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1. INTRODUCTION 
 
 Over the years, a variety of parametric tropical 
cyclone radial pressure or wind profiles has been 
developed to depict a wind field within a tropical 
cyclone.  Originally introduced to tropical meteorology 
by Depperman (1947), a Rankine (1882) vortex has 
been used in numerous studies to approximate the inner 
core of solid-body rotation of the tropical cyclone.  
Beyond the core radius, the tangential velocity 
decreases, with some values of about 1.06.0 ±  being 
inversely proportional to radial distance from the rotation 
center.  These velocity distributions were found to give a 
good approximation to the tangential wind profiles of 
tropical cyclones (Hughes 1952; Riehl 1954, 1963; 
Malkus and Riehl 1960; Gray and Shea 1973 among 
others).  The Rankine model, however, does not seem 
to describe individual tropical cyclones well (Holland 
1980). 
 Other parametric pressure- and/or wind-profile 
models have been formulated by Schloemer (1954), 
Holland (1980), Chan and Williams (1987), DeMaria et 
al. (1992), and Willoughby et al. (2006).  The models, 
with the exception of the Willoughby et al. (2006) model, 
sometimes do not fit the observations of aircraft flight-
level tangential wind data, including the sharply peaked 
profiles of tangential winds in intense hurricanes.  In 
their aircraft observational studies of tropical cyclones, 
Willoughby et al. (2006) not only modified the inner and 
outer tangential wind profiles of the Rankine model but 
as well eliminated the discontinuity at its radius by 
constructing a smooth, radially-varying polynomial ramp 
function in the annulus of tangential wind maximum.  
The Willoughby et al. model favorably compared with 
observed profiles of tangential wind.  
 Holland (1980) formulated the most widely used 
parametric wind-profile model for such applications as 
storm-surge forecasting, windstorm underwriting, and 
tropical cyclone wind profiles.  Willoughby and Rahn 
(2004), however, challenged the Holland profile that the 
areas of strong winds inside the eyewall and of nearly 
calm winds at the vortex center are unrealistically wide 
and that the winds outside the eyewall decay too rapidly 
with increasing radial distance from the center.  
Unfortunately, the profile can result in errors in the 
computation of a geopotential height or pressure. 
 Wood and White (2010) formulated a new and 
different parametric vortex wind-profile model with appli- 
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cations to Doppler radar observations of dust devils, 
tornadoes, and thunderstorm mesocyclones.  The model 
employs the five key parameters:  maximum tangential 
wind ( xV ), radius ( xR ) at which xV  occurs, curvature 

growth (κ ) that controls the inner velocity shape near 
the vortex center, decay (η ) that decreases the outer 

velocity profile outside xR  with the radial distance from 

the vortex center, and radial width ( λ ) that controls a 
discontinuous or continuous tangential wind maximum 
at xR .  The most important part of the model is that it 

has the capability of transitioning from a relatively flat 
profile to a sharply peaked profile of tangential wind and 
vice versa in the annulus of maximum tangential wind.  
Radial profile families of tangential velocity and vertical 
vorticity in the Wood-White model compared favorably 
to those of Doppler radar observations of vortices, and 
theoretical vortex models including the Rankine vortex.  
The Wood-White vortex model, however, has never 
been tested and verified with tropical cyclone radial wind 
profiles from hurricane reconnaissance aircraft.  This is 
a motivation for this study. 
 The objective of this study is to test and verify the 
Wood-White (2010) parametric vortex wind-profile 
model by comparing radial profiles of model tangential 
winds to radial profiles of aircraft flight-level tangential 
wind data.  A minimization technique was used to fit the 
data to the model wind profiles in different stages of 
tropical cyclones that range from tropical storms having 
nearly flat tangential wind profiles to hurricanes 
exhibiting single- and dual-maximum eyewall tangential 
wind profiles. 
 
2. WIND PROFILE FORMULATION 
 
a. Tangential Wind 
 
 The parametric tangential wind-profile formulated 
by Wood and White (2010) is given by 
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where V  is a tangential (swirling) wind varying with 
increasing radius ( r ) from a vortex center, xRr /≡ρ  

(or RMWr /≡ρ , RMW  is the radius of maximum 

winds) is a normalized radial distance, and 
T],,,,[ ληκxx RV=m  represents a model vector of five 

parameters.  The meaning of each parameter ( ληκ ,, ) 

is described in the subsequent sections.  The subscript 
WWV  in (1) refers to the Wood-White vortex. 



