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Abstract We demonstrate the existence of environmental signals in property dam-
age losses from hurricanes affecting the United States. The methodology is based on
a random sums model, where the number of damaging hurricane events is modeled
separately from the amount of damage per event. It is shown that when the spring-
time north-south surface pressure gradient over the North Atlantic is weaker than
normal, the Atlantic ocean is warmer than normal, there is no El Niño event, and
sunspots are few, the probability of at least one loss event increases. However, given
at least some losses, the magnitude of the damage per annum is correlated only to
ocean temperatures in the Atlantic. The magnitude of damage losses at a return pe-
riod of 50 years is largest under a scenario featuring a warm Atlantic Ocean, a weak
North Atlantic surface pressure gradient, El Niño, and few sunspots.

1 Introduction

Hurricanes at landfall generate large financial losses. Hurricane climatologists have
developed statistical models to anticipate the level of coastal hurricane activity from
independent climate signals. In addition, these models can be used to account for
changes in hurricane intensity. Thus we posit that it should be possible to detect
environmental signals in historical damages. Our purpose here is to show to what
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extent environmental patterns that are known to influence the frequency and inten-
sity of hurricanes over the North Atlantic can be detected in long records of damage
losses from hurricanes along the U.S. coastline (Gulf and Atlantic).

Elucidating this connection between ambient environmental conditions and fu-
ture economic threats from natural hazards is an important new and interesting line
of inquiry (Leckebusch, et al., 2007). Lane (2008a) writes that insurance markets
and capital markets are converging that they are borrowing techniques from each
other to access capital and to assess and deal with risk. As the participation of the
financial markets becomes more important so does the need to provide investors
with sufficient and timely information. Early information is particularly valuable
if it aids investors in predicting the number or severity of loss events. For exam-
ple, Lane (2008b) analyzes investment returns for Insurance Linked Securities (i.e.,
Catastrophe Bonds) and notes, unsurprisingly, that different loss magnitudes and
loss timing patterns are controlled by nature and that this can significantly affect
investment results.

Although others have shown environmental signals in damage losses using bi-
variate relationships including El Niño and wind shear (Katz, 2002; Saunders and
Lea, 2005), this paper is the first to look at the problem from a multivariate per-
spective. It is based on a recent study that uses pre-season environmental conditions
to anticipate insured losses before the start of the hurricane season (Jagger et al.,
2008). Here we focus on the set of predictors shown to be directly to U.S. hurricane
activity and intensity. (Jagger and Elsner, 2006). These predictors are the most likely
candidates to elucidate the multivariate relationships between the environment and
losses from hurricanes. Based on recent research into Atlantic hurricane activity (El-
sner and Jagger, 2008) we also introduce the solar cycle as a potentially important
covariate in estimating losses.

The strategy is to model annual total economic losses associated with hurricanes
as a compound stochastic point process. The process is compound since the number
of hurricanes causing damage in a given year is fit using a Poisson distribution,
while the amount of damage is fit using a log-normal distribution. Loss totals are
thus represented as a random sum, with variations in total losses decomposed into
two sources, one attributable to variations in the frequency of events and another
to variations in the amount of damage from individual events. We also consider a
model for losses over a longer time horizon using a generalized Pareto distribution
for the amount of losses coupled with a Poisson distribution for the number of loss
events exceeding a threshold amount.

We begin with an examination of the normalized damage loss data and the data
associated with climate patterns. We then describe the overall modeling approach
and conclude with forecasts of annual and maximum losses for a variety of climate
scenarios.
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2 Normalized damage losses: 1900–2007

We obtain normalized hurricane damage data from the work of Pielke et al. (2008).
The normalization attempts to adjust damage amounts to what they would be if the
hurricane struck in the year 2005 by accounting for inflation and changes in wealth
and population, plus an additional factor that represents a change in the number
of housing units that exceeds population growth between the year of the loss and
2005. The methodology produces a longitudinally consistent estimate of economic
damage from past tropical cyclones affecting the U.S. Gulf and Atlantic coasts.

Economic damage is the direct losses associated with the hurricane’s impact. It
does not include losses due to business interruption or other macroeconomic effects
including demand surge and mitigation. Details and caveats for two slightly different
normalization procedures are provided in Pielke et al. (2008). Here we focus on the
data set from the Collins/Lowe methodology, but note that both data sets are quite
similar. Results presented in this study are not sensitive to the choice of data set.

