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1. INTRODUCTION 

Much debate has taken place surrounding gradient 
balance at the 700 and 850 hPa pressure levels in 
tropical cyclones.  The work of Gray, Willoughby, 
Kepert and others have shown conflicting results 
regarding gradient balance.  Willoughby’s studies 
(1990, 1991) noted the presence of gradient balance 
for a selection of storms when the geopotential field is 
averaged in the azimuthal direction.  Gray (1991) 
countered this claim by showing that, when plotted 
against the ratio of radio to radius to maximum wind 
(RMW), his selected storms were not in gradient 
balance.  More recently, Kepert (2006a, 2006b) has 
studied two tropical cyclones in-depth: Hurricanes 
Georges 1998 and Mitch 1998.  Kepert found that 
Hurricane Georges was in gradient balance whereas 
Hurricane Mitch was not. 
Gradient balance is when three quantities are 
balanced within a rotating system: velocity, Coriolis 
acceleration, and pressure gradient.  Gradient 
balance is an idealized process that offers a solution 
to the Navier-Stokes equations and is given as: 
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where tangential velocity is denoted by 𝑣, radius from 

the centre of rotation is denoted by 𝑟, the Coriolis 

parameter is denoted by 𝑓, and pressure is denoted 

by 𝑝. 

This study builds upon the work of Willoughby, Grey 
and Kepert to further investigate gradient balance 
within the upper level of tropical cyclones.  The 
presence of gradient balance will be classified by 
storm parameters in order to better understand when 
and where gradient balance occurs.  The current 
study looks at 13 named storms between 2002 and 
2008, with the intent of expanding this to 30 in the 
future.  The 700 hPa pressure level has been 
investigated exclusively. 
Using reconnaissance flight data it is possible to 
determine the centres of tropical cyclones and create 
complete two dimensional fields for quantities such as 
velocity and geopotential.  Gradient balance can be 
assessed within a tropical cyclone using the 
geopotential and velocity fields.  In this case, because 
the reconnaissance flights are flown at a constant 
pressure, the geopotential gradient replaces the 
pressure gradient in the gradient balance equation 
given by:  
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where the geopotential height is given by 𝛷. 

The analysis procedure is as follows. Using the 
reconnaissance flight data, high precision tropical 
cyclone centre fixes were created, and from these 
fixes continuous tracks were created.  These tracks 
allowed the reconnaissance fight data to be converted 
from an earth relative to a storm centre relative 
coordinate system.  The storm centre relative data 
was then objectively analyzed to create a continuous 
surface for geopotential height and velocity.  The 
gradient balance equation is then used to calculate 
velocity based upon the geopotential gradient.  These 
gradient balance velocities are then compared to the 
reconnaissance flight velocities so that gradient 
balance can be assessed.  The presence of gradient 
balance will be categorized according to the following 
storm parameters: quadrant, central pressure and the 
change in the strength of the storm.  Classifications 
were also made with respect to the radius and to the 
radius to maximum wind (RMW). 
 
2. STORM TRACKS 

There are a variety of methods that can be used to 
find centres of tropical cyclones.  This study 
compared two methods that use reconnaissance flight 
data to determine the storm centres.   

 
FIG. 1: Reconnaissance flights for Hurricane Dean 
(2007).  These flights are used to determine tropical 
cyclone centres, which are then used to create a 
continuous track so that the centre of the storm can be 
determined at anytime. 

 
The first method was devised by Willoughby and 
Chen (1982, henceforth WC) and relies on a linear 
least squares minimization of velocity data to find the 
centre.  The WC algorithm uses the wind direction to 
determine the centre of the storm.  The algorithm first 
determines which data point is closest to the centre of 
the storm by defining a closeness parameter, H.  As 

the radial distance from the centre of the storm is 
decreased, the geopotential height deficit value, D, 
and velocity decrease until they reach a minimum at 
the centre.  H is given by: 

 

  𝐻 = 𝑔𝐷 + 𝑣2  (3) 
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Lines tangent to the wind direction are defined as 
lines of position and these lines intersect with each 
other in the general location of the centre of the storm.  
The line of position corresponding to the minimized 
value of H is intersected with the lines of position 
within 5 km of this point, which creates a point cloud 
in the general location of the centre of the storm.  A 
linear least squares analysis can then be carried out 
to determine an estimate of the centre of the storm. 
The WC algorithm uses the aircraft coordinates and 
wind direction to calculate the distance between the 
intersected point and the unknown centre of the 
storm.  This can be found, according to: 
 