 The plots were prepared in order to help 
understand the key roles of varying κ , η  and λ  values 
on the behaviors of the radial profile families of 
normalized tangential velocity (Fig. 1).  In each panel of 
the figure, three varying values of η  are presented for a 

given value of κ .  The variables κλ=k  and ηλ=n  

remain unchanged as one progresses from the top 
panels through middle to the bottom panels of Fig. 1.  At 
the same time, κ  and η  progressively increase with 

decreasing λ . 
 The shape of the tangential velocity profile near 

0=ρ  depends primarily on the varying of the power-

law exponent κλ  in κλρ  of (1).  As one progresses 

from the left panels through middle to the right panels of 
Fig. 1, the exponent progressively changes from 
negative through zero to positive curvatures of the 
tangential velocity profiles near 0=ρ .  For example, 

when 1<κλ , the tangential velocity rapidly increases 
near 0=ρ  and then slowly with increasing ρ  until it 

reaches 1=ρ .  This narrow funnel-shaped profile has 

negative curvature as the curvature turns to right with 
increasing ρ  from the z-axis.  The profile implies 

comparatively strong rotational velocity near the axis in 
a one-celled structure (i.e., upward motion along the z-
axis with little or no downward motion away from the 
axis). 
 When 1=κλ , the V-shaped profile of tangential 
velocity near 0=ρ  has zero curvature with increasing 

ρ .  The linearity of the profile indicates the sold-body 

rotation of fluid in a vortex core with angular velocity 
(see second column of Fig. 1, for example). 
 When 1>κλ , the tangential velocity slowly 
increases near 0=ρ  and then rapidly with increasing 

ρ , as shown in the right panels of Fig. 1.  At the same 

time, this U-shaped profile has positive curvature as the 
curvature turns to left with increasing ρ  from the z-axis 

before eventually turning to right.  This effect suggests 
the presence of relatively weak rotational velocity that 
occupies the vortex center.  The U-shaped profiles of 
tangential velocity inside 1<ρ  are similar to those of 

Kossin and Schubert (2001).  As one progressively 
changes from 1=κλ  to ∞→κλ , the V-shaped profile 
transitions to the U-shaped profile that occupies a large 
area of nearly calm winds.  The latter profile is 
characteristic of a two-celled structure (i.e., downward 
motion along the axis with upward motion away from the 
axis). 
 The ratio of κ  to η  in the denominator of (1) 

indicates whether the relatively flat or steep velocity 
profile occurs beyond 1=ρ .  The effect of this ratio is to 

decrease the tangential velocity as a function of η  at a 

given κ  value in each panel of Fig. 1.  Note that when 
ηκ =  in (1), the tangential velocity profile is perfectly 

flat.  When 0.1/8.0 << ηκ , the tangential wind decays 

slowly with increasing ρ  to maintain a strong circulation 

at large ρ .  As will be shown in this study, these profiles 

have been commonly observed in the developing stages 
of tropical cyclones (e.g., Wiiloughby 1990a,b; 
Willoughby and Rahn 2004; Mallen at el. 2005; 
Willoughby et al. 2006). 
 The power-law exponent ( λ ) in the velocity 

function ληρκη −− −+ )]1(1[ 1  governs the shape of the 

tangential velocity peak ( xV ) in the annular region of the 

maximum.  For given κ  and η  values, the bell-shaped 

profile remains unchanged with small ρ  and then 

begins to decay with increasing ρ  within 1≤ρ  as λ  

progressively decreases from 1.0 to near zero.  When 
0→λ , the inner portion of the function approaches 

asymptotically to 1.0 between 0=ρ  and 1=ρ  (i.e., 

the decaying profile becomes flat); the derivative of the 
function becomes discontinuous at 1=ρ .  The outer 

portion of the function beyond 1=ρ  still falls off to zero 

with increasing ρ .  As one progresses from the top 

panels through middle to the bottom panels of Fig. 1, a 
more continuous maximum tangential wind becomes 
increasingly localized with decreasing λ  at 1=ρ .  As 

0→λ , three radial profile families separated by 
different large η  values in each panel merge together to 

form one superimposed radial profile at 1≤ρ .  Three 

model parameters ( ληκ ,, ) do not change the 

magnitude at 1=∗
WWVV  and 1=ρ . 

 We consider a special case where the Wood-White 
vortex can transition to the idealized Rankine vortex 
( RV ), given by 
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where γ  is the power-law exponent used to describe 

the velocity profile with 1=γ  for 1≤ρ  and 1−=γ  for 

1>ρ .  Incorporating 1=κλ  and 2=ηλ  in (1) and 

taking the limit of the resulting equation as 0→λ , 

ρ→∗
WWVV  for 1≤ρ  which means that ∗

WWVV  

approaches the inner core of solid-body rotation.  