We extend the data by adding the estimated economic damage losses from the
three tropical cyclones during 2006 and 2007. The damage estimates are those re-
ported in the National Hurricane Center (NHC) storm summaries and derived by
the NHC by the American Insurance Services and the Property Claim Services.
This is the same primary data source used in both normalization methods described
in Pielke et al. (2008). We did not adjust these losses at this time. There were six
tropical cyclones that caused at least some damage in the United Stated during this
two-year period, but loss levels were quite small, especially when compared with
the losses experienced in 2004 and 2005. In fact loss levels for three of the six trop-
ical storms were below the $25 million reporting threshold (Alberto in 2006, and
Barry and Gabrielle in 2007).

Tropical storm Ernesto in 2006 struck southern Florida and North Carolina. Total
direct damage losses are estimated at $500 mn (million). We estimate that 4/5ths of
those losses occurred in North Carolina where the storm was stronger at landfall.
An estimate of the total property damage from tropical storm Erin and hurricane
Humberto, both of which hit Texas in 2007, is $35 mn and $50 mn, respectively.
The NHC suggests that the low damage total from Humberto was probably due to
its small size and the relatively unpopulated area subjected to Humberto. In addi-
tion, the large losses in the same area from Hurricane Rita in 2005 and may have
moderated the amount of damage that could have been done by Humberto. We make
no attempt to normalize the losses from 2006 and 2007.

Here we assume that multiple landfalls from a single tropical cyclone produce
multiple loss events. For example, in 1992 Hurricane Andrew produced a $52 bn
(billion) loss in southeast Florida and a separate $2 bn loss in Louisiana. When
multiple landfall events are included, the updated data set contains 221 loss events
from 210 separate tropical cyclones over the period 1900–2007. Figure 1 shows the
distribution and time series of the damages from all loss events. The histogram bars
indicate the percentage of events with losses in groups of $10 bn. The distribution
is highly skewed with 88% of the events having losses less than or equal to $10 bn
and 95% of the events having losses less than $20 bn. The worst loss occurred with
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Fig. 1 (a) Distribution of per storm damage losses from hurricanes in the United States (excluding
Hawaii). The distribution is highly skewed with a few events generating very large damage losses.
(b) Time series of the damage losses. Individual years may have more than one loss event.
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the 1926 hurricane that struck southeast Florida creating an estimated damage loss
adjusted to 2005 dollars of $129 bn. The Galveston hurricane of 1900 ranks second
with an estimated loss of $99 bn and hurricane Katrina of 2005 ranks third with
an estimated total loss of $81 bn. Years with more than one loss have more than
one dot in the time series plot. There is large year-to-year variability but no obvious
long-term trend, although here the data are not disaggregated into loss amount and
the number of loss events.

The damage loss exceedances are shown in Table 1. Of the 221 loss events from
1900–2007, 169 exceeded $100 mn in losses and 28 of these exceeded $10 bn.
The distribution of losses is similar using the Collins/Lowe (CL) method and the
Pielke/Landsea (PL) methods, although the Collins/Lowe method tends to result in
somewhat larger losses. The two events producing losses less than $1 mn include
Gustav in 2002 and Dean in 1995. Another way to examine the data is to look at the
total amount of loss for storms exceeding the Saffir-Simpson lower intensity thresh-
old. Table 2 shows losses in billions of U.S. dollars from 1900–2007, inclusive. For
example, category 0 is for the minimum tropical storm threshold (17 ms−1), and
category 1 is for the minumum hurricane threshold (33 ms−1). So from this table,
all tropical storms accounted for of $1103.9 bn 2005 adjusted $US with hurricanes
accounting for 1063.1 bn. Here again we see the similarity in the two data sets and
that category 4’s and 5’s, although rare, have historically accounted for nearly 50%
of all losses.

Figure 2 shows the annual number of loss events and their distribution. There
are five years with 6 loss events, the most recent being 2005. The annual rate of
loss events is 1.94 events/yr with a variance of 2.48 (events/yr)2. There is a distinct
upward trend in the number of loss events attributable to some extent to an increase
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Table 1 Damage exceedances ($US adjusted to 2005$). The values are the number of events ex-
ceeding various damage loss thresholds from 1900–2007 inclusive.

Exceedance Number Number
$US (2005) Events (CL)a Events (PL)b

1 million 219 219
10 million 207 207

100 million 169 169
1 billion 98 94

10 billion 28 27
100 billion 1 1

a Collins and Lowe data set
b Pielke and Landsea data set.