𝑠𝑛 =  𝑋𝑛 − 𝑋𝐶 sin 𝜃𝑛 +  𝑌𝑛 − 𝑌𝐶 cos 𝜃𝑛  (4) 
 

where sn is the distance from the intersected point to 
the centre of the storm for data point n, (Xn,Yn) is the 
aircraft coordinates for data point ‘n’, θn is the wind 
direction for data point n and (XC,YC) is the location of 
the centre of the storm.  The weighted root mean 
square value for sn can be calculated and minimized, 
which determines the centre of the storm. 
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In the above equations, 𝑆𝐿
2 is the weighted RMS value 

of sn and Wn is a weighting factor, which was 
determined by WC by trial and error.  Wn is 10 when 
sn is calculated at the minimized value of H and 1 
otherwise. 
If (2) is substituted into (3), and (4) and (5) are applied 
to (3), the location where the weighted RMS error for 
the centre of the storm is minimized can be 
determined.  The equations that result from (4) and 
(5) are given below. 
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XC and YC can be solved for directly so numerical 
methods are not required to solve (8) and (9). The 
advantages of this method are that they provide an 
explicit solution for the storm centres as the 
minimization yields a unique solution. 
The second method is described by Kepert (2005) 
and implements a non-linear least squares 
minimization of pressure data to determine the centre 
of the tropical cyclone.  Kepert referred to it as the 
Translating Pressure Fit (TPF) method and this 
nomenclature will be used here as well.  The 
advantage of this method is that it finds the storm 

centre as well as the instantaneous forward speed of 
the storm, which is required later on in this study.  
Due to the nonlinearity of this method, it is more 
computationally expensive than the WC method. 

 
FIG. 2: Tropical cyclone centres (+) and track for 
Hurricane Dean (2007) using the TPF method. 

 
The TPF algorithm relies on the observation that 
pressure decreases as the radial distance from the 
centre of the storm is decreased.  Many parametric 
models exist that can predict pressure profile of a 
tropical cyclone based upon certain characteristics.  
The TPF algorithm finds the parameters for the 
Holland pressure profile (1980, henceforth referred to 
as HPP) based upon the pressures obtained from the 
reconnaissance flight data.  The HPP was chosen 
because it relies on only four parameters, has been 
widely validated and its limitations are well known 
(Kepert 2005).  The four parameters used in the HPP 
are the shape parameter, b, the radius to maximum 
winds, rm, the wind speed at RMW, vm, and the 

pressure at the centre of the storm, pc.  The HPP also 
depends on the radial distance from the centre of the 
storm, r, which can be used to determine the location 
of the centre of the storm.  The HPP is given below: 
 

 𝑝𝐻 𝑟 = 𝑝𝑐  1 +
𝑣𝑚

2 exp  1−
𝑟𝑚
𝑟

 
𝑏
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where Rd is the gas constant for dry air and Tv is the 
virtual temperature, which is obtained from the 
reconnaissance flight data.   
The TPF algorithm uses the HPP to minimize the cost 
function, which is given by: 
 

𝐽 𝛽, 𝑎 =  
 𝑝 𝑖−𝑝𝐻 ,𝑖 𝛽 ,𝑎  
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2

# 𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑖=1

 (11) 

 

where pi is the observed pressure, β = {vm, rm, b, pc} 
and a = {xC, yC, uC, vC}, with (uC, vC) representing 

the velocity of the centre of the storm. 
In order to minimize (11), it is differentiated with 
respect to β and a, and these differential equations 

are set to 0.  This yields 8 non-linear equations which 
can be solved using numerical methods.  The 
Levenberg-Marquadt (LM) algorithm for non-linear 
least squares has been used to solve for the unknown 
parameters.  The LM method is used because all of 
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the unknown parameters are differentiable with 
respect to (11), which makes the LM method more 
efficient than Gauss Newton (Kepert 2005). 
A comparison of the two methods showed that the 
TPF method was able to produce reasonable storm 
centres for a data acquisition frequency of up to 
0.0167 Hz, whereas it was found that WC required a 
frequency of 1 Hz.  The majority of the 
reconnaissance flight data available had a frequency 
of 0.1 Hz, so the TPF method was chosen. 
The testing of the frequency stability was done by 
determining centres of data with a frequency of 1 Hz, 
which was the highest data frequency, and then 
finding the centres using the same data but 
resampled to 0.1 and 0.0167 Hz. 
To ensure that the tracks were exhibiting realistic 
behaviour, they were compared with the National 
Hurricane Center’s (NHC) Best Track Database 
(BTD), which compiles the centre fixes for tropical 
cyclones ever six hours with a tenth of a degree 
resolution.  This level of resolution for time and for 
location does not provide enough accuracy to 
transform the reconnaissance data from earth relative 
to storm relative coordinates. 