Furthermore, 1−∗ → ρWWVV  for 1>ρ , indicative of the 

fact that ∗
WWVV  decreases and tends asymptotically to 

the value given by a potential flow in which 
1−∗ ∝ ρWWVV .  Hence, the Wood-White vortex exactly 

coincides with the idealized Rankine vortex when 
0→λ , as shown by the red curves in the second 

column of Fig. 1. 
 Taking the limit of (1) as ∞→ηκ ,  and 0→λ , the 

resulting equation exactly coincides with (2) and is 
simplified to 
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where κλ=k  and ηλ=n .  The normalized profiles of 

tangential velocity with their discontinuities occurring at 
1=ρ , directly calculated from (3), are shown at and 

beyond the bottom panels of Fig. 1.  The Rankine vortex 
may be viewed as a limiting case for the Wood-White 
vortex as 0→λ .  (3) is applicable only to the sharply-
peaked profiles of the primary eyewall tangential winds 
in intense hurricanes. 
 
b. Cyclostrophic Wind 
 
 The tangential wind in (1) is not properly scaled for 
tropical cyclones because of the absence of gradient 
wind balance.  Willoughby (1990b) showed that the 
gradient wind approximates the axisymmetric swirling 
flow in the free atmosphere within 150 km of the centers 
of Atlantic tropical cyclones.  Thus, the tangential wind 
maximum ( xV ) in (1) can be correctly scaled, using the 

cyclostrophic Rossby number, and is given by 

  












 ++
=

cx

cx
xcx R

R
VV

225.05.0
, (4) 

where cxV  is the scaled cyclostrophic tangential wind 

maximum, 21010)/( −≅= xxcx RfVR  is the local 

cyclostrophic Rossby number at the radius of maximum 
wind, and f  is the Coriolis parameter (Willoughby 

1990b).  In (4), the parenthesis represents the 
dimensionless scaling parameter, and cxV  is slightly 

greater than xV  for large cxR .  As a consequence, xV  

in (1) is replaced by cxV , resulting in a new 

cyclostrophic wind ( cV ) in the Wood-White model,  

               φcxc VV = ,   (5) 

where ),,;( ληκρφφ ≡  is the dimensionless function 

that controls the shape profile of tangential wind, given 
by 
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c. Gradient Wind 
 
  Following Willoughby (1990b), the cyclostrophic 
wind in (5) is easily converted into a gradient wind ( gV ) 

and is given by 
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where )/( rfVR cc =  is the cyclostrophic Rossby 

number.  In (7), gV  is always less than cV  in a non-

anomalous flow around a low pressure.  As an example, 
Fig. 2 compares the plots of three wind profiles of 

WWVV , cV  and gV  when xV  of 50 m s-1, xR  of 25 km, 

f  of 5105 −x  s-1 at the 20±N latitude, and the 

),,;( ληκρφ  values are given.  Beyond the RMW, the 

difference between the radial profiles of cV  and gV  

significantly increases with increasing radial distance 
from the storm center. 
 
d. Absolute Vorticity 
 
 For axisymmetric flow, absolute vorticity ( aζ ) is 

calculated as 
   fra += ζζ ,  (8) 

where rVrVr // +∂∂=ζ  is the relative vertical 

vorticity.  rV ∂∂ /  represents the shear vorticity that 
represents the angular velocity of fluid produced by 
distortion due to horizontal velocity differences at its 
boundaries, and rV /=ω  is the curvature vorticity that 
represents the angular velocity of rotation about a 
vertical axis through the instantaneous center of 
curvature.  Substitution of (1) into rζ  yields 
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where ληκλ ρκηρω )]1(1/[ 111 −+= −−−
xxRV .  For a 

cyclonic vortex, the shear vorticity contributing to rζ , 

respectively, is positive, zero and negative for 1<ρ , 

1=ρ  and 1>ρ .  Additionally, the curvature vorticity 

contributing to rζ  is always positive for ∞<< ρ0 , with 

its value being equal to xx RV /  at 1=ρ . 

 Critical points of positive and negative vorticity 
peaks, respectively, are defined as 

maxζR  and 
minζR  

that represent the locations of maximum and minimum 
vorticity values.  Following Wood and White (2010), the 
critical points are obtained by differentiating (9) with 
respect to ρ  and setting ρζ ∂∂ /r  to zero.  Thus, the 

critical points, respectively, are given by 
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where there are two distinct roots for ρ  that yield 
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where ±α  is a critical parameter obtained by the 

quadratic formula.  In (9), maxζ  and minζ  are readily 

computed if xV , xR  and other model parameters 

( ληκ ,, ) are known.  The advantage of using (10) and 

(11) without a required knowledge of maxζ  and minζ  is 

evident. 
 In the last subsection, we computed and plotted the 
radial profile families of normalized tangential velocity 
for varying values of ρ , κ , η  and λ  in Fig. 1.  We 

now investigate how the normalized relative vorticity 
profiles behave in response to the normalized tangential 

velocity profiles.  The normalized vorticity profiles ( ≡∗
rζ   

xxr VR /ζ ), calculated directly from (9), are plotted in 

Fig. 3.  The critical points of positive and negative 
peaks, if present, of normalized vorticity are indicated by 
solid triangles in Fig. 3, and are directly computed from 
(10) and (11). 
 The left panels (a, d, g) of Fig. 3 show that when 

