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ABSTRACT

The GPS dropsonde has now been in use for over a decade, providing measurements of atmospheric
variables, like wind velocities, air temperatures and humidity, with unprecedented resolution and
accuracy in hurricanes. However, since the measurements are performed in neither a conventional
Eulerian framework nor a perfect Lagrangian framework, it is not thoroughly understood as to how
those measurements interpreted in terms of deriving mean profiles, turbulence profiles and wind
spectra.
In this study, a numerical model is presented to simulate the fall of the GPS dropsonde through a
wind field with prescribed mean and turbulence statistical characteristics. The falling dropsondes
are tracked and then the wind field are extracted using the wind finding equation of Hock and
Franklin (1999). The measured mean and turbulence profiles are compared with the prescribed
values. Results show the wind finding equation gives a satisfactory agreement between the measured
mean profiles with the prescribed ones. The measured turbulence profiles, on the other hand,
exhibit more appreciable variations from the prescribed values when the same size of dataset, as in
the mean profile comparison, is employed for composition. In addition, sensitivity analysis of post
processing techniques, such as differentiation schemes used to calculated dropwindsonde acceleration
and filter characteristics, is also conducted. The analysis shows although these techniques have
little influence on the mean profile interpretation, it does impact the turbulence interpretation
considerably. Wind spectra comparisons based on a spectral tensor model are also presented in this
study. The comparison provided the evidence of that the GPS dropwindsonde measurements are
capable of reproducing wind spectrum correctly along its trajectory given a proper spectral model
is adopted for post processing.

1. Introduction

The direct measurement of wind velocities within the
boundary layer region of tropical cyclones is distinguished,
understandably, to be difficult. The GPS dropwindsonde
provided the best chance, so far, of directly measuring wind
velocities and other atmospheric variables in that region.
Described by Hock and Franklin (1999), the GPS drop-
windsonde can measure wind every half second with an
accuracy in the order of 1m/s when it falls through the at-
mosphere. In the same study, they provided a wind finding
equation, which extracts wind velocities from dropwind-
sonde measurements. Adopting this interpretation, many
researchers (Kepert (2001); Kepert and Wang (2001); Pow-
ell et al. (2003); Vickery et al. (2009)) using GPS drop-
windsonde data have advanced our understanding of the
tropical cyclone wind structure, especially the vertical pro-
files in between of safe reconnaissance flight heights and sea
surface which is hardly covered by other measurements.

Despite its wide use, the wind finding equation intro-
duced by Hock and Franklin (1999) is derived from a lin-
earization of the governing equations of the motion of the

GPS dropwindsonde under certain assumptions which have
not been thoroughly investigated. The purpose of this
study is trying to examine the applicability of this equa-
tion by simulating the fall of dropwindsondes through a
wind field with known statistical characteristics and then
comparing the resulting simulated measurements with the
known statistics to evaluate the validity of the GPS drop-
windsonde measurements and to help interpret them.

Previous researches done on motion of falling, or ris-
ing objects, through the atmosphere serve as a start point
for this study. Fichtl (1971) derived a set of coupled dif-
ferential equations describing the motion of a rising, or
falling, wind sensor under horizontal wind perturbations.
Followed that analysis, Nastrom and Vanzandt (1982) in-
vestigated rising objects in the atmosphere by seeking an
analytical solution to the governing equations of the mo-
tion of a sphere, including nonlinear responses. The differ-
ential equations introduced in their study forms the basis
of deriving governing equations of the motion of the GPS
dropwindsonde, which is the key in the numerical simula-
tion used in this study.
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Fig. 1. Mean Velocity Profile Comparison, where pre-
scribed means prescribed value while simulate means mean
profile sampled from simulated wind field

