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1. INTRODUCTION 

Strong turbulence presents a serious hazard to 
commercial aircraft.  Aircraft encounters with strong 
turbulence can cause injuries to passengers and crew 
and in extreme cases damage to the aircraft that can 
result in a crash.  Therefore, quality forecasts of strong 
turbulence are of great importance to aviation.  
Unfortunately, the physical mechanisms responsible for 
strong turbulence are very complex, making forecasts of 
turbulence difficult. 

This study is part of a contest to showcase artificial 
intelligence methods and statistical learning to predict 
the probability of turbulence strong enough to adversely 
affect aviation.  A vast amount of data spanning 132 
variables for 103 990 cases is provided, along with 
verification of whether moderate or greater (mog) 
turbulence was experienced.  Entrants are to use this 
data to train their methods then make probabilistic 
turbulence predictions for a contest data set where the 
presence of turbulence is unknown to the entrants.  Our 
study focuses on simple statistical methods for making 
probabilistic predictions of turbulence. 

 
2. METHODOLOGY 

To produce a probabilistic turbulence forecast, we 
first determine a predictive function of turbulence for 
each variable independently.  The performance of each 
variable in predicting turbulence is then calculated for 
use as weights for an aggregate forecast combining the 
individual variable forecasts into a final turbulence 
forecast. 

We assume that the probability p of mog turbulence 
is related to each observed variable by the logistic 
function by a generalized linear model: 
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where x is the value of the variable and  and  are 
parameters to be determined via regression.  This 
regression cannot be estimated using least squares, so 
we will use maximum likelihood to estimate the 

parameters  and . 
Following Casella and Berger (2001), the likelihood 

of this function is given by 
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If we define 𝐹(𝑧) ≡ 𝑒𝑧/(1 + 𝑒𝑧) and 𝐹𝑖 ≡ 𝐹(𝑥𝑖), the log-

likelihood is 
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In order to determine the maximum likelihood, we must 

find the value where the derivative of both  and  is 
zero.  This means we need to solve 

    
1

log , | 0
n

i i

i

L y F 
 


  


y  (3) 

and  

    
1

log , | 0
n

i i i

i

L x y F 
 


  


y  (4) 

 
simultaneously. 

Equations (3) and (4) cannot be solved analytically, 
so we use the Newton-Raphson method to solve them 
numerically.  Newton-Raphson is an iterative process 

that updates the estimated values of  and  at each 
iteration using the Taylor approximation.  For equations 
(3) and (4), this is given by 
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where  is the parameter vector [,]
T
 and H is the 

Hessian operator: 
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so that 
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Eq. (5) is iterated until  and  converge.  In order to 
preserve data for testing purposes, roughly one-third of 
the available complete data is withheld from the 
regression.  The portion that is used in the regression is 



 
 

the training data while the data withheld to evaluate the 
performance is the test data. 

Since the final results of this method will be 
evaluated by the Briar Skill Score (BSS), our weighting 
method uses the BSS in determining the weights.  First 
we eliminate all variables with a BSS of less than 0.15 
for the training data.  Then the weight assigned each 
remaining individual prediction is determined by the 
inverse square of the Briar Skill Score: 
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where the BSS is defined by (Wilks 2006): 
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with BSref being the Briar Score (BS) of a reference 
forecast of 𝑝 = 𝑜  and o a binary value determined by 

whether mog turbulence is observed (1) or not (0).  Both 
the cutoff and the weight was determined after 
experimentation.  The final predicted probability of mog 
turbulence is then the sum of the weights times the 
predictions: 
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3. RESULTS 

We computed the BSS for three different, 
independent sets of data: the training data, the test 
data, and the contest data.  The BSS of the training data 
is 0.205, indicating that this method is skillful.  Skillful 
here is defined as having a BSS greater than zero 
(performing better than the reference forecast of 
climatological probability).  The BSS for the test data is 
0.201.  The closeness of this score to the BSS for the 

training data indicates that the results are stable and 
that the skillful BSS for the training data is not a result 
from over-fitting the training data.  Finally, the BSS for 
the contest data is 0.199, close to that for the test data.  
This result placed third out of four entrants, but was not 
statistically distinct from 2

nd
 place. 

 
 
4. CONCLUSIONS 

The simple statistical method presented here shows 
skill in predicting moderate or greater turbulence, but 
there is still some room for improvement.  One potential 
variation of this method would be to determine optimal 
individual variable weights using a linear regression, 
rather than weighting each variable prediction by the 
inverse of the Briar skill score squared.  We could also 
eliminate the individual variable predictions of 
turbulence altogether and instead use all variables 
simultaneously in a generalized multi-linear model with 
the logistic function. 
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