1<κλ , the vorticity singularities always occur at 0=ρ  

with decreasing λ .  The vorticity profiles have infinite 
shear and curvature vorticities at the z-axis if they are 
continued to 0=ρ .  The inverted, funnel-shaped profile 

of ∗
rζ  is characteristic of the one-celled structure.  As 

one progresses from 1<κλ  in these panels to 1=κλ  
in the middle panels (b, e, h) to 1>κλ  in the right 
panels (c, f, i), vorticity concentration is progressively 
displaced away from the z-axis toward the strongest 

gradient of the profiles of ∗
WWVV  just inside the radius of 

tangential velocity peak ( 1<ρ ), as indicated by solid 

triangles.  At the same time, the positive vorticity peak 
decreases along the z-axis and outward away from the 
axis before increasing its magnitude near 1=ρ .  The 

annular pattern of ∗
rζ  is characteristic of the two-celled 

structure, as is consistent with the numerical findings of 
Kossin and Schubert (2001) and observational findings 
of Mallen et al. (2005).  This vorticity profile satisfies the 
necessary condition of barotropic instability (Holton 
1979, p. 354). 
 The most interesting features of Fig. 3 show that all 
evolving vorticity profiles passing through a point at 

which 1=∗
rζ  occurs at 1=ρ , regardless of any κ , η  

and λ  values.  The hurricane aircraft flight-level data 
analysis of Mallen et al. (2005) showed that their 
computed relative vorticity values, when normalized, 
have been shown to be 1.0 at 1=ρ .  This is because 

the curvature vorticity [the second term on the right-
hand side of (9)] becomes dominant and equals to 1.0 
at 1=ρ , where the shear vorticity is zero.  Their 

calculated profiles favorably concur with Fig. 3. 

 The vorticity skirt (Fig. 3) becomes negative beyond 
the radius of maximum tangential velocity ( 1>ρ ), but 

its magnitude is small and approaches zero 
asymptotically as ∞→ρ .  The negative vorticity is a 

result of the shear vorticity dominating the curvature 
vorticity because the tangential velocity decreases with 

ρ  more rapidly than 1−ρ .  This is in striking contrast to 

the characteristic zero vorticity in the idealized RV  
model at and beyond 1=ρ .  Furthermore, the model 

suffers from the fact that the RV  vorticity has an 
unrealistic, discontinuous jump from constant to zero in 
the infinitesimal radial thickness of tangential velocity 
maximum.  
 With decreasing λ , critical points of the positive 
and negative vorticity peaks are displaced toward each 
other at 1=ρ , as indicated by solid triangles on the 

curves in the right panels (c, f, i) of Fig. 3.  At the same 
time, the continuous peaks in the vorticity profiles 
become increasingly localized at 1=ρ , as the profiles 

correspond to the tangential velocity profiles (Fig. 1). 
 

e. Absolute Angular Momentum 
 
 Absolute angular momentum is calculated as 

         
2

2fr
MM ra += ,  (13) 

where rVM gr =  is the relative angular momentum 

and f  is the Coriolis parameter.  Plots calculated from 

(13) with aid of (7) will be described in the subsequent 
sections. 
 
 
3. FLIGHT-LEVEL DATA 
 
 Flight-level data were extracted from the National 
Oceanic and Atmospheric Administration (NOAA), 
Atmospheric Oceanic Meteorological Laboratory 
(AOML), Hurricane Research Division (HRD) archive 
consisting of aircraft observations of Atlantic and eastern 
Pacific tropical cyclones.  Radial profiles of tangential 
winds were constructed from radial flight leg segments 
between beginning and ending times of data collection 
during a single flight mission.  One leg represents 
inbound (outbound) flight path toward (away from) the 
tropical cyclone center.  The data enabled us to evaluate 
the distributions of the model parameters and critically 
examine the profile’s realism in comparison with 
observed tangential wind, vorticity and angular 
momentum structures. 
 
4. THE FITTING ALGORITHM 
 
 A new technique for using the aircraft flight-level 
tangential wind data to fit the realistically-looking profiles 
of tangential wind involves minimizing the cost function 
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Here, obsV  is the observed (flight-level) wind, ir  the 