Wind fields with known statistical characteristics are
generated using the spectral transformation techniques de-
scribed by Solari et al. (2007) and Carassale et al. (2007).
The statistical characteristics prescribed are mainly spec-
tral representations following Hu (2007); Solari and Pic-
cardo (2001), which are wind spectra, spatial correlations
and point correlations. These spectral information are or-
ganized as spectrum matrix. Although this model is well
validated by field experiments and engineering measure-
ments (Solari and Piccardo 2001), it describes wind spatial
relationships separately for longitudinal and vertical direc-
tion as wind spectra and spatial correlations. Thus, there
is no explicit expression of spectrum when wind velocities
are sampled vertically like the GPS dropwindsonde does.
Thus, in addition to generating wind field using this spec-
trum matrix model, the spectral tensor model of Mann
(1994) was also adopted which expresses wind spatial rela-
tionships in wave number space. Thus, from stand point of
view of spectral tensor, there is no difference whether wind
velocities are sampled in longitudinal direction or vertical
direction in deriving wind spectrum. This gives the oppor-
tunity to use dropwindsonde measurements to explore the
spectra of the wind field it falling through.

After this introduction,the wind field generation and
validation will be discussed in section 2 while details of the
simulation of the motion of a GPS dropwindsode through
the simulated wind fields are given in section 3. Results
from the simulated measurements are summarized and dis-
cussed in section 4. Conclusions and remarks for future
research will be given in section 5.

2. Wind Field Generation

Both the wind field generation methods using the spec-
trum matrix model of Solari et al. (2007) and Carassale

 0

 100

 200

 300

 400

 500

 600

 0  0.05  0.1  0.15  0.2  0.25  0.3

H
ei

gh
t (

m
)

Turbulence Intensity

Longitudinal Turbulence Intensity Comparison

Simulated
Prescribed

Fig. 2. Turbulent Intensity (Longitudinal Component)
Profile Comparison, where prescribed means prescribed
value while simulated means profile sampled from simu-
lated wind filed

et al. (2007) and the spectral tensor model of Mann (1994)
are discussed in detail in this section. The spectrum ma-
trix modelled wind fields give reliable mean and turbulence
profiles while the spectral tensor modelled wind fields are
advantageous in describing wind spectrum in three spatial
directions.

a. Spectrum matrix model

A spectrum matrix is capable of describing all the sec-
ond order statistical characteristics of the simulated wind
field, including all wind spectra, spatial cross spectra and
point cross spectra. After the spectrum matrix is specified,
DFT (Discrete Fourier Transformation) can be employed
to transform these spectral representations into a stochas-
tic wind field.

In this study, the spectrum matrix uses wind spectra
model described by Von Karman (1948), while spatial cor-
relations are governed by exponential decay function of So-
lari and Piccardo (2001) which is an extension of model
provided by Davenport (1967) and the point correlations
given by Solari and Piccardo (2001).

To simplify the discussion, only the one-dimensional,
vertical wind field is generated here. The wind field is dis-
cretized into 120 points vertically, spaced at 5m intervals,
while the simulated time history uses a time step of 0.1
seconds for a total time of 6553.6 seconds.

The simulation is validated by comparing statistical
characteristics of the simulated wind field with prescribed
parameters. The comparison shows that wind fields sim-
ulated are good stochastic realization of prescribed statis-
tics. Figure.1 shows the mean profile comparison of the
log-law governed wind field. Figure.2 and Figure.3 show
comparisons of the logitudinal turbulence intensity and tur-
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Fig. 3. Turbulent Shear (UW Shear) Profile Comparison,
where prescribed means prescribed value while simulated
means profile sampled from simulated wind field
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Fig. 4. Spectral Density Comparison for longitudinal
wind, where prescribed means prescribed value while simu-
lated means spectrum measured from simulated wind field
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Fig. 5. Cross Spectral Density Comparison for longitudi-
nal wind and vertical wind, where prescribed means pre-
scribed value while simulated means spectrum measured
from simulated wind field

bulent shear stress for the same wind field. The spectra val-
idation is covered by Figs.4 and 5, which show the longitu-
dinal wind spectrum comparison and the point correlation
for longitudinal and vertical wind comparison respectively.

b. Spectral tensor model

In addition to spectrum matrix model described above,
a wind field simulated following Mann (1998) is utilized
in this study to explore the possibility of extracting spec-
tral information from the GPS dropwindsonde measure-
ments. Unlike the spectrum matrix model, the spectral
tensor model depicts the three-dimensional wind field in
terms of a tensor formulated in wave number space. Thus,
sampling the wind in the vertical direction is not differ-
ent from sampling it in the along-wind direction as it is in
the conventional way. So, wind velocities measured by the
GPS dropwindsonde when it falls through the atmosphere
can be used to derive the conventional longitudinal wind
spectrum.

