Diurnal Variation in Latent and Sensible Heat Fluxes using MERRA

Joel P. Scott, Dr. Mark Bourassa, and Dr. Carol Anne Clayson
Florida State University
jpscott@fsu.edu

Introduction

Short-term variability exists in the input surface parameters over the oceans impacting the values of the latent heat flux (LHF) and the sensible heat flux (SHF). These fluxes demonstrate a diurnal signal, which has not been well-quantified. Biases in the heat fluxes on the order of 10 Wm$^{-2}$ have significance for the tropics on an annual scale. Additionally, errors of this magnitude are significant on a seasonal scale for the mid-latitudes where the mixed-layer is relatively thin. Establishing an accurate, representative value for the diurnal variation in the surface moisture flux is key to improving latent and sensible heat flux products, an important consideration for coupled climate models.

Data

In order to compute the latent and sensible heat fluxes, hourly time-averaged data was used from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) project.

MERRA quantities used:
- Sea-level pressure (SLP)
- Surface skin temperature (TS)
- Temperature at ten meters (T10M)
- Specific humidity at ten meters (QV10M)
- Eastward wind component at ten meters (U10M)
- Northward wind component at ten meters (V10M)

These quantities demonstrate variability on appropriate time scales for resolving the diurnal signal of the heat flux products. Processing was done using the Grid Analysis and Display System (GrADS) scripting language.

Methods

The latent and sensible heat fluxes were computed using a bulk-aerodynamic approach for oceanic regions, specifically the Bourassa-Vincent-Wood (BVW) model was implemented. The formulae used are as follows:

\[
\begin{align*}
LHF &= \rho C_L \left(q_{df} - q_{sr} \right) w \\
SHF &= \rho C_p \left(T_{df} - T_{sr} \right) w
\end{align*}
\]

Most of the variables were directly input from the MERRA data, but air density, surface specific humidity, and wind speed required dedicated computation from MERRA data. The ideal gas law was used in the computation of the air density, and a relative humidity of 98% was assumed for obtaining the surface specific humidity from the specific humidity at ten meters. The transfer coefficients, C_L and C_p, were obtained via the BVW look-up table. For this analysis, MERRA data from 2000 to 2005 was processed using this algorithm, creating hourly latent and sensible heat flux products.

Discussion

From the Principal Components, a diurnal signal can be seen in both the latent and sensible heat fluxes. Using the EOFs and Principal Components, animations of the anomalies were produced to determine the magnitude of the signals, which does vary regionally. For the latent heat flux, a synoptic signal is present but small in magnitude compared to the diurnal signal. The magnitude of the diurnal signal of the LHF for the Western Boundary Current regions is ~60 Wm$^{-2}$, for the Mediterranean Sea: ~30 Wm$^{-2}$, and for the tropics: ~25 Wm$^{-2}$. The synoptic signal in the sensible heat flux, however, has a comparatively larger magnitude than the diurnal signal. The diurnal signal of the SHF for the Western Boundary Current regions is ~10 Wm$^{-2}$, for the Mediterranean Sea: ~6 Wm$^{-2}$, and for the tropics: ~3 Wm$^{-2}$. These values of the diurnal variation of the latent and sensible heat fluxes approximate a lower bound to the diurnal signal as a result of the variability within the initial MERRA data.

Acknowledgements

We thank Paul Hughes and Ryan Maue for their contributions. This project was supported by grants from NASA NEWS and NOAA COD.

References