radial distance of the thi  wind data, and ),;( frV ig m  is 

the model gradient wind directly calculated from (7) with 
the aid of (4)-(6). 
 The Levenberg (1944)-Marquardt (1963) 
optimization method is an iterative technique for solving 
minimization problems in (14).  The technique locates 
local minimum of a multivariate function that is 
expressed as the sum of the squares of several 
nonlinear, real-valued functions.  It has become a 
standard technique for nonlinear least-squares 
problems, widely adopted in various disciplines for 
dealing with data-fitting applications.  A procedure for 
implementing the Levenberg-Marquardt algorithm is 
described in Press et al. (1986). 
 Before implementing with the Levenberg-Marquardt 
algorithm, caution must be exercised to avoid using 
radial profiles of aircraft flight-level tangential winds that 
may have sliced through a mesovortex.  Mesovortices 
are sometimes observed in and around the primary 
eyewall of a hurricane and have been documented and 
numerically simulated in numerous studies.  Fig. 4c is 
such an example of several mesovortices that rotate 
around the parent hurricane center.  The application of 
the Wood-White vortex model to the simulated 
mesovortices (Fig. 4c) could be feasible in the near 
future. 
 The methodology of Samsury and Zipser (1995) for 
identifying a secondary wind maximum associated with 
a convective ring outside a primary eyewall (beyond 1-3 
RMW distances) is used.  The regions of enhanced 
tangential wind speeds to be at least 10-km radial width 
and 5 m s-1 greater than the nearby relative minimum in 
the saddle-shaped wind profile are required, as shown 
in the examples of Fig. 4e and Fig. 5a. 
 A procedure, whereby an investigator can 
reasonably estimate single- or dual-maximum eyewall 
tangential wind profiles, consists of the following basic 
steps with the aid of Figs. 4 and 5. 
 
(a) Scan through an observed profile of tangential wind 

(e.g., obsV  in Fig. 4d) and determine if this is a 

single profile having at least one eyewall wind 
maximum over a radial distance of about 4-5 RMW 
distances from the center. 

(b) When the single profile is present (Fig. 4d), then 
define initial guesses of xV  and xR . 

(c) Examine reasonably the inner profile inside the 
eyewall before making initial guesses of ][ κλ=k  

and λ . 
(d) Also examine the outer profile outside the eyewall 

for estimating initial guess of ][ ηλ=n . 

(e) Calculate λκ /k=  and λη /n=  as inputs to be 

used for minimization calculation in the Levenberg-
Marquardt algorithm. 

(f) Minimize (14) over the control m  variables; )(mJ  

is differentiable with respect to m , and so the 
rapidly-converging Levenberg-Marquardt algorithm. 

(g) If convergence fails to achieve, then make some 
adjustments of k , n , and/or λ  before repeating 
steps (e) and (f). 

(h) When convergence has achieved, finalize and 
compute the retrieved model parameters 

T
1 ],,,,[ ληκxx RV=m  in (1) for the single fitted 

profile. 
(i) Calculate critical points [i.e., xRR

maxmax ζζ ρ=  and 

xRR
minmin ζζ ρ=  in (10)-(11)] first before computing 

positive and negative vorticity peaks in (9).  If minζ  

and 
minζR  are not available, they are set to missing 

data parameters. 
(j) Plot the fitted profile and compute the root-mean-

square (RMS) difference between the observed and 
fitted profiles. 

(k) If dual-eyewall tangential wind maxima are present 
in the saddle-shaped profile (e.g., Fig. 4e and A  
and C  in Fig. 5a), estimate the radial distance ( D ) 
which is halfway between A  and B  in Fig. 5b.  
The rationale for this estimate is to isolate the first 
observed profile from the second observed profile 
so that the former is not affected by the latter. 

(l) Store one-dimensional array of gridded tangential 
wind data between the vortex center and D  to be 
used for minimization calculation. 

(m) Use steps (f) and (g) to calculate and plot the first 
fitted profile ( 1RV ), as indicated by thick curve in 

Fig. 5c.  Note that the subscript 1R  in 1RV  

represents the first retrieved (fitted) profile 
associated with primary eyewall wind maximum. 

(n) Subtract the fitted profile of 1RV  from the observed 

profile of obsV , that is, 1Robs VV −  (thick ragged 

curve in Fig. 5d). 
(o) Determine initial guesses of xV  and xR  at E  in 

the second observed profile. 
(p) Repeat steps (c) through (g) for generating the 

second fitted profile ( 2RV ). 

(q) Add the first fitted profile ( 1RV ) to the second fitted 

profile ( 2RV ).  That is, 

        ),;(),;( 2211 frVfrVV igigg mm += ,       (15) 

 where the subscripts 1 and 2 refer to the first and 
second profiles, respectively. 

(r) Calculate the RMS difference between the 
observed and overall (superimposed) fitted profiles 
(Fig. 5f). 

(s) Use the first and second retrieved model 
parameters 1m  and 2m  to combine the fitted 

profiles of absolute vorticity ( aζ ) and absolute 

angular momentum ( aM ) by calculating the 

following: 
      frr irira ++= );();( 2211 mm ζζζ ,    (16) 

 and 



    2/);();( 2
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 Retrieved model parameters for the fitted profiles 
are given in Table 1 for several tropical cyclones, as will 
be discussed in the subsequent section.  Only six 
tropical cyclones are selected:  Tropical Storms Arthur 
(1984) and Isabel (1985), Hurricanes Allen (1980), 
Edouard (1996), Alicia (1983) and Gilbert (1988). 
 