 

 
FIG. 3: Partial reconnaissance flight for Hurricane Dean, 
20 August 2007 in a) earth relative, latitude/longitude 
coordinates and b) storm relative, easting/northing 
coordinates. 

 
Implementing the TPF method yields individual centre 
fixes with latitude, longitude, date and time associated 
to the fixes.  In order to create a continuous track 
connecting the individual fixes together, a piecewise 
spline fit was used with a time step of 1 second.  This 
meant that the location of the centre of the storm 
could be determined relative to the reconnaissance 
flight data.  In order to transform the reconnaissance 
flight data from earth relative, latitude/longitude, 
coordinates to storm relative, easting/northing, 
coordinates, the Azimuthal Equidistant projection was 

utilized.  This gave each data point a distance in 
meters how far north and east it was of the centre of 
the storm at that given time. 
The wind speeds and directions obtained from the 
reconnaissance flights are also in terms of earth 
relative coordinates and need to be transformed into 
storm relative.  To do this, it is required to subtract the 
storm speed and direction that were yielded from the 
TPF method from the raw velocity data.  This yields 
wind speeds and directions relative to the storm 
centre, not to the earth. 

 
3. OBJECTIVE ANALYSIS 

The primary direction of the flow is in the tangential 
direction and as such it was beneficial to convert the 
coordinate system a final time from Cartesian to 
Cylindrical.  In this cylindrical coordinate system, the 
data has been rotated so that it is orientated with the 
direction that the centre of the storm is traveling.  This 
means that 0° is the direction that the storm is 
traveling in, and angles increase positively in the 
clockwise direction. 
Two methods were used to create a two dimensional 
field.  The first was outlined by Mueller et al. (2005) 
and is based upon an objective analysis method 
described by Thacker (1988).  In the Mueller/Thacker 
(MT) method, the error between the raw data and the 
analyzed field is minimized while the smoothness of 
the analyzed field is maximized, concurrently.  The 
amount of smoothness is controlled by parameters set 
in the algorithm.  The combination of smoothness and 
minimization of error was unique to this method and 
had been used by Mueller et al. for a very similar 
purpose as of this study. 
The MT method minimizes the following cost function: 
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where uk is the raw data, UK is the interpolated value 
from the grid at the location of uk, K is the number of 
reconnaissance flight data points, Uij is the grid data 
at point (i,j), α and β are smoothing parameters, I is 
the number of grid data points in the radial direction 
and J is the number of grid data points in the 

tangential direction.  δrr and δ  are the discretized 

second derivative operators in the radial and 

tangential directions, respectively.  When δrr and δ 
are applied to Uij, they yield: 

 

𝛿𝑟𝑟𝑈𝑖𝑗 = (𝑈𝑖+1,𝑗 + 𝑈𝑖−1,𝑗 − 𝑈𝑖 ,𝑗 )/Δ𝑟2   (13) 

𝛿𝜃𝜃𝑈𝑖𝑗 = 𝑟2(𝑈𝑖,𝑗+1 + 𝑈𝑖 ,𝑗−1 − 𝑈𝑖 ,𝑗 )/Δ𝜃2  (14) 

 
In the MT method, the k terms control the error 
between the raw data and the grid data and the (i,j) 
terms control the smoothness of the gridded data. 
The Barnes algorithm was the second objective 
analysis method investigated.  Parameters outlined by 
Benjamin and Seaman (1985) were used in the 
implementation as they had been optimized for curved 
flow.  The advantage of the Barnes algorithm is that it 
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is computationally inexpensive as compared to the 
MT method.  Error minimization is achieved by 
enforcing a radius of influence on a grid point where 
raw data close to a grid point have greater influence 
on it than the raw data far away from the grid point.  
Smoothness is achieved in Benjamin and Seaman’s 
implementation by having an elliptical rather than 
circular radius of influence, with the semi-major axis in 
the azimuthal direction and the semi-minor axis in the 
radial direction.  The ellipse is also curved, resembling 
the shape of a banana.  This increases smoothing in 
the azimuthal direction by increasing the influence of 
the raw data in this direction and decreases the 
smoothing in the radial direction by decreasing the 
influence of the raw data in the radial direction. 