Table 2 Cumulative losses by Saffir-Simpson scale. ($US bn adjusted to 2005)

Category Cumulative Cumulative
(Saffir/Simp) Losses (CL) Losses (PL)

0 1103.9 1125.1
1 1063.1 1084.5
2 1022.7 1045.6
3 941.4 964.4
4 533.1 557.3
5 79.4 79.3

in coastal population. As population increases so do the number of loss events from
the weaker tropical cyclones. Indeed, prior to 1950 the number of loss events from
tropical storms was 6% of the total number of events. This increases to nearly 38%
from 1950 onward. In the present work we focus on the set of large losses from
the stronger tropical cyclones. There is significant positive skewness in per storm
damage amounts. If we transform the data using base-10 logarithms then the loss
frequency distribution becomes more symmetric.

3 Climate and solar factors

Statistical relationships between U.S. hurricane activity and climate are well estab-
lished (Elsner et al., 2004; Murnane et al., 2000). More importantly for the present
work, Jagger et al. (2001) and Jagger and Elsner (2006) model the wind speeds of
hurricanes at or near landfall and show that the exceedance probabilities (e.g., wind
speeds in excess of 50 ms−1) vary appreciably with the phase of the ENSO, the
NAO, and Atlantic sea-surface temperature (SST). Recent work has also shown a
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Fig. 2 Annual total damage losses. (a) Time series and (b) distribution of loss events and the (c)
time series and (d) distribution of the number of the logarithm (base 10) of annual total damage
losses

linkage between U.S. hurricanes and sunspot numbers (SSN) (Elsner and Jagger,
2008).

The ENSO can be characterized by basin-scale fluctuations in sea-level pressure
between Tahiti and Darwin. Although noisier than equatorial Pacific ocean temper-
atures, pressure values are available back to 1900. The Southern Oscillation Index
(SOI) is defined as the normalized sea-level pressure difference between Tahiti and
Darwin (in units of standard deviation). Negative values of the SOI indicate an El
Niño event. The relationship between ENSO and hurricane activity is strongest dur-
ing the hurricane season so we use a August-October average of the SOI as a climate
factor. The monthly SOI values (Ropelewski and Jones, 1997) are obtained from the
Climatic Research Unit (CRU).

The NAO is characterized by fluctuations in sea level pressure (SLP) differences.
Index values for the NAO (NAOI) are calculated as the difference in SLP between
Gibraltar and a station over southwest Iceland (in units of standard deviation), and
are obtained from the CRU (Jones et al., 1997). The values are averaged over the
pre- and early-hurricane season months of May and June (Elsner et al., 2001) as
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this is when the relationship with hurricane activity is strongest. (Elsner and Jagger,
2006).

The SST values are a blend of modeled and observed data and, to a first order,
correlate with the amount of fuel for hurricane development. Unsmoothed and un-
detrended Monthly North Atlantic arealy averaged SST anomalies from 0 to 70◦N
(in units of ◦C) were computed using the base period 1951–2000. Data are obtained
from the NOAA-CIRES Climate Diagnostics Center back to 1871. For this study we
average the North Atlantic SST anomalies over the peak hurricane season months
of August through October.

For SSN we use the monthly total sunspot number for September (the peak month
of the hurricane season). Sunspots are magnetic disturbances of the sun surface
having both dark and brighter regions. The brighter regions (plages and faculae) in-
crease the intensity of the UV emissions. Increased sunspot numbers correspond to
more magnetic disturbances. Sunspot numbers produced by the Solar Influences
Data Analysis Center (SIDC), World Data Center for the Sunspot Index, at the
Royal Observatory of Belgium are obtained from the U.S. National Oceanic and
Atmospheric Administration.

In summary, normalized historical economic damage losses from hurricane
events from the period 1900–2007 will be modeled using climate and solar data that
represent optimal relationships found in previous studies on U.S. hurricane activity.
By “optimal” we mean relative to what is currently understood about how environ-
mental variables influence hurricanes. It does not mean relative to an exhaustive
search for correlations across many different variables.

Figure 3 shows the time series of the climate factors that are used in the model.
Upper and lower quartile values of the SOI are 0.40 and−0.90 s.d., respectively with
a median (mean) value of −0.18 (−0.16) s.d. Years of above (below) normal SOI
correspond to La Niña (El Niño) events and thus a higher probability of at least one
U.S. hurricane. The upper and lower quartile values of the NAO are 0.40 and −1.09
s.d., respectively with a median (mean) value of −0.39 (−0.33) s.d. Years of below
(above) normal values of the NAO correspond to a weak (strong) NAO phase and
thus to higher (lower) probability of U.S. hurricanes. The upper and lower quartile
values of the Atlantic SST anomalies are 0.22 and −0.16◦C, respectively. Years
of above (below) normal values of SST correspond to higher (lower) probability
of hurricane activity. The upper and lower quartile values of the September SSN
are 91.7 and 17.1, respectively with a median (mean) value of 50.2 (62.0). Years
of below (above) normal SSN correspond to a lower (higher) probability of U.S.
hurricanes. The largest correlation among the covariates occurs between the SSN
and SST at a marginally statistically significant value of 0.18 (p-value = 0.064).