5. CASE STUDIES 
 
a. Tropical Storms 
 
 Tropical storms have been commonly observed to 
exhibit broad or relatively flat profiles of tangential winds 
(Wiiloughby 1990a; Willoughby and Rahn 2004; Mallen 
at el. 2005; Willoughby et al. 2006).  Figs. 6 and 7, 
respectively, illustrate some of the characteristics of the 
fitted and observed profiles of flight-level relative 
tangential wind, vorticity and angular momentum in 
Tropical Storms Arthur (1984) and Isabel (1985).  
Observed profiles of relative vorticity were based on 
aircraft flight-level tangential winds and calculated using 
a centered difference approximation of rζ  in (8).  

Observed profiles of absolute angular momentum were 
directly computed from (13) using aircraft flight-level 
tangential winds. 
 Comparisons of the fitted and observed wind 
profiles (Figs. 6 and 7) show good agreements with low 
RMS values (Table 1).  The profiles are similar and 
nearly flat, except that the profile in Tropical Storm 
Arthur is broader and flatter than that in Tropical Storm 
Isabel in terms of the ηκ /  ratio values (Table 1).  

Decreasing the λ  parameter tends the annular zone of 
tangential wind maximum to become nearly localized 
but slightly continuous.  The 1>= κλk  values (Table 1) 
indicate the presence of a two-celled structure (i.e., 
sinking motion along the z-axis with upward motion 
away from the axis). 
 Vorticity and angular momentum profiles cor-
responding to the observed and fitted profiles of 
tangential winds are presented in Figs. 6b and 7b.  The 
vorticity profiles are broad from the vortex center to 
some radial distance near but inside the RMW.  The 
fitted profile of vorticity reveals that there may not be a 
negative vorticity skirt beyond the RMW. 
 The fitted profiles of absolute angular momentum 
agree well with the observed profiles in both Tropical 
Storms Arthur and Isabel.  Removal of the Coriolis 
parameter from (13) results in another fitted profiles of 
relative angular momentum for comparison reason (red 
dashed curves shown in Figs. 6b and 7b).  The 
differences between the fitted profiles of absolute and 
relative angular momentums increase with increasing 
radial distance from the storm center because the 
second term on the right-hand side of (13) varies with 

2r .  There is virtually no difference with the same 
angular momentum between the center and the RMW. 
 
b. Hurricanes with only Primary Eyewall Wind Maxima 
 

 The fitted and observed profiles of flight-level 
tangential winds, vorticity and angular momentum in 
Hurricanes Allen (1980) and Edouard (1996) are 
displayed in Figs. 8 and 9 with the aid of retrieved model 
parameters in Table 1.  These intense hurricanes 
generally have single-maximum eyewall tangential wind 
profiles.  In Hurricane Allen, the wind profile is sharply 
peaked, whereas the profile in Hurricane Edouard is 
continuous, as indicated by different λ  values in Table 
1. 
 Observed and fitted profiles of vorticity and angular 
momentum corresponding to tangential winds are 
displayed in Figs. 8b and 9b.  The fitted profile of 
eyewall vorticity in Hurricane Allen is larger within an 
annular region on the inward side of the RMW than that 
in Hurricane Edouard.  At the same time, the magnitude 
of vorticity is relatively weak at the storm center.  
Beyond the RMW, the vortex is characterized by the 
relatively slow tangential wind decay in conjunction with 
a skirt of non-zero voriticity.  A slow decrease of vorticity 
guarantees appreciable vorticity out to large radial 
distances beyond the RMW until vorticity approaches 
asymptotically to zero at radial infinity.  Apparently, no 
negative skirts of vorticity beyond the RMW are present, 
as indicated by the fitted profiles in the figures. 
 The behaviors of the fitted and observed absolute 
angular momentum profiles in both hurricanes were 
similar to those discussed in the case studies of Tropical 
Storms Arthur and Isabel.  Comparisons of the fitted and 
observed profiles of absolute angular momentum in 
Hurricanes Allen and Edouard show very good 
agreements. 
 In the tenth column of Table 1, the nk −  values are 
indicated.  The absolute values of nk −  favorably 
compare with the modified Rankine decay exponents 
found in intense hurricanes having discontinuous 
tangential wind maxima within the primary eyewalls 
(e.g., Mallen et al. 2005). 
 