The weighting function, 𝑤𝑖𝑗 , is given by: 
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  (16) 

 
where dm is the distance from point m to the grid point 
at (i,j), rk is the radius of curvature at data point k, rij is 
the distance from Uij the centre of curvature, Ck, Ek is 

Cressman’s isotropic function, Uij is as in (12), the , k 

is the azimuthal angle of curvature to point k, ij is the 
azimuthal angle of curvature to point (i,j) and R is an 
arbitrary radius of influence, set to 20 km for this 
application.  The weighting function is used in the 
Barnes algorithm to find Uij, given as: 
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 𝑤 𝑖𝑗 𝑢𝑘
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𝐾
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where Uk,0 is the initial guess for the field, which was 
taken to be the azimuthal average of the quantity 
being objectively analyzed. 
A qualitative comparison showed little difference in 
error between the gridded and raw data for both 
methods. In the areas that data was present, the 
gridded data matched the raw data quite well. The 
differences came in the smoothness and curved 
nature of the data.  The Thacker method was able to 
produce fields that were sufficiently and realistically 
curved, whereas the Barnes algorithm produced fields 
that resembled squares with rounded edges.  
Although the Benjamin and Seaman implementation 
of the Barnes method was specifically for curved 
systems, it did not fully capture the curved nature of 
the geopotential field. 
The MT method was utilized as it provided a more 
realistic representation of the geopotential field. 
The velocity and geopotential fields were both 
objectively analyzed.  The error between the raw 
geopotential data and the objectively analyzed field 
was minimal, with a mean average of about 0% and a 
standard deviation of about 2% for radii from 0 to 200 

km.  The grid was split into 16 sections in the 
azimuthal direction and 40 sections in the radial 
direction. 
A direct comparison of the error of the geopotential 
and velocity fields is not possible because of the 
differences in magnitudes for geopotential and 
velocity values.  Typical velocities are on the order of 
30 m/s where as typical geopotential values are on 
the order of 3000 m.  Velocities at the centre of a 
storm approach 0, increasing the percentage error 
dramatically, with some individual error points 
reaching higher than 1000%. 

 
FIG. 4: Objectively analyzed geopotential field plotted 

with raw data (•) used to create the field.  Hurricane 
Dean, 20 August 2007. 

 
The result of this error level issue was that the velocity 
fields were visually inspected so that poor fits were 
removed from the data set. 
 

 
FIG. 5: Objectively analysed tangential velocity field with 

raw data (•) plotted.  Hurricane Dean, 20 August 2007. 