Both the wind tensor model and the simulation tech-
niques are described by Mann (1998). A more compre-
hensive study on the spectral tensor is provided by Mann
(1994). Slightly different from the wind field generated us-
ing the spectrum matrix model, the wind field simulated
using the spectral tensor model is two dimensional with
no time history. Thus, Taylor’s hypothesis (Mann 1998) is
invoked to find wind at a discrete point at a discrete time.
128 points in vertical axis while 65536 points in longitu-
dinal axis are utilized. Giving the longitudinal step and
vertical step are 0.1 meters and 4.6875 meters, the total
length in this simulation is 6553.5m while the total height
remains the same as in the spectrum matrix case, which is
600m.
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Fig. 6. Mean Velocity Profile Comparison, where pre-
scribed means prescribed value while simulate means mean
profile sampled from simulated wind field
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Fig. 7. Spectral Density Comparison for longitudinal
wind, where prescribed means prescribed value while simu-
lated means spectrum measured from simulated wind field
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Fig. 8. Cross Spectral Density Comparison for longitudi-
nal wind and vertical wind, where prescribed means pre-
scribed value while simulated means spectrum measured
from simulated wind field

Unlike validation in the spectrum matrix case, valida-
tion in the spectral tensor model case concentrates on the
spectral representation of the wind field since we are in-
terested in exploring the possibility of extracting spectral
information from the GPS dropwindsonde measurements.
Figure.6 shows the comparison of the mean profile in the
log-law governed wind field. Figs.7 and 8 show compar-
isons of the spectrum of longitudinal wind and the cross
spectrum of longitudinal and vertical wind.

3. Simulation of motion of GPS dropwindsonde

When the GPS dropwindsode is viewed as a point with
certain mass falling through the atmosphere, the governing
equations of its motion are similar to ones derived by Fichtl
(1971). Since they are the equations governing a nonlinear
system with three DOF (Degree of Freedom), some numer-
ical integration methods should be used to solve it.

Moreover, raw measurements made by the GPS drop-
windsonde need to be filtered to get rid of noises buried in
its signal. Also, measured dropwindsode velocities need to
be differentiated to get accelerations if wind finding equa-
tion introduced by Hock and Franklin (1999) is used to
interpret the measurements.Thus, this simulation of the
dropwindsonde motion gives an opportunity to evaluate
the influence of those post processing techniques on the
final interpretation.

a. Governing equations of motion of a GPS dropwindsonde

Motion of GPS dropwindsonde in the atmospheric bound-
ary layer wind field is essentially the dynamic response of a
nonlinear system under the stochastic external excitation.
Hock and Franklin (1999) provided a brief discussion in an
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appendix on the governing equations of the motion of the
GPS dropwindsonde before generating a linearized version
under several explicit assumptions. Different from focus-
ing on the simplification of the governing equation,Nastrom
and Vanzandt (1982) conduct a more comprehensive ana-
lytical analysis on rising objects in the atmosphere which
includes discussions on a set of similar equations with full
nonlinearity.

Simply just summarized and extended studies mentioned
above, the governing equations of the motion of the GPS
dropwindsondes will be presented here. When dropwind-
sondes fall through the atmosphere, the drag generated by
interaction between parachute of the dropwindsonde and
the wind can be modeled as

FDx =
1

2
ρACD

u − ẋ
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2

FDy =
1

2
ρACD

v − ẏ
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2

FDz =
1

2
ρACD

w − ż
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2
(1)

where F is the force in which the subscript stands for
the direction, CD is the drag coefficient of the system con-
tributed mainly by parachute, A gives the cross section
area, and ρ gives the density of air, assuming to be con-
stant in simulated falls. If (x, y, z), as a vector, is used
to give the position of the GPS dropwinsonde, (ẋ, ẏ, ż) in-
dicates the the velocity of the dropwindsonde at position
(x, y, z). Similarly, (u, v, w) is employed as the wind veloc-
ity vector. Since the gravity and drag forces are only forces
that the dropwindsonde experiences when it falls, the mo-
tion of the dropwindsonde can be determined by combining
of these two types of forces as

mẍ =
1

2
ρACD

u − ẋ
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2

mÿ =
1

2
ρACD

v − ẏ
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2

mz̈ =
1

2
ρACD

w − ż
√

(u − ẋ)2 + (v − ẏ)2 + (w − ż)2
− mg(2)

where (ẍ, ÿ, z̈) indicates the acceleration of the dropwind-
sonde and m is the mass of the dropwindsonde system.