c. Major Hurricanes with Primary and Secondary 

Eyewall Wind Maxima 
 
 Major hurricanes having inner and outer eyewalls 
generally exhibit dual-maximum eyewall tangential wind 
profiles (Willoughby et al. 1982; Willoughby 1990a).  
The hurricanes with dual eyewalls sometimes undergo 
characteristic cycles in which replacement of the inner 
eyewall by the outer eyewall coincides with a decrease 
in storm intensity (Black and Willoughby 1992). 
 The observed and fitted profiles of tangential wind, 
vorticity and angular momentum in Hurricanes Alicia 
(1983) and Gilbert (1988) are illustrated in Figs. 10 and 
11.  The primary flight-level wind maximum is associated 
with large eyewall vorticity just inside the RMW, while 
the secondary wind maximum is associated with 
relatively enhanced eyewall vorticity inside the outer 
eyewall.  The saddle-shaped profiles of vorticity reveal 
very low vorticity embedded in a moat between the inner 
and outer eyewall wind maxima.  These profiles of 
primary and secondary eyewall vorticities compare 
favorably to the theoretical profiles of Kossin et al. 



(2000, their Fig. 4a).  The observed and fitted profiles of 
the primary and secondary eyewall tangential wind 
maxima in Hurricanes Alicia and Gilbert are sharply 
peaked, as indicated by the low λ  values in Table 1.  
Furthermore, the profiles of secondary wind maxima 
beyond the maxima are much broader in radial extent 
than those of the primary wind maxima, as indicated by 
the ηκ /  ratio values > 0.9. 

 The most interesting feature in the fitted profiles of 
tangential winds in both Hurricanes Alicia and Gilbert is 
the presence of the second fitted profile of the 
secondary eyewall tangential wind (red dashed curves 
associated with 2RV  in Figs. 10a and 11a).  An addition 

of the second fitted profile to the first fitted profile ( 1RV , 

red dashed curve) of the inner eyewall tangential wind 
results in the saddle-shaped profile (red solid curve).  
The resulting fitted profile coincides favorably with the 
observed profile of the secondary eyewall tangential 
wind. 
 Dodge et al. (1999) studied Doppler radar data 
obtained on radial flight legs crossing Hurricane Gilbert 
with double eyewalls.  They showed that the inner 
eyewall contains weak inflow throughout most of its 
depth.  In contrast, the portion of the outer eyewall has a 
broad region of outflow above a shallow layer of inflow.  
It is hypothesized that the inflow induced by convection 
in the outer eyewall appears to enhance the pre-existing 
tangential wind ( 1RV ) to form a new profile of tangential 

wind ( 2RV ) if the first fitted profile of tangential wind 

( 1RV ) is assumed to be unaffected by the portion of the 

outer eyewall.  The ouflow in the portion of the outer 
eyewall could explain why the second fitted profile of 
tangential wind on the inner edge of the second RMW 
has positive curvature as the curvature sharply turns to 
left with increasing radial distance, as indicated by high 
values of κλ=k  values (Table 1). 
 
6. CONCLUSIONS 
 
 We have demonstrated, using flight-level tangential 
wind data from hurricane reconnaissance aircraft, that 
the Wood-White parametric vortex wind-profile model 
does a good job of fitting to observed profiles of data by 
comparing radial profiles of model gradient wind, 
vorticity and angular momentum to those of flight-level 
data.  The RMS values between the observed and fitted 
profiles were shown to be reasonably low.  In our on-
going studies, we plan to apply the wind-pressure 
relationships to the Wood-White model. 
 
7. POTENTIAL APPLICATIONS 
 
 If the Wood-White model shows promise as a way 
to get a more realistic representation, the model would 
offer potential applications.  Among the applications are 
reliable statistical characterizations for the various 
basins (e.g., Willoughby et al. 2006).  Emphasis should 
be placed on statistical representation of outer eyewall 
tangential winds.  Another potential application is model 

initialization which permits one to define an initial 
condition of realistically looking tangential velocity 
component varying with radial and axial distances (e.g., 
Kossin and Schubert 2001; Rozoff et al. 2008).  The 
initialization combined with initial conditions of 
thermodynamics and other physics produce highly 
realistic simulations that can lead to improvements in 
forecasting hurricane intensity.  Modeling storm surge 
(e.g, Jelesnianski 1967) and windstorm risk (e.g., 
Vickery and Twisdale 1995) appear to be a good 
application of the Wood-White model. 
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Table 1.  Retrieved model parameters for different tropical cyclones.  Date with beginning and ending times of data collection during one radial flight leg are 
indicated under each tropical cyclone name.  One (two) line(s) of text indicate the first (first and second) fitted profile(s).  In the tenth column, NA represents not 
applicable.  RMS represents the difference between the observed and overall fitted profiles. 