As an initial analysis of the damage data relative to the climate signals, here we
compare locations on the distribution of per storm damage losses conditional on the
various climate factors. Table 3 lists the damage amounts at the median and upper
99th percentile for both data sets and the damage ratio as the amount of damage
during above normal years to the amount during below normal years. During sea-
sons characterized by La Niña conditions (above normal values of SOI) the median
losses are greater by a factor of more than two compared with years with El Niño
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Fig. 3 Time series of the four covariates used to estimate wind damage losses from hurricanes.

Table 3 Damage amounts for Hurricanes in billions $US adjusted to 2005 along with conditional
damage ratios. The damage ratio is the respective quantile amount of damage per storm during
above normal years to the amount during below normal years.

Collins/Lowe Pielke/Landsea
50% 99% 50% 99%

Damage 1.326 86.308 1.216 90.181
SOI 2.460 0.578 2.860 0.560
NAO 0.829 0.354 0.711 0.319
SST 1.027 1.342 1.233 1.289
SSN 0.671 0.493 0.557 0.480

conditions. However, the extreme losses are greater during El Niño conditions. Dur-
ing seasons with below normal springtime NAO conditions, the damages tend to be
greater at the median level and even more so at the extremes.

Interestingly, seasons characterized by higher than average SSTs show lower
amounts of total damage at the median levels compared with seasons character-
ized by lower SSTs. There is, however, a modest increase in damage loss amounts
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during warm years over loss amounts during the cold years at the upper tails of
the distribution. During seasons with below normal sunspots, damage losses tend to
be greater at the median level and similarly so at the extremes. These results are ex-
pected from what we know about how these climate factors influence U.S. hurricane
activity (Elsner and Jagger, 2006; Jagger and Elsner, 2006). Again, note that the CL
and PL damage loss data sets give practically the same results.

4 Large and small losses

Fig. 4 Common logarithm
(log10) of damage losses
by Saffir-Simpson hurricane
category.
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Figure 4 shows the amount of losses by the Saffir-Simpson category of storm
intensity. It is clear that both the category 0 and 1 tropical cyclones are different from
the stronger tropical cyclones, in that the range of damage is larger. For instance, at
the 80% interval of losses the range is from 6.8 to 9.0 for category 0 storms, and
from 7.2 to 9.1 for category 1 storms, this is about 2.2 and 1.9, respectively, or
approximately a factor of 100. In comparison, the category 2, 3, 4, and 5 ranges
are 1.3, 1.5, 1.4, and 1.1, respectively. Thus it makes sense to model tropical storms
(category 0) and category 1 hurricanes separately from category 2 and higher storms.
However, there is a practical limitation in that we lose 109 of the 212 storms. Thus
for this paper we restrict our analysis to category 1 and higher tropical cyclones
(hurricanes only) as a compromise between removing too much data and keeping
too many weaker events.

Moreover, the total damage from the 221 events (1900–2007) calibrated to 2005
is estimated at US $1.1 trillion. The large skewness in damage losses per event and
per annum suggests that it might be a good strategy to separate large losses from
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small losses for the purpose of modeling. It is often noted that 80% of the total
damage from tropical cyclones is caused by 20% of the biggest loss events. Figure 5
shows that the distribution of damage data is more skewed than that. In fact, the top
35 loss events (less than 16% of the total number of loss events) account for more
than 81% of the total loss amount. The relative infrequency of the largest loss events

Fig. 5 Empirical cumula-
tive distribution function of
per storm damage losses
expressed on the common
logarithm scale. The values
on the ordinate are the fraction
of damage events less than or
equal to the damage values on
the abscissa. The horizontal
dotted line is the 80th per-
centile and the vertical dotted
line is the damage amount of
the 20th worst event.
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argues for a split that favors more data for modeling the largest losses. Here we use
a cutoff of one billion $US and find that 90 of the 160 hurricane events (56.3%)
exceed this threshold. The remaining 70 events (43.7%) account for only 15.4% of
the total damages. Thus it might be reasonable to assume that the small loss events
are at the “noise” level. In summary, our focus here is on the set of large losses from
the stronger tropical cyclones.

