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ABSTRACT
A regression tree ensemble or forest is applied to a large data set containing 128 possible pre-

dictors for the purpose of predicting the probability of encountering moderate or greater turbulence
during jet transport flights over the continental United States. Most of the predictors contain either
missing data or outlier values. Because the data are not missing at random and the structure of the
missing data is not known, imputation techniques are inapplicable. Because regression trees can
accommodate missing data, a regression tree method was chosen to address the problem. A simple
preprocessing step is applied to these data to remove outliers, replacing them with missing data
flags.

Fifty different regression trees are generated by sampling a subset of the data at random with-
out replacement. The fifty resulting trees tend to share similar structures and use only four or five
of the same available predictors after cross validation pruning. An average of the predicted proba-
bility is then taken over all fifty trees for each set of observations. While no attempt is made to opti-
mize the ensemble beyond generating the fifty regression trees, this method is found to work
moderately well for predicting the probability of turbulence, with a Brier skill score of 0.237. 

1. Introduction
Now in its third year, the Third Annual American Meteorological Society Artificial Intel-

ligence competition focusses on various meteorological problems amenable to artificial intelli-
gence techniques. The data set used here consists of 103,990 observations of conditions along jet
transport flight routes (Figs. 1 and 2). The data set contains approximately 136 different variables.
The data set also contains two additional parameters: a measure of eddy dissipation rate (EDR)
and whether or the aircraft experienced moderate or greater turbulence (ISMOG).

Once a model is defined, it is applied to the “test” data that consists of 50,127observations
from which EDR and ISMOG have been excised. The resulting forecasts are returned to the com-
petition coordinator, who then scores the predictions using the Brier Skill Score (Wilks, 2006).

2. Method

a) Preprocessing
Not all of the variables are explained or defined, though some clearly have no predictive

value, such as observation number and aircraft ID number. In addition, a qualitative inspection of
the data indicates that neither time of day nor location have predictive value and so these, too, are
removed. This leaves 128 possible predictors. Of these remaining predictors, easily half contain
50% or more missing data (some were missing more than 90% of the data). Inspection reveals that
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Figure 1. Locations of data points that are not associated with moderate or greater turbulence.

Figure 2. Data points associated with moderate or greater turbulence.



the data are not missing at random. In addition, several of the remaining predictors contain what
appears to be erroneous data values. 

Because the data are not missing at random, most imputation techniques are inapplicable.

because if most of the data are missing, imputation may capture incorrect relationships, skewing
the covariance or correlation structure (if a linear technique is applied) or drive the noise level
high, making a nonlinear imputation technique unreliable. In some cases, it is possible to take the
structure of the missing data into account and then impute the missing values, but such techniques
depend on correctly assessing the missing data structure. Failure to do so leads to incorrect impu-
tations, which can in turn lead to a model that generalizes poorly.

PCA operates on a covariance, correlation or other similarity matrix and generating a sim-
ilarity matrix depends upon a rectangular data array. Given the range of scales in these data, the
only obvious choice is a correlation matrix. We could compute missing data correlations (using
algorithms available in S-Plus) but these use simple row deletion. If 90% of the rows are deleted,
the baby is effectively discarded with the bath water. Still, it is possible to generate a series of
eigenvalues and associated eigenvectors. Since 10% of ~50,000 observations is 5000 observa-
tions, we could obtain up to about 4999 positive eigenvalues. Thus, while it is possible to do this,
the wisdom of mining a data set after discarding 90% of the values contained within it seems
imprudent. Likewise, support vector machine (SVM) techniques expect rectangular data arrays.
Because data imputation is not feasible, neither of these techniques were deemed viable. In fact,
any technique that depends on complete data (no missing data) becomes nonviable. This seriously
constrains the choices of available techniques.

In addition, we found that some variables, particularly those environmental variables with
the “linear” tag in columns 97 through 128, possess statistically implausible values. We examined
the quantiles of these columns in one percentile increments. Typically, we see these values range
over 3 orders of magnitude in an absolute sense, but in some cases they varied over 10 or more
orders of magnitude. In all cases, these implausible values were contained in the upper or lower 2-
3 percent of the distribution.