Equation (2) is a set of coupled nonlinear ODEs (Or-
dinary Differential Equation) governing the motion of the
dropwindsonde. Thus, it is extremely difficult, if it is not
impossible, to solve analytically, and some numerical in-
tegration techniques are required to give a discrete solu-
tion. In this case we use the fourth order Runge-Kutta
method, described by Chapra and Canale (2010) to nu-
merically integrate the equations. The numerical solution,

velocity of the dropwindsonde, to equation (2), is sought
along the trajectory of the dropwindsonde and then posi-
tion of dropwindsonde is found by integrating the solution
while acceleration is obtained by differentiating it.

b. Post processing of GPS dropwindsonde measurements

When GPS dropwindsonde measurements were used,
post processing is conducted to, firstly get rid of the noise in
its signal and secondly to add a correction term to extract
the wind velocities from the raw measurements. According
to Hock and Franklin (1999), the correction term includes
the acceleration and the falling rate of the dropwindsonde.
Since there is no direct measurements of the acceleration,
these values are typically obtained by differentiating the
velocities and the static pressure measured by the drop-
windsonde. Thus, to evaluate influence of different post
processing techniques, both differentiation schemes used to
calculated the acceleration terms and low-pass filter char-
acteristics are investigated.

Only briefly mentioned in (Franklin et al. 2003; Vickery
et al. 2009), low-pass filters did not receive a detailed dis-
cussion. Therefore, only commonly used filters will be in-
vestigated. In other words, both the first order and second
order Butterworth filter and the moving average method,
acting as a low-pass filter, will be evaluated. Another fac-
tor associated with the filter is the cut-off frequency. Men-
tioned by Franklin et al. (2003), low-pass filter with cut-off
time scale of 3s is applied to post process the GPS drop-
sonde measurements in their study. Therefore, 2s, 3s, 4s
are, as filter cut-off scales, investigated in this study.

As to differentiation schemes, since the first order back-
ward differentiation is widely used in interpreting drop-
windsonde measurements, it is included in this sensitiv-
ity analysis. Because higher order differentiation usually
gives more accurate results, differentiation schemes of sec-
ond and third order are also evaluated. Thus, in this study,
first and second order of both forward and backward dif-
ferentiation, together with second and third order of cen-
tral differentiation, are used to post process dropwindsonde
measurements and then final results are compared.

4. Results and Discussion

Comparisons of results coming from the dropwindsonde
simulation, after post processing described by section b,
and prescribed statistical characteristics of simulated wind
fields are shown in following figures. The comparison and
discussion will be divided according to the models used to
generate the wind field. Results from the spectrum ma-
trix modelled wind field will be mainly used to examine
mean and turbulence profiles while results from the spec-
tral tensor modelled wind fields will be used to explore the
possibility of extracting spectral information from the GPS
dropwindsonde measurements.

5



 0

 100

 200

 300

 400

 500

 600

 15  20  25  30  35  40  45

H
ei

gh
t (

m
)

Velocity (m/s)