5 A model for annual expected loss

Given a loss event, the logarithm of the amount of loss on an annual basis is mod-
eled using a linear regression with the logarithm of the loss amount modeled as a
truncated Normal distribution. The only statistically significant climate signal in the
loss amount is the SST. Thus given a loss event, the magnitude of the loss increases
with increasing ocean warmth. This is consistent with SST acting as a proxy for
upper-ocean heat; a source of energy for hurricanes (Emanuel, 1991).

To arrive at an estimate of the annual loss we need to combine this loss amount
estimate given an event with the frequency of a loss event. Since we divide loss
events into large and small events, we use separate models. Thus, given a mean
annual rate of large (small) loss events, the annual number of large (small) loss
events follows a Poisson distribution with the natural logarithm of the loss event
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rate given as a linear function of the climate variables. We find that SST, NAO, SOI,
and SSN are all statistically significant indicators of the frequency of large losses,
but none of the climate variables are important for the frequency of small losses.

Mathematically we write the model for large losses as:

logL ∼ Normal(µ,σ 2)
µ = α0 +α1SST
N ∼ Poisson(λ )
λ = exp(β0 +β1SST+β2NAO+β3SOI+β4SSN)

(1)

where L is the amount of total loss for an event and λ is the yearly hurricane fre-
quency. The symbol ∼ refers to a stochastic relationship and indicates that the vari-
able on the left hand side is a random draw (sample) from a distribution specified on
the right hand side. The equal sign indicates a logical relationship with the variable
on the left hand side algebraically related to variable(s) on the right hand side. As
mentioned, the size of the loss is modeled as a truncated Normal distribution with
parameters µ and σ2 indicating the location and scale for the distribution. Unlike the
normal distribution the location and scale parameters of the truncated normal distri-
bution are are not the same as its mean and variance. In short, the model describes
a compound Poisson process with rate λ and logarithm of the jump size distributed
as a truncated normal distribution with parameters µ and σ .

Chi-square goodness-of-fit statistics do not show any evidence against adequacy
of the rate model. Furthermore, there is no trend in the deviance residuals implying
the rate model for large losses conditioned on the climate variables chosen is statis-
tically stationary and the addition of a trend term does not improve the model. This
suggests to us that there is no significant historical under reporting of the number of
loss events from hurricanes in the United States over the period considered here.

The final model that combines the frequency of loss events with the magnitude
of the loss given an event uses a hierarchical Bayesian specification. Bayesian mod-
els provide posterior distributions of model parameters, as opposed to a frequentist
model using maximum likelihood estimatation(MLE) which only provides the pa-
rameter estimate and prediction error. For non normal distributions these MLE esti-
mates are biased leading to biased predictions. We chose flat (uniform) model priors
for the location and model precision (1/σ2) parameters to minimize the influence
of prior. The final model is selected from a set of possible models by comparing
the Deviance Information Criterion (DIC) for each model and then choosing the
model with the smallest DIC. The DIC is the formulated explicitly for model selec-
tion in Bayesian models, in the same fashion that the AIC which is used to compare
models using maximum likelihood estimation (Spiegelhalter et al., 2002). It is use-
ful in Bayesian model selection where the posterior distributions of the models are
obtained by Markov Chain Monte Carlo (MCMC) simulation. The model with the
smallest DIC is estimated to be the model that would best predict a replicate data
set that has the same structure as the observed one.

Given the hierarchical form of the model, samples of the annual losses are gener-
ated using WinBUGS (Windows version of Bayesian inference Using Gibbs Sam-



12 T.H. Jagger et. al.

pling) developed at the Medical Research Council in the UK (Gilks et al., 1994;
Spiegelhalter et al., 1996). WinBUGS chooses an appropriate MCMC sampling al-
gorithm based on the model structure. In this way annual losses are sampled condi-
tional on the model coefficients and the observed values of the covariates. The cost
associated with a Bayesian approach is the requirement to formally specify prior be-
liefs. Here we take the standard route and assume noninformative priors that provide
little information about the parameters of interest.

MCMC, in particular Gibbs sampling, is used to sample the parameters given the
data since no closed form solution exists for the posterior distribution of the model
parameters in the truncated Normal (or for the generalized Pareto distribution (GPD)
used in the next section). Indeed, WinBUGS is useful in that it allows us to sample
the parameters from the posteriors created from arbitrary likelihood functions. As
far as we are aware, there is no software for finding the maximum likelihood esti-
mates of the regression parameters for a truncated normal distribution.

We check for mixing and convergence by examining successive samples of the
parameters. Samples from the posterior distributions of the parameters indicate rel-
atively good mixing and quick settling as two different sets of initial conditions
produce sample values that fluctuate around a fixed mean. Based on these diagnos-
tics, we discard the first 10000 samples and analyze the output from the next 10000
samples. The utility of the Bayesian approach for modeling the mean number of
coastal hurricanes is described in Elsner and Jagger (2004) and for predicting dam-
age losses is described in Jagger et al. (2008).

