we must distinguish the contribution due to the model, from that due to the variables. For this
purpose, we show the performances considering, other than NN and SVM, the conventional statistical model
(Multi Regression Model - MR). All models (MR, NN, SVM) are trained with identical data set at different
temporal lags. So doing, results can be compared and we can evaluate the contribution both of each models
category and input variables choice.
We considered four different types of simulations, two relating to the CDS and two to the EDS.
Simulations on the CDS are:

» 1+M, where the variables taken into account are all the meteorological variables and air pollutants

except ozone (Background Simulation - BS)
» |+M+03 that includes also the Ozone variable besides the variables of the BS

Simulations on the EDS are:
» |+M+EX, where the variables used for training neural networks and SVM are identical to 1+M with the
addition of one or more exogenous variables (time of day, day of week, Julian day, month of year).
Here we focused our attention on the influence of daily cycle on ozone and so we show results
adopting only time of the day as exogenous input.
» |+M+O3+EXx, which, in addition to having as inputs all the variables of the simulation above, also has
the Ozone variable as input.
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For all four types of simulations, the inputs were considered at different time lags from 1 to 10 days in
advance. For each simulation set, and for each temporal lag within the simulation set, we calculated the
coefficient of determination R2, the bias and the Mean Absolute Error (MAE) for the target ozone levels.
While R2 is a dimensionless parameter, the bias and MAE are given in pg /m>. Bias is related to the ozone
background reproduced by different models and the optimum value could be zero. MAE index, expresses the
averaged absolute error between measured and modelled ozone. If average error is zero, this means that all
ozone levels are well reproduced in average. Bias and MAE are related to different meanings. While the bias
concerns the bad behaviour of models to reproduce the background, MAE is related to the systematic error
on the mean values [6].

Our work was the result of about 150 simulations, where each one is composed of a training phase and a
testing phase.

In the Table 4 results coming from the final simulations (120) are given.

In general the results showed that SVM and NN performed better than MR.

We calculated the various performances indices for the target ozone using the conventional statistical
regression model (MR), the MLP and the SVM for the CDS and EDS where the additional exogenous
variable was the time of the day.

Table 4 R? Biasand MAE for different smulations

R? 1+M 1+M+Ex 1+M+03 1+M+03+Ex
MR MM S R MM S MR MM S MR MM STl
T1 0.44 0.62 0.63 0.53 0.69 0.70 0.67 0.71 0.72 0.67 0.74 0.74
T2 038 0.568 0.89 0.45 0.64 0.E6 0.55 0.62 0.64 0.56 0658 070
13 033 0.53 0.54 0.46 0.57 063 0.50 0.56 0.61 052 0.64 0.66
T4 0.358 0.53 0.55 0.45 0.60 0.64 0.50 0.57 0.60 0.51 0.64 0.66
T3 039 0.54 0.56 0.47 0.62 0E3 0.50 0.58 .89 052 0.66 065
T6 0.358 0.54 0.558 0.46 0.62 0.E5 0.43 0.61 0.63 0.51 0.64 0.66
7 0.37 0.54 0.57 0.46 0.62 0.64 0.45 0.59 0.62 052 0.64 0.66
T8 0.36 0.52 0.56 0.43 0.61 0.E5 0.45 0.57 0.61 0.48 0.64 0.65
1k 0.34 0.52 0.54 0.44 0.63 064 0.45 0.54 0.60 0.43 0.65 0.65
T10 0.34 0.50 0.52 0.41 0.60 0.64 0.44 0.54 0.61 0.46 0.62 0.65
Bias 1+M 1+M+Ex 1+M+03 1+M+03+Ex
{ug/m’) MR NN S R NI S MR NN SV MR MM Sl
T 19.43 12.05 9.56 16.55 10.10 791 11.81 8.89 6.94 11.60 8.12 6.83
T2 20.43 13.26 10.72 17.83 10.62 9.03 14.40 11.34 9.31 14.18 972 §.20
T3 20.52 14.30 11.56 17.71 11.44 9.96 158.76 12.48 10.01 15.23 10.18 §.08
T4 20.Mm 14.02 11.58 17.45 11.76 3.94 16.02 13.04 1017 15.44 10.65 g.10
5 21.25 15817 11.28 18.79 1213 9.87 17.683 13.86 10.14 17.23 11.00 §.80
T6 21.40 14.97 11.08 15.34 11.47 9.47 1717 12.46 9.07 16.35 10.65 §.99
1ri 21.77 15.02 11.29 15.92 11.92 932 17.57 13.25 9.75 16.88 117 g.93
8 21.72 15.42 11.82 19.01 12.95 8.91 18.09 13.80 9.15 17.41 11.45 9.53
T 22.23 16.21 11.789 19.23 12.43 9.1 18.50 14.76 10.45 17.64 11.76 9.56
T10 22.23 15.20 12,12 19.62 11.69 3.46 15.69 13.60 9.93 18.33 11.05 9.25
MAE 1+M 1+M+Ex 1+M+03 1+M+03+Ex
{ng/m®) MR MM S MR MM S MR MM S MR M Sl
T 17.10 13.52 12.55 15.58 12.42 11.63 12.55 11.81 11.26 1247 11.30 10.93
T2 17.74 14.53 13.47 16.64 13.18 12.55 14.51 13.34 12.43 14.56 12.25 11.37
13 17.47 14.93 14.36 168.36 14.28 13.07 15.08 14.26 13.17 15.00 13.08 12.21
T4 17.91 15.22 13.99 16.92 14.04 12.89 15.74 14.52 13.34 15.66 13.28 12.24
5 17.90 15.25 14.18 16.78 13.680 13.14 15.69 14.51 13.22 15.67 13.15 12.63
T6 17.95 1547 14.25 168.78 13.82 12.87 15.93 14.10 13.22 1576 13.40 12.41
7 18.21 15.43 14.19 16.64 13.85 1270 15.94 14.32 13.31 15.69 13.78 12.36
T8 15.48 15.60 14.42 17.42 14.15 12.81 16.458 14.68 13.43 16.27 13.50 1270
™ 19.00 15873 14.52 17 .62 13.96 13.04 16.95 18.07 13.57 16.58 13.53 1275
T10 15.43 15.77 15.05 17.43 13.90 12.96 16.72 15.00 13.76 16.458 13.58 12.83

