

Developing a reliable predictor of lightning initiation and cessation through radar analysis

Greg Seroka (gns5000@tamu.edu) and Richard Orville (rorville@tamu.edu), Department of Atmospheric Sciences, Texas A&M University

I. Project Overview

- Purpose: to develop a reliable tool for the forecasting of lightning initiation and cessation in thunderstorms through the use of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity data
- · Several previous studies have examined lightning forecasting with radar reflectivity (Table 1), but limited by various reasons:
- Number of locations
- Number of cells
- · Cloud-to-ground (CG) flashes only
- Lightning initiation only

Study	Num. of Cells	Location	Criteria		POD	FAR	CSI	Lead Time
			Reflectivity	Isotherm				
Buechler and Goodman								
(1990)	20	FL, AL, NM	40 dBZ	-10	1.00	0.20	0.80	4-33 minutes
Michimoto (1991)		Japan	30 dBZ	-20				5 minutes
Hondl and Eilts (1994)	23	FL	10 dBZ	-10	1.00	0.18	0.82	15 minutes
Gremillion and Orville (1999)	39	FL	40 dBZ*	-10	0.84	0.07	0.79	7.5 minutes
			25 dBZ	-15	0.84	0.24	0.67	14.8 minutes
Vincent et al (2003)	50	NC	35 dBZ	-10	1.00	0.41	0.59	17.5 minutes
			40 dBZ	-15	0.86	0.31	0.63	11.0 minutes
Wolf (2006)	1,100	FL, GA	40 dBZ	U-10**	0.96	0.11	0.86	n/a
Clements and Orville (2008)	37	TX	30 dBZ	-10				16.14 minutes
Mosier (2009)****	65,399	TX	30 dBZ	-20			0.71	16.9 minutes***
*Met for two consecutive scans								
**Updraft -10°C isotherm								
***Eor 20 dPZ at 10°C inothern								

formation from this table provided by Matt Mosier (2009 · Goal: to produce the most comprehensive climatological survey (several locations, numerous cells) of storm characteristics during the initiation and cessation of total

- lightning: CG and intracloud (IC) flashes
- Melbourne (Kennedy Space Center)
- Huntsville
- Dallas
- Oklahoma City
- Houston?

II. Data and Methods

Lightning:

 National Lightning Detection Network (NLDN) (Fig. 1)

the Canadian Lightning Network (CLDN), composed of 81 sensors, (Orville, 2008)

 Lightning Detection and Ranging (LDAR) (Fig. 2) or Lightning Mapping Array (LMA) • Total lightning (CG + IC) in 3D using VHF detection

Fig. 2: An example of an LDAR ser

- · Location: Melbourne, Florida Date: June 25, 2007 Time: 18:09-20:16 UTC
- · Focus on cell which initiated northwest of Kennedy Space Center LDAR (Fig. 4)
- Timeline of events (Fig. 5):
- Cell initiation: 18:09Z
- Defined by first 30 dBZ reflectivity in cell • No lightning (IC or CG) when: • 30 dBZ reaches -10, -15, and -20°C levels
- 35 dBZ reaches -10, -15, and -20°C •40 dBZ reaches -10 and -15 °C
- Lightning initiation: •IC: 18:38Z
- 40 dBZ between -15 and -20 °C •CG: 18:42Z
- 40 dBZ at -15°C
- Lightning cessation: •CG: 19:44Z
- 30 dBZ at -10°C
- •IC: 19:48Z
- 30 dBZ at -10°C (or slightly below) • Cell cessation: 20:167
- · Defined by last 30 dBZ reflectivity in cell

LDAR data are from 1841 to 18422. In all plots, radar data is shaded, NLDN (CG) data are plotted in +'s or 's according to lighting polarity, and LDAR data are plotted with small dots. Top left panel plots the vertical cross-section of the data at 28.63°N, bottom right panel plots the vertical cross-section of the data at 80.9°W. On both cross-section plots, NLDN and LDAR data are color-coded according to time (blue is old, red is new), critical temperature levels are plotted with solid lines, and the 7 km level is plotted with a dashed line. Top right panel plots count vs. time (seconds) of LDAR data (black) and NLDN data (orange).

-80.4

Count vs. Time (s)

20 40 60

5 10 15 20

oted in blue. Time is in UTC on abscissa, height is in km on ordin

Applying the CAPPI-SCIT algorithm

 In order to automate the tedious process of tracking each cell's radar reflectivity signature at IC and CG lightning initiation and cessation, the CAPPI-SCIT algorithm was run on this case. Figure 6 is a sample plot resulting from the algorithm run on this case

data from 18:43 to 18:44Z overlaid. Image on right is a CAPPI-SCIT plot of cell center boundaries a 2 km with cell numbers. Note that the position of cell number 8, the cell in question, matches we with the position of the cell on the left (red arrow).

- Radiosonde data for temperature levels (-10, -15, -20°C; -10°C updraft)
- Averaging performed if no upper air station at site

• e.g. Melbourne (MLB) weighted from Tampa (TBW) most heavily, then Jacksonville (JAX), then Miami (MFL)

Radar

- Level II radar data from WSR-88D sites
- Converted to Cartesian and **Constant Altitude Plan Position** Indicator (CAPPI) format

CAPPI-SCIT algorithm

- Modified version of Storm Cell Identification and Tracking (SCIT) developed by Mosier, 2009
- Allows for automation and maximizes number of cells that can be tracked
- Calculates vertically integrated liquid (VIL) and volumetrically integrated ice (VII) for each cell

IV. Next Steps/Future Work

- Correlate total lightning (NLDN and LDAR data) with cells identified by CAPPI-SCIT algorithm
- · Identify characteristics of each cell at time of lightning initiation and cessation, i.e. 30, 35, 40 dBZ at -10,-15,-20, -10°C updraft, levels; VIL; VII
- **Utilize dual-polarization radar data to more accurately determine ice and liquid composition in storms

V. Acknowledgments

I would like to acknowledge Dr. Richard Orville for his continued guidance as my primary advisor. I would also like to thank Dr. Gary Huffines for his initial suggestions on what I should research. I would like to thank Matt Mosier for his tremendous help through his very recent research on a similar study in Houston, TX. We appreciate the support from the National Science Foundation: NSF-ATM-0849389

Soundings

- -81.4 -81.2

28 4

- -81.0 -80.8 -80.6 Fig. 4: A CAPPI radar scan at 7 km constant elevation at 18:43:15Z (CG initiation). NLDN and LDAR data are from 1841 to 1842Z. In all plots, radar data is shaded. NLDN (CG) data are plotted