Figure 6 shows the predictive posterior distributions of annually aggregated
losses for 6 different climate scenarios. The set of scenarios is ordered by gen-
erally increasing favorable climate conditions for hurricanes to affect the United
States. Each panel shows the probability of no losses and the probability of losses
on a logarithm (base 10) scale given at least one loss event. The upper left panel
shows the posterior probabilities for a year during which the SST is much below
normal, the NAO is much above normal, there is a strong El Niño, and the sun is
very active (many sunspots). The specific covariate values are listed in the figure
caption. The posterier samples indicate a relatively large probabiliy of no damage
events (37%) under this scenario. The estimated annual loss taking into account the
non-zero probability of no loss events is centered in the range between $0.1 and $1
bn.

As the climate factors change to indicate more favorable conditions for hurri-
canes, the posterior samples provide a distribution of annual losses that are more
ominous with the probability of no losses decreasing to less than 1% and the ex-
pected annual total loss amount exceeding $100 billion. All estimated loss amounts
are converted to 2005 dollars. The results of the model integration are rather re-
markable in showing a distinct climate signal in aggregate property losses in the
United States from hurricanes. The annual expected loss increases with warmer At-
lantic SSTs, cooler equatorial eastern Pacific SSTs, a negative phase of the NAO,
and fewer sunspots.



Environmental signals in property damage losses from hurricanes 13

Estimated Log10(Damage) (2005 $US )

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

a

Estimated Log10 Damage (2005 $US)

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

b

Estimated Log10 Damage (2005 $US)

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

c

Estimated Log10(Damage) (2005 $US)

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

d

Estimated Log10(Damage) (2005 $US)

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

e

Estimated Log10(Damage) (2005 $US)

P
ro

ba
bi

lit
y

0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5
0.6

f

Fig. 6 Simulated annual losses for six different climate scenarios. The histograms show the prob-
ability of no losses on the left and the distribution of annual amount of loss on a logarithmic scale
on the right. The panels are ordered toward conditions increasingly favorable for hurricane activity
along the U.S. coast. The histograms are created from posterior samples generated from the hier-
archical Bayesian model using (a) SST = −0.52◦C, NAO = +2.9 s.d., SOI = −2.3 s.d., and SSN =
236, (b) SST = −0.24◦C, NAO = +0.7 s.d., SOI = −1.1 s.d., and SSN = 115, (c) SST = +0.01◦C,
NAO = −0.3 s.d., SOI = −0.2 s.d., and SSN = 62, (d) SST = +0.27◦C, NAO = −1.4 s.d., SOI =
+0.8 s.d., and SSN = 9, (e) SST = +0.43◦C, NAO = −1.3 s.d., SOI = −0.1 s.d., and SSN = 5, and
(f) SST = +0.61◦C, NAO = −2.7 s.d., SOI = +2.6 s.d., and SSN = 1.
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6 A model for the probable maximum loss

While the above modeling strategy makes sense for estimating the distribution of
likely annual damage associated with variations in environmental conditions from
one year to the next, for financial planning it might be of greater importance to know
the maximum possible storm loss. In this case, the normal distribution is replaced
by an extreme value distribution for the logarithm of losses. For example, the fam-
ily of Generalized Pareto Distributions (GPD) describes the behavior of individual
extreme events.

Consider observations from a collection of random variables in which only those
observations that exceed a fixed value are kept. As the magnitude of this value in-
creases, the GPD family represents the limiting behavior of each new collection of
random variables. This property makes the family of GPD a good choice for mod-
eling extreme events including large losses from wind storms. The choice of thresh-
old, above which we treat the values as extreme, is a compromise between retaining
enough observations to properly estimate the distributional parameters (scale and
shape), but few enough that the observations follow a GPD family.

The GPD describes the distribution of losses that exceed a threshold l but not
the frequency of losses at that threshold. As we did with the annual loss model, we
specify that, given a rate of loss events above the threshold, the number of loss events
follows a Poisson distribution. Here there is no need to consider small loss events
as we are only interested in the large ones. Combining the GPD for the distribution
of large loss amounts with the Poisson distribution for the frequency of loss events
above the threshold allows us to obtain return periods for given levels of losses.