Figure 3. An example of the most prevalent tree structure within in the ensemble, dubbed the type 1 tree.
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Because we could not be sure what these values represented, we chose to simply remove
those we deemed statistically implausible. Thus, while these columns did not initially contain
missing data, they did after the preprocessing step. Because only columns that did not originally
contain missing data are altered by this step, the total increase in missing data values constitutes a
small percentage (1-2%) though any single column may end up with as much as 5% of the values
converted to missing data.

b) Method
Because of the large amount of missing data, we choose to use a method based on regres-

sion trees. A regression tree could be generated for either EDR or ISMOG, the latter being a
binary variable taking on values of 0 or 1. Attempts to generate EDR values yielded poor results,
so the regression was implemented on ISMOG, with the resulting values interpreted as a probabil-
ity. 

The particular tree method used here is part of the rpart library, available for both the open
source R system and the commercial package S-Plus. The rpart library follows closely Breiman
et. al. (1993). The rpart library handles missing data by replacing it with surrogate values of either
all 0 or all 1, depending upon which provides the best overall performance based on cross-valida-
tion. All other data is left as is and not altered by the algorithm. In addition, rpart contains pruning
algorithms that prune or simplify the resulting tree to a parsimonious model that almost certainly
does not contain all available predictors. Pruning is also based on internal cross validation. 

Trees are an attractive choice because they are nonparametric, nonlinear, and yet subject to
easy explanation and interpretation. They accommodate hierarchical relationships, missing data,
and are well-suited to mixed data types. A disadvantage is that they need large data sets, but this
year’s competition provided a very large data set. 

The data were split such that 67% of the training data were used as an internal training set
and the remaining 33% were used as an internal testing set on which the candidate model was

Figure 4. Example of a type 2 tree.
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tested. Initial results that built a single regression tree based on 67% of the provided data appeared
promising. To improve performance, we decided to implement an ensemble tree model, also
known as a forest. Note that this is not a random forest, which is constructed using different tech-
niques. The ensemble tree was built by randomly choosing (without replacement) 67% of the
training data and building a new regression tree. For the sake of time, this was repeated only 50
times. Each model was then used to generate a probability prediction and the resulting 50 predic-
tions averaged for each case. Due to time constraints, no attempt was made to optimize the sample
size used to build the tree forest.

3. Results and Discussion.
For the data set we used, the reference Brier score is 0.061 and the resulting ensemble BSS

is 0.216. This value is sensitive to the reference Brier score, which may explain why the model
appears to perform better on the test data, a very unusual result.

Within the ensemble five different tree structures emerged. The most prevalent structure is

called type 1 (Fig. 3) and comprises 76% of the forest. Within that type, all but three members uti-
lize the predictor called nssl.dbz.DMean0.10. The three exceptions use nssl.dbz.DMean0.20,
which is similar. Type 2 (Fig. 4) trees comprise 14% ensemble forest and are similar to type 1
trees except for an extra split on the left hand side. Type 2 trees also use nssl.dbz.DMean0.10,
except for two of the seven, which use nssl.dbz.DMean0.20. Type 3 (Fig. 5) and 4 (Fig. 6) trees
differ only slightly and each type contains 8% of the members. A single tree of a fifth type also
occurred. It is similar to a type 1 tree, but uses both the nssl.dbz.DMean0.20 and
nssl.dbz.DMean0.10, but discarding the NCSU1.Linear predictor (Fig. 7).

Because we lack knowledge about what many of the predictors are, we do know which the
predictors are associated with radar reflectivity. These appear in every tree and is typically associ-
ated with convection. According to the commentary associated with the competition data set notes
that about 60% of the turbulence encounters are associated with convection, so the appearance of
radar reflectivity near turbulence encounters is easily explained.

Figure 5. An example of a type 3 tree.
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The similarity of all four types is likely due to the relatively large sample size used to
build the regression trees. A smaller sample size is likely to display more variety, though it may
not perform better. As no attempt was made to optimize the regression tree ensemble, some
improvement is likely to result through more experimentation. 
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Figure 6. An example of a type 4 tree.
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Figure 7. The fifth type of regression, only one which was constructed by the regression tree ensemble.
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