Longitudinal Velocity Comparison

Prescribed
Real
Drop
Wind

Fig. 9. Mean Velocity Profile Comparison, where pre-
scribed means prescribed value associated with generated
wind field, Real means velocity calculated using wind find-
ing equation with true acceleration, drop means veloc-
ity of dropwindsonde along while wind means local wind
extracted from wind field at the moment dropwindsonde
passed by
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Fig. 10. Turbulent Velocity Profile Comparison, where
prescribed means prescribed value associated with gen-
erated wind field, Real means turbulence calculated us-
ing wind finding equation with true acceleration, drop
means turbulent velocity of dropwindsonde along while
wind means turbulent local wind extracted from wind field
at the moment dropwindsonde passed by
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Fig. 11. Turbulent Shear Profile Comparison, where pre-
scribed means prescribed value associated with generated
wind field, Real means shear calculated with wind finding
equation derived horizontal wind, drop means shear calcu-
lated with horizontal wind measured directly by dropwind-
sonde while wind means local wind shear extracted from
wind field at the moment dropwindsonde passed by

a. Spectrum Matrix Modelled Wind

Figure.9 shows mean profiles comparison in case of log-
law governed wind field. The very good agreement substan-
tiates the use of the wind finding equation introduced by
Hock and Franklin (1999) in mean wind profile interpre-
tation. Although there is appreciable difference between
dropwindsonde velocities and real wind velocities in the
lowest portion of the wind field, the acceleration correction
term in the wind finding equation removes much of this
difference. On the other hand, the rms velocity fluctua-
tion and turbulent shear comparisons, shown in Fig.10 and
Fig. 11, do not share the same satisfactory level of agree-
ment as in the mean profile comparison. As shown in these
figures, the dropwindsonde has the ability to capture the
general shape of the variation of the turbulence along its
path, although the measured quantities deviate from the
prescribed values randomly by considerable amounts when
compared to the mean profile case.

Figures.12 and 13 shown that when mean profile is of
interest, the use of different post processing techniques,
such as different filters, different filter scales and different
differentiation schemes, have no significant impact on the
final mean profile produced. However, their influence is
pronounced when turbulence information is of interest. As
shown in Fig.14 and 15, both differentiation schemes and
filters characteristics have the an appreciable impact on the
post processed turbulent velocity profile. In Fig.15, differ-
ent differentiation schemes used to derive acceleration of
dropwinsonde are compared. Although higher order central
differentiation gives rms velocity fluctuation profile closer
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Fig. 12. Mean Velocity Profile Comparison when different
differentiation schemes are employed, where FD1 stands for
1st order forward differentiation, FD2 stands for 2nd order
forward differentiation, BD1 stands for 1st order backward
differentiation,BD2 stands for 2nd order backward differ-
entiation, CD2 stands for 2nd order central differentiation
and CD3 stands for 3rd order central differentiation

to prescribed profile than lower order differentiation, there
is no significant improvement shown. Additionally, first
order backward differentiation, which is commonly used in
calculating acceleration term in practise, share the same
level of accuracy as high order differentiation while sec-
ond order backward differentiation overestimate the tur-
bulence. Compared with differentiation schemes, different
filter characteristics have a greater impact. As shown in
Fig.14, moving average always underestimates the turbu-
lence regardless of what filter scale is used. By compari-
son, Butterworth Filter is better in predicting rms velocity
fluctuation. The scale of filter, or cut-off frequency, by far
overweights the order of filter in terms of influence when
the Butterworth filter is used. This can be seen in the Fig.
14 that difference between profiles interpreted using differ-
ent filter scale is obviously larger than difference coming
from the use of different order of Butterworth filter.

Another factor has been investigated in this study is the
size of the dataset to be composited to get statistical mean-
ingful results. As shown in Fig.16, mean profiles measured
by the GPS dropwindsonde converged to the prescribed
value when size of dataset used to composite exceeded 500,
as the difference between composited profile and the pre-
scribed value being of the order of 0.1m/s. However, tur-
bulence information needs a larger size of dataset to get a
statistically converged profile. Like showing in Fig.17, rms
velocity profile composited of 500 individual profiles still
exhibits random variation large enough to bury prescribed
shape. Thus, Fig.17 suggests a larger dataset of individual
profiles should be utilized if turbulence information is of
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Fig. 13. Mean Velocity Profile Comparison when differ-
ent filter characters are employed, M1 stands for moving
average with 2s filter scale, M2 stands for moving average
with 3s filter, M3 stands for moving average with 4s fil-
ter scale, BA1 stands for 1st order Butterworth filter with
2s filter scale, BA2 stands for 1st order Butterworth filter
with 3s filter scale, BA3 stands for 1st order Butterworth
filter with 4s filter scale, BB1 stands for 2nd order Butter-
worth filter with filter scale 2s, BB2 stands for 2nd order
Butterworth filter with filter scale 3s, BB3 stands for 2nd