Mathematically we are modeling the exceedances, L− l, as samples from a fam-
ily of GPD distributions so that for any threshold l and any event with losses L, the
probability that L exceeds some arbitrary level x above l is

Pr(L > x+ l|L > l) =





exp(− x
σ ) ξ = 0(

1+ ξ
σl

x
)− 1

ξ ξ 6= 0
(2)

= GPD(x|σl,ξ ) (3)

where σl > 0, x ≥ 0, and σl + ξ x ≥ 0. If the exceedances above l0 follow a GPD
then the exceedances above l > l0 follow a GPD with the same shape, ξ and scale
that shifts linearly with the threshold:

σl = σ0 +ξ l

The parameters σl and ξ are the scale and shape parameters respectively. For
negative shape parameters the GPD family of distributions has an upper limit of
Lmax = l + σl/|ξ |. The equation for σl specifies that if the values follow a GPD,
then for any threshold the distribution of exceedances is GPD with the same value
of the shape parameter (ξ ) from the original distribution and a scale parameter that
changes linearly with the threshold at a rate equal to the shape parameter.
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We determine the threshold value at $1 bn U.S. for the set of losses by examining
the mean residual life plot. This is a plot of the mean value of the exceedances as
a function of the threshold. If the data follow a GPD distribution, this plot is linear.
The threshold is chosen as the smallest value where the function is linear for all
larger thresholds Coles (2001).

The GPD describes the loss distribution for each wind event whose losses ex-
ceed l but not the frequency of events at that magnitude. We assume that the num-
ber of loss events in year y that exceed l has a Poisson distribution with mean (or
exceedance) rate is λl . Thus by combining the exceedance probability and the ex-
ceedance rate with our assumption that they are independent we get a Poisson dis-
tribution for the number of loss events per year with losses exceeding m (Nm) with
a rate given by

λm = λl Pr(L > m|L > l). (4)

This specification is physically realistic since it allows us to model loss occurrence
separately from loss amount. Moreover from a practical perspective, rather than a
return rate per loss occurrence, the above specification allows us to obtain an annual
return rate on the extreme losses, which is more meaningful for the business of risk
and insurance.

Now, the probability that the yearly maximum will be less than m is the proba-
bility that Nm = 0. Since Nm has a Poisson distribution

Pr(Lmax ≤ m) = Pr(Nm = 0) (5)
= exp(−λm) (6)
= exp{−λlGPD(m− l|σl,ξ )} (7)

If we make the substitution for ξ 6= 0:

σµ = λ ξ
l σl (8)

µ = l +
σµ −σl

ξ
(9)

then

Pr(Lmax ≤ m) = exp

{
−

[
1+ξ

(
m−µ

σµ

)]− 1
ξ
}

(10)

has a Generalized Extreme Value (GEV) distribution, which is in canonical form. If
ξ = 0 then we make the substitutions

σµ = σl

µ = l +σl log(λl)

then

Pr(Lmax ≤ m) = exp
{
−exp

[
−

(
m−µ

σµ

)]}
. (11)
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We convert the peaks-over-threshold parameters λl ,σl ,ξ to the GEV canonical
parameters µ,σµ ,ξ , and so compare results obtained with different thresholds. Us-
ing the canonical parameters, for example we calculate the yearly (seasonal) return
level, rl(r), corresponding to a given return period, r and GEV parameters µ,σ ,ξ
by solving for m in Pr(Lmax ≥ m) = 1

r giving

rl(r) =
µ + σ

ξ

{[
log

( r
r−1

)−ξ −1
]}

ξ 6= 0
µ−σ · log

{
log

( r
r−1

)}
ξ = 0.

(12)

Additional details are given in (Coles 2001).
As with the annual loss model we use a Bayesian hierarchical specification for the

model of extreme losses. MCMC samples are used to generate posterior predictive
distributions. Here we are interested in the return level as a function of return period.
The annual return level is determined by the return level of individual extreme events
and the annual frequency of such events above a threshold rate. The annual number
of extreme events follows a Poisson distribution with the natural logarithm of the
rate specified as a linear function of the four covariates.

Given values for the scale (σ ) and shape (ξ ) parameters, the return level of indi-
vidual extreme events follows a GPD. The logarithm of the scale parameter and the
shape parameter are both linear functions of the the four covariates.