As highlighted by the table, NN and SVM perform better (R2 from 0.50 to 0.74) than the classic statistical
linear regression model (R2 from 0.34 to 0.67). These results confirm that non linear models (NN and SVM)
perform better respect to the linear ones (MR).

The most interesting results concern the NN and SVM performances when we add the exogenous variables
to the conventional dataset, as we can see from the increasing of the R2 values.

For that regards the bias, the NN models don’t decrease so much when we consider exogenous variables. In
fact, we have 14.56 |.|g/m3 at 1+M simulations up to 10.57 |.|g/m3 at 1+M+0O3+Ex. The SVM works better
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respect to the NN. We calculate for the average ozone background 11.29 pg/m® at I+M, and 8.63 ug/m? at
I+M+O3+Ex simulations. Bias calculated by MR models presents always greater values respect to the NN
and SVM models.

For that regards the value of MAE, we find a similar behaviour obtained with bias coefficient. It has to be
observed that the ozone error levels are lower respect to the bias ones for the I+M simulations, and greater
when we consider [+M+03+Ex using NN and SVM.

In general, we see that the best performances in terms of R?, bias and MAE are obtained obviously for
simulations lag T1. It is noted, however, a clear distinction of individual performance curves according to the
models used and the inputs used in the models.

Using R® as index, we may notice in fact that the external variable (Ex) offers a contribution in the
performance of the multiple regression model (MR) of about 20%, while we note an increase of the
performance of neural networks (NN) and SVM with its introduction of about 12% and 13% respectively.
However, it is worth noting that the initial average of R is 0.38, 0.54 and 0.56 for MR, NN and SVM
respectively, and therefore the best performances are still related to the NN and SVM with a slight majority of
the latter.

For the MR model, the variable that shows a significant improvement compared to the background
simulation (I+M) is ozone (Os), with an increase of about 34 % against an increase of about 9.9% for the
other two models (NN - SVM).

Evidence of the importance of the association between ozone and external variable is highlighted by the last
simulation in the Table 4 (I+M+0s+EXx), in which all inputs are considered.

Compared to BS, it can be observed that the MR model increases by about 40% compared to an increase of
21% and 19% for NN and SVM respectively, keeping a sharp improvement in the final R? of the latter (0.74)
against the MR model (0.67).

This simulation shows that is the combination of the two variables that provides significant performance
improvement for artificial intelligence (Al) models compared to classical statistical models.

So the neural network models and support vector machines provide still better performance values.
Regarding all these classes of models, SVM seems to have slightly higher performance than the neural
networks for the value of the bias and MAE. The values of the coefficient of determination are very close but
with a slight majority in this case for the NN.

Both these models are sensitive to the introduction of both exogenous (Ex) and Oz variables, and observing
the values in the table we see that while the introduction of ozone variable for training helps to improve the
shorter time lags (1 days), the exogenous variable contributes to an improvement in the forecast for longer
time lags (3-5 days).

In conclusion we can say that the Al models still provide performances superior to those of statistical models,
although the latter exhibit the best gains with the addition of ozone and external variables.

For both Al models we can say that they are equivalent with a slight majority for the neural network models
against the SVM according to the performance indicators used.

Finally, our work suggests that using the exogenous variables as input significantly improved the results of
simulations and suggested a way of optimizing the environmental simulation using NN and SVM models
approach.
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