order Butterworth filter with filter scale 4s
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Fig. 14. Turbulent Velocity Profile Comparison when dif-
ferent differentiation schemes are employed, where FD1
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order backward differentiation,BD2 stands for 2nd order
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Fig. 15. Turbulent Velocity Profile Comparison when dif-
ferent filter characters are employed, M1 stands for moving
average with 2s filter scale, M2 stands for moving average
with 3s filter, M3 stands for moving average with 4s fil-
ter scale, BA1 stands for 1st order Butterworth filter with
2s filter scale, BA2 stands for 1st order Butterworth filter
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order Butterworth filter with filter scale 4s

interest.
As for the rms velocity fluctuation profile comparison,

the turbulent shear comparison shows the post processing
techniques share the same impact on the final turbulent
shear measured as in Fig.18 and Fig.19. However, the devi-
ation of measured value from the prescribed ones are more
appreciable in this case than in the case of rms velocity
fluctuation profile comparison. Perhaps it is because the
variation of the vertical wind velocity also contributes in
this case. Naturally, this would leads to conclusion that
even more data is needed to composite a statistical con-
verged profile when turbulent shear is of interest, as shown
in Fig.20.

b. Spectral Tensor Model

Simulation of the GPS dropwindsonde though the spec-
tral tensor modelled wind field gives the opportunity to
explore the possibility of extracting spectral information
about wind field from the dropwindsonde measurements.
Thus, the comparison in this part will focus on the spec-
trum extracted from the dropwindsonde measurements and
the spectrum prescribed by the spectral tensor model.

The spectral tensor described wind field in terms of
spectral density in wave number space in all three direc-
tions. Therefore, the spectral tensor model is capable of
giving wind spectrum in any direction by integrating the
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Fig. 16. Mean Velocity Profile Comparison with different
composition data size, where number of composited data
size indicated by key
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Fig. 17. Turbulent Velocity Profile Comparison with dif-
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ferent differentiation schemes are employed, where FD1
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Fig. 19. Turbulent Shear Profile Comparison when differ-
ent filter characters are employed, M1 stands for moving
average with 2s filter scale, M2 stands for moving average
with 3s filter, M3 stands for moving average with 4s fil-
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with 3s filter scale, BA3 stands for 1st order Butterworth
filter with 4s filter scale, BB1 stands for 2nd order Butter-
worth filter with filter scale 2s, BB2 stands for 2nd order
Butterworth filter with filter scale 3s, BB3 stands for 2nd

order Butterworth filter with filter scale 4s
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Fig. 20. Turbulent Shear Profile Comparison with differ-
ent composition data size, where number of composited
data size indicated by key

tensor along the other two directions perpendicular to the
target direction. In other words, wind spectrum coming
from the dropwindsonde measurements should be recov-
ered by integrating the spectral tensor along k1 and k2

axis in wave number space which represent the along-wind
and cross-wind direction in physical space.

A comparison between the prescribed and the measured
longitudinal wind spectrum is shown in Fig.21, and also
shows GPS dropwindsonde is capable of giving spectral in-
formation about the measured wind field. It is seen in the
figure that the dropwindsonde can pick up spectral energy
in the relative low wave number region where the predomi-
nant energy of the wind exists, except in the very low wave
number region. The underestimation of spectral density
in this region may be due to lack of measurements in this
region rather than incapacity of the dropwindsonde mea-
surements. In contrast, GSP dropwindsonde signal alone
underestimates spectral density in the relative high wave
number region. However, the acceleration term of the wind
finding equation correct this underestimation.

Figure.22 shows a comparison for the cross spectra of
the longitudinal and vertical components of wind. Similar
to the comparison for the longitudinal spectrum, the GPS
dropwindsonde is capable of reporting the general trend
of the spectral density, and as before measured spectral
density deviates from its prescribed value in the very low
wave number region. As in the comparison of the longi-
tudinal spectrum, the same explanation may also apply in
this case.