As before, samples of the return levels are generated using WinBUGS and we
use noninformative prior distributions. Samples from the posterior distribution of
the model parameters indicate good mixing and good convergence properties. We
discard the first 10000 samples and analyze the output from the next 10000 samples.
Applications of Bayesian extremal analysis are found in Coles and Tawn (1996),
Walshaw (2000), Katz et al. (2002), Coles et al. (2003), Hsieh (2004), and Jagger
and Elsner (2006). Figure 7 shows the predictive posterior distributions of extreme
losses for four different climate scenarios using quantile values. For each return
period the the 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.975 quantile values of the
maximum storm damage losses are plotted. The first scenario is characterized by
covariates in favor of fewer hurricanes, the second scenario represents long-term
climatological conditions, the third scenario is characterized by covariates favor-
ing more hurricanes, and the fourth scenario is characterized by covariates favoring
stronger hurricanes. The loss distribution changes substantially between the differ-
ent climate and solar scenarios and in a direction that is consistent with our under-
standing about the relationship between climate and hurricane activity.

Under the first scenario we find the median return level of a 50-year extreme
event at approximately $18 bn, this compares with a median return level of the
same 50-year extreme event loss of approximately $793 bn under the fourth sce-
nario. Thus the model can be useful for projecting extreme losses over time horizons
longer than a year given values of the covariates. Note that the results are interpreted
as the posterior distributions of the return level for a return period of 50 years of the
covariate values as extreme or more extreme than 1 standard deviation. With 4 inde-
pendent covariates and an annual probability of about 16% that a particular covariate
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Fig. 7 Simulated extreme losses for four different climate scenarios. The points are the 0.025, 0.05,
0.25, 0.5, 0.75, 0.95, and 0.975 quantiles from the posterior distribution of the loss model. The
panels are ordered toward conditions increasingly favorable for large losses. (a) SST = −0.243◦C,
NAO = +0.698 s.d., SOI =−1.087 s.d., and SSN = 115, (b) SST = +0.012◦C, NAO =−0.331 s.d.,
SOI = −0.160 s.d., and SSN = 62, (c) SST = +0.268◦C, NAO = −1.359 s.d., SOI = −0.766 s.d.,
and SSN = 9, (d) SST = +0.268◦C, NAO = −1.359 s.d., SOI = −1.087 s.d., and SSN = 9. The
upper quantile values in panel (d) are outside the range of the plot.

is more than 1 s.d. from its mean, the chance that all covariates will be this extreme
or more in a given year is less than 0.1%.
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7 Summary

Coastal hurricanes are capable of generating large financial losses to the insurance
industry. Annual loss totals are directly related to the intensity and frequency of hur-
ricanes affecting the coast. Since a measureable amount of skill exists in forecasts
of coastal hurricane activity, it makes sense to investigate the potential of model-
ing losses directly. This paper demonstrates clear climate and solar signals in the
historical estimates of property damage losses.

Two separate statistical models are specified using hierarchical Bayesian tech-
nology and predictive posterior distributions are generated using MCMC sampling.
The first model can be used to estimate the expected annual loss under various en-
vironmental scenarios. The annual expected loss increases with warmer Atlantic
SSTs, cooler equatorial eastern Pacific SSTs, a negative phase of the NAO, and
fewer sunspots. The second model can be used to estimate the distribution of losses
over a longer time horizon conditional on the values of the four covariates.

Results are consistent with current understanding of hurricane climate variabil-
ity. While the models here are developed from aggregate loss data for the entire
United States susceptible to Atlantic hurricanes, it would be possible to apply the
techniques to model data representing a subset of losses capturing, for example, a
particular reinsurance portfolio. Moreover, since the models make use of MCMC
sampling they can be easily extended to include measurement error and missing
data.

Hazard risk affects the profit and loss of the insurance industry. Some of this risk
is transferred to the performance of securities traded in financial markets. This im-
plies that early and reliable information concerning potential hazards will be useful
to investors. This paper advances those goals.

Traditional hurricane risk models used by the insurance industry rely on a catalog
of storms that represent the historical data in some way or another. While useful for
estimating AAL and loss exceedance curves for aggregate and occurrence portfolio
losses, these catalogs are not easily suited for anticipating losses based on an ever-
changing climate. Specifically, at the core of the catalog is a set of synthetic storms
and a way to assign a probability to each. However, it is not obvious how to condition
the set of storm characteristics on climate. The approach demonstrated here provides
an alternative way to anticipate losses on the seasonal to multi-year time scale.

Concerning the future, increases in ocean temperature will raise a hurricane’s
potential intensity, all else being equal. However, corresponding increases in at-
mospheric wind shear—in which winds at different altitudes blow in different
directions—could tear apart developing hurricanes and could counter this tendency
by dispersing the hurricane’s heat. However, a recent study based on a set of ho-
mogenized satellite-derived wind speeds indicates the strongest hurricanes are get-
ting stronger worldwide (Elsner, Kossin, and Jagger, 2008). This new information
can be incorporated in models of the type demonstrated here by placing a discount
factor on the older information relative to the more recent events.
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