 
4. GRADIENT BALANCE CALCULATIONS 

Using (1) and (2), the gradient balance velocities 
could be calculated based upon the objectively 
analyzed geopotential field.  These gradient balance 
velocities were then compared to the objectively 
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analyzed velocity fields and gradient balance was 
quantified. 
The presence or lack of gradient balance has been 
noted according to the following characteristics: the 
quadrant of the storm, the strength of the storm and 
the change in strength of the storm.  The error was 
plotted with respect to radius as well as the ratio 
between radius and RMW.  This was in order to test 
one of Gray’s arguments that RMW should be 
incorporated into the analysis. 
Willoughby (1990, 1991) plotted error with respect to 
radius and found that when the geopotential field has 
been averaged azimuthally, storms were in gradient 
balance.  Gray’s (1991) counter argument to this was 
that the geopotential field should not be averaged 
azimuthally and that the error should be plotted with 
respect to the RMW. 
The error threshold for gradient balance in this study 
has been set to ±5%.  When a percentage difference 
between the objectively analyzed tangential velocity 
field and the gradient velocity based upon the 
objectively analyzed geopotential field is less than 
±5%, a storm is said to be in gradient balance.  A 
value of ±5% was chosen due to the error introduced 
through objective analysis as well as data collection. 
The current study has found that gradient balance is a 
common characteristic among most storms.  Of the 44 
objectively analyzed fields that were investigated, it 
was found that 30 exhibited gradient balance in at 
least one quadrant. 
When gradient balance is characterized by quadrant, 
63% of the quadrants investigated exhibited gradient 
balance, with 64% in the front right quadrant, 71% in 
the rear right quadrant, 57% in the rear left quadrant 
and 57% in the front left quadrant.  Considering the 
sample size, it is safe to conclude that the quadrant 
has little to no effect on the presence of gradient 
balance.  Statistically, the likelihood of observing 
gradient balance is equal for all of the quadrants.  
When gradient balance is characterized according to 
radius, a well defined region where gradient balance 
is likely to occur emerges.  Whenever gradient 
balance was encountered, a range was recorded, the 
radius at which gradient balance appears and the 
radius at which gradient balance disappears.  In order 
to be considered gradient balance, this range was 
required to be a minimum of 25 km or 2 RMWs.  On 
average, this range is from 8 km from the centre of 
the storm to 88 km.  Likewise, for the ratio between 
radius and radius to maximum wind the range is 0.4 to 
6.8 RMWs.  Figure 6a shows error plotted against 
radius and Fig. 6b shows error plotted against RMW.  
There is no discernable difference between these 
plotting methods so it can be concluded that analysis 
completed using either method is valid. 
For both cases, the reasons why gradient balance is 
not present beyond the ranges is known.  For the 
values less than 8 km and 0.4 RMW, tangential 
velocities are low.  This means that a small difference 
(on the order of 1 m/s) between the calculated 
gradient balance velocity and the actual velocity will 
lead to a large percentage difference.  For values 

greater than 88 km and 6.8 RMW the reason is 
because the calculation of the gradient balance 
velocity begins to breakdown as the radius increases.  
When (1) and (2) are solved for v, the r term becomes 
dominant for large values of r.  Any small inaccuracies 
in the geopotential gradient become amplified. 

 

 
FIG. 6: Percentage error between tangential velocity and 
gradient velocity.  Error has been plotted by a) radius 
and b) RMW.  The front right quadrant has been plotted 
in blue, the rear right quadrant has been plotted in 
green, the rear left quadrant has been plotted in red and 
the front left quadrant has been plotted in cyan. 
 
Figures 7 a) to d) show the percentage error classified 
by quadrant.  Fields that are in gradient balance for a 
radial distance greater than 25 km have been 
indicated in blue.  The error characteristics are similar 
across the four quadrants.  Error was plotted versus 
radius in the region where gradient balance was most 
likely to occur: 8 to 88 km. 
The strength of the storm has been classified using 
the central pressure of the storm.  The average 
central pressure of storms in gradient balance is 960 
hPa and the average central pressure of storms not in 
gradient balance is 970 hPa.  Due to the relatively 
small sample size used in this study, this difference of 
10 hPa cannot be concluded as statistically relevant.  
Thus, based on this small difference in pressure, it is 
not possible to determine the effect of storm strength 
on gradient balance within the storm. 
The final storm characteristic that has been 
investigated is the change in the strength of the storm.  
This has been measured by looking at the change in 
the central pressure of the storm.  If the central 
pressure is decreasing by a rate greater than 4 hPa 
over 6 hours, the storm is said to be strengthening 
and if the central pressure is increasing by a rate 
greater than 4 hPa the storm is said to be weakening.  
If the central pressure is changing by less than 4 hPa, 
the storm is said to be steady. 
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FIG. 7: Percentage error plotted against radius for the a) 
front right, b) rear right, c) rear left and d) front left 
quadrants.  Fields in gradient balance for a minimum of 
25 km are plotted with a solid blue line and fields not in 
gradient balance are plotted with a dashed red line. 
 
TABLE 1: The impact of the change in the strength of a 
storm on gradient balance.   

 Strengthening Steady Weakening 

Entire Set 20 12 12 

In 
Gradient 
Balance 

13 8 9 

Out of 
Balance 

7 4 3 

 

There does not seem to be any increase in gradient 
balance for strengthening, weakening or steady 
storms.  All three characteristics result in gradient 
balance 65 to 75% of the time. 
 
5. FUTURE WORK 

In order to gain more confidence in the work up to this 
point and to gain more insight into gradient balance 
characteristics, the number of storms being 
investigated will be expanded to 30 within the same 
2002-2008 time period.  The inclusion of more data 
will allow different categories to be combined in the 
analysis, such as looking at strong storms that are 
weakening. 
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