 
 

Storm Name 
Date 
Time 

xV  

(m s-1) 
xR  

(km) 
κ  η  λ  ηκ /  κλ=k  ηλ=n   

nk −  
RMS 

(m s-1) 

 
T. S.  ARTHUR 
31 August 1984 
0547-0624 UTC 

 

17.4 50.3 1.792 2.182 1.000 0.821 1.792 2.182 

 
 

NA 0.70 

 
T. S. ISABEL 

9 October 1985 
1924-1945 UTC 

 

23.7 49.3 19.027 21.696 0.075 0.877 1.423 1.622 

 
 

NA 0.66 

 
Hurricane ALLEN 

7 August 1980 
1852-1911 UTC 

 

77.4 15.1 23.745 32.010 0.061 0.742 1.450 1.955 

 
 

-0.505 1.28 

 
Hurricane EDOUARD 

27 August 1996 
2113-2129 UTC 

 

55.6 30.4 5.985 8.096 0.242 0.739 1.445 1.955 

 
 

-0.510 1.39 

 
Hurricane ALICIA 
17 August 1983 
1352-1413 UTC 

 

43.3 
7.4 

32.3 
106.9 

19.030 
123.495 

25.499 
124.049 

0.082 
0.119 

0.746 
0.996 

1.559 
14.735 

2.090 
14.801 

-0.531 
NA 

 
1.29 

 

 
Hurricane GILBERT 
14 September 1988 

1012-1029 UTC 
 

68.5 
29.5 

7.6 
63.3 

8.436 
242.948 

12.519 
248.294 

0.128 
0.036 

0.674 
0.978 

1.080 
8.664 

1.602 
8.855 

-0.522 
NA 1.65 

 



Fig. 1.  Radial profile families of 
normalized tangential velocity 

( ∗
WWVV ) as functions of ρ , κ  and 

η  at a given value of λ  in each 

panel.  Calculated values of ηκ / , 

κλ , and ηλ  are indicated by 

different colors.   Gray, thick curve 
represents the normalized velocity 
of the Rankine vortex model for 
comparison.  (After Wood and White 
2010.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Model tropical cyclone wind 
profiles of WWVV  (black), cV  (red), and 

gV  (green) for comparison.  In the upper 

left portion of the panel, model parameters 
are indicated. 
 



Fig. 3.  Radial profile families of normalized 

corresponding vorticity ( ∗
WWVζ ) as functions 

of ρ , κ  and η  at a given value of λ  in 

each panel.   Gray, thick curve represents the 
normalized velocity of the Rankine vortex 

model for comparison.  Critical points ( ∗
minζρ  

and ∗
maxζρ ) at which corresponding vorticity 

minima ( ∗
minζ ) and maxima ( ∗

maxζ ), res-

pectively, occur are indicated by solid  
triangles.  (After Wood and White 2010.) 



Fig. 4.  (a) A circle of tangential velocity maximum 
( xV ) at its radius ( xR ) in a simple tropical cyclone 

model.  (b) Two superimposed circles of tangential 
velocity maxima ( 1xV , 2xV ) at their radii ( 1xR , 2xR ).  

(c) A small circle of tangential velocity maximum 
represents a mesovortex rotating around the parent 
tropical cyclone center.  (d)  One radial profile of 
observed tangential velocity ( obsV ) that corresponds 

to (a).  (e)  Two superimposed radial profiles of 
observed tangential velocities that correspond to (b).  
Note that panels (a)-(e) are not scaled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  Superimposition of the first ( 1RV ) and 

second ( 2RV ) fitted profiles of tangential wind 

on the observed tangential wind profile ( obsV ).  

Letters A, B, C, D and E represent the locations 
of tangential velocity values along the profile to 
be determined for minimization purpose (see 
text for discussion). 



  
Fig. 6.  (a) Observed (black) and fitted 
(red) profiles of storm-relative gradient 
winds (m s-1) as a function of radial 
distance (km) from the vortex center for 
Tropical Storm Arthur of 31 August 1984.  
Beginning and ending times (UTC) are 
indicated.  Pass # represents flight leg 
number.  Blue magenta curve represents 
the differences between the observed and 
fitted gradient wind data.  (b) Calculated 
(blue) and fitted (red) profiles of absolute 
vorticity (s-1), and calculated (green) and 
fitted (red solid curve) profiles of absolute 
angular momentum (m2 s-1).  Red dashed 
curve represents the fitted profile of 
relative angular momentum.  Data 
obtained courtesy of NOAA/AOML/ 
HRD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Same as Fig. 6, except for 
Tropical Storm Isabel of 9 October 1985.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 8.  Same as Fig. 6, except for 
Hurricane Allen of 7 August 1980. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Same as Fig. 6, except for 
Hurricane Edouard of 27 August 1996. 
 
 
 
 
 
 



Fig. 10.  Same as Fig. 6, except for 
Hurricane Alicia of 17 August 1983.  
Dashed curves represent the first ( 1RV ) 

fitted profile of gradient wind associated 
with the inner eyewall and second ( 2RV ) 

fitted profile of gradient wind associated 
with the outer eyewall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.  Same as Fig. 10, except for 
Hurricane Gilbert of 14 September 1988. 
 