5. Conclusion and Remark for Future Study

In this study, dropwindsondes are simulated to fall through
wind fields with prescribed statistical characteristics. Two
models describing spectral density of wind energy are adopted,
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Fig. 21. Longitudinal Spectral Density Comparison, where
prescribed refers to value integrated from spectral tensor,
Ref1 refers to value post processed using 1st order back-
ward differentiation and 1st order Butterworth filter with
filter scale 3s, Ref2 refers to value post processed using
true acceleration, Wind refers to local wind in wind field
at moment when dropwindsonde passed by
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Fig. 22. where prescribed refers to value integrated from
spectral tensor, Ref1 refers to value post processed using
1st order backward differentiation and 1st order Butter-
worth filter with filter scale 3s, Ref2 refers to value post
processed using true acceleration, Wind refers to local wind
in wind field at moment when dropwindsonde passed by

one is the spectrum matrix model while the other is the
spectral tensor model. Validations of wind finding equa-
tion introduced by Hock and Franklin (1999) is conducted
based on the motion simulation of the dropwindsonde. In
addition to validations, simulations also give a sense of the
impact of different post processing techniques, like filter
types, filter scales and differentiation schemes, on the final
interpretation of measurements. Other factors has been in-
vestigated are the size of dataset of composition to get sta-
tistical meaningful results and possibility to extract spec-
tral information from the dropwindsonde measurements.

Comparison between statistics measured by the GPS
dropwindsonde and its corresponding prescribed values in-
dicates the GPS dropwindsonde is capable of reporting
mean wind profiles with satisfactory accuracy. With help of
the wind finding equation introduced by Hock and Franklin
(1999), differences between the measured mean profiles and
prescribed values can be removed in the region where mean
profile rapidly changed with height. Although the GPS
dropwindsonde measurements also captured the variation
trends of turbulence profiles, agreements did not achieve
the same level as in mean profiles comparison. However,
although measured turbulence statistics deviated from its
prescribed value appreciably, no systematical error is found,
and the deviation reduced when composite data size in-
creased, which means turbulence information can be ex-
tracted when the measurements are abundant.

Although no significant differences in the mean profiles
comparison is found when different post processing tech-
niques are employed, they do have considerable influence
on turbulence statistics derived from the dropwindsonde
measurements. Comparisons of rms velocity fluctuation
profiles and turbulent shear profiles suggest that the filter
characteristics are more influential when compared with
differentiation schemes used to calculate the acceleration
term. Although high order central differentiation schemes
give velocity fluctuation profiles slightly closer than lower
order schemes, no significant improvement is shown. Com-
paring with Butterworth filter, moving average perform
poorly by underestimating turbulence. Filter scale, or cut-
off frequency, is more influential when compared with filter
order as Butterworth filter is used.

Understandably, composition data size has impact on
credibility and variation of final interpretation of dropwind-
sonde measurements. Composited mean profile is stable
when size of dataset of individual profiles exceed 500 while
compositing turbulence profile needs a larger dataset to get
statistically meaningful results.

To explore the possibility of extracting spectral infor-
mation about wind field from the GPS dropwindsonde mea-
surements, the simulation of dropwindsondes falling through
the spectral tensor modelled wind field is analyzed. Com-
parison of the measured wind spectrum with the prescribed
wind spectrum suggests the dropwindsonde is able to pick

10



up most significant spectral energy. However, the drop-
windsonde velocity alone underestimate spectral density in
energy containing wave number region while acceleration
corrections give this missing energy back.

With help of this study, both mean profiles and tur-
bulence informations can be extracted from the dropwind-
sonde measurements available. The wind finding equation,
validated by this numerical simulation, is good interpreta-
tion in terms of not only mean profiles but also turbulence
information, although care needs to be taken when accel-
eration terms is calculated in deriving turbulence profiles.
In addition to profiles, wind spectra can also be extracted
from the dropwindsonde measurements. If the turbulence,
as one significant factor in determining the energy and mo-
mentum exchange in hurricane, can be made clear by exam-
ining the dropwindsonde measurements, our understanding
of the hurricane wind structure and therefore the hurricane
intensity prediction will be improved.
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