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1. INTRODUCTION
Despite significant advances in our understand-

ing of the fundamental dynamics and thermodynam-
ics of mature tropical cyclones (TCs), one variable
that is not yet predictable, and which has attracted
minimal serious theoretical or modeling effort, is
storm size. In the absence of land interaction, the
horizontal extent of the outer circulation is observed
in nature to vary only marginally during the lifetime of
a given TC prior to recurvature into the extra-tropics
(Merrill, 1984; Frank, 1977), but significant variation
exists from storm to storm, regardless of basin, loca-
tion, intensity, and time of year. Kimball and Mulekar
(2004) determined from Atlantic Extended Best Track
data that as a storm intensifies the radius of out-
ermost closed isobar (ROCI) remains approximately
constant despite changes in the radial structure of
the intermediate wind field. More recently, model-
ing work by Hill and Lackmann (2009) showed that
TCs tend to be larger when embedded in moister
mid-tropospheric environments due to the increase
in spiral band activity and subsequent generation of
diabatic potential vorticity which acts to expand the
wind field laterally.

From a broader perspective, Merrill (1984) found
frequency distributions of storm size in the Atlantic
and Western North Pacific that qualitatively resem-
ble log-normal distributions, though no formal statis-
tical test was performed. Dean et al. (2009) found
that the distribution of storm size, defined as the ra-
dius of vanishing winds divided by the ratio of the
potential intensity to the Coriolis parameter, is close
to log-normal in the Atlantic basin. However, Dean
et al. (2009) is based on the radius of gale force
winds (R34) taken from two datasets that employ
very different methodologies and whose R34 values
disagree markedly.

Ideally, one would prefer to characterize the size
distribution based upon direct surface wind measure-
ments taken from a single, consistent source. Thus,
this work examines the global distribution of TC size,
defined here as the radius of vanishing winds, us-
ing an independent, high-resolution dataset gener-

ated by the QuikSCAT satellite microwave scatterom-
eter. Relative to previous efforts to analyze TC size,
QuikSCAT provides much higher resolution and pre-
cision for calculating surface wind vectors and thus
is considered significantly more reliable than past
datasets. Moreover, QuikSCAT’s wider swath pro-
vides greater areal coverage and thus contains a sig-
nificantly larger sample of storms than the lone pre-
vious scatterometer-based assessment of TC size
(Liu and Chan, 1999). The following sections out-
line the data and methodology used to generate a
climatology of TC size, present the result that the
global distribution of outer radius (absent normaliza-
tion) is closely log-normal, and discuss potential im-
plications of this finding.

2. DATA
Ocean near-surface (10m) wind vector data are

taken from the QuikSCAT L2B dataset on a 12.5 km
x 12.5 km grid for the period beginning July 19, 1999
(the start of the satellite’s operational life) through
December 31, 2008. Owing to rain contamination
of the signal, QuikSCAT data quality is highest away
from strong precipitation, and the instrument is con-
sidered very accurate in the range 3−20 ms−1 (JPL).
Brennan et al. (2009) noted that for wind speeds be-
low 10 ms−1, rain resulted in a positive wind speed
bias due to anomalous volume backscatter and in-
creased ocean surface roughness; for wind speeds
above 15 ms−1, rain resulted in a negative wind
speed bias due to attenuation of the ocean surface
backscatter. For a complete discussion of potential
errors, see Hoffman and Leidner (2005).

Tropical cyclone 6-hourly location and intensity
data are taken from the National Hurricane Center
HURDAT Best Track database (NHC). For calcula-
tion of the normalization factor, PI

f , potential intensity
values are taken from monthly mean re-analysis data
(Bister and Emanuel, 2002) bi-linearly interpolated to
the place and time of the storm observation.
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3. METHODOLOGY
3.1 Locating TCs

To create a climatology of tropical cyclones as
seen by QuikSCAT, Best Track location and inten-
sity data are spline interpolated iteratively forward
until reaching the minimum distance, d, to any valid
(i.e. non-rain-flagged) QuikSCAT datapoint of a given
pass. Cases for which d > 100 km or the interpo-
lated intensity VBT ≤ 17.451 ms−1 are skipped.

Next, to identify the TC center of circulation we
take as a first guess the interpolated Best Track loca-
tion, about which we extract all data (including rain-
flagged) within a 4o x 4o box. Due to the significant
and spatially-asymmetric effects of rain contamina-
tion on vector magnitude retrieval, we then calculate
at every point (i, j) a modified vorticity variable, ζ∗,
based solely on the flow curvature and given by

ζ∗i,j =
3∑

m=1

(ûi,j+m− ûi,j−m + v̂i+m,j − v̂i−m,j) (1)

where u and v are the zonal and meridional wind vec-
tor components, respectively, and the overhat symbol
denotes unit magnitude. Finally, using the location of
maxmimum ζ∗ as guidance, all TC centers are sub-
jectively identified. Only those cases for which there
exists a single, clearly-defined center of cyclonic cir-
culation are included, based upon the criteria that a)
the center is consistent with the wind vectors in the
immediate vicinity in all directions, and b) the broad
"outer" circulation (i.e. 1-4 degrees from center) is
easily discernible and is consistent with the location
identified by criterion (a). The authors sought to be
conservative in this procedure; when ambiguous, the
case was omitted.

As an additional filter, only cases over water and
for which the potential intensity PI > 40 ms−1 are
included in order to avoid cases in which storms are
rapidly transitioning to regions of cold sea surface
temperatures where mature tropical cyclones cannot
be sustained.

In order to separate the flow induced by the trop-
ical cyclone from the background flow, the TC trans-
lation vector, calculated directly from the full spline
interpolation of the Best Track dataset, is subtracted
from all wind vectors. All vectors are then projected
onto their pure-azimuthal component relative to the
TC center and vector magnitudes are signed: pos-
itive for cyclonic, negative for anti-cyclonic. Finally,
wind speeds are azimuthally-averaged within 10-km
wide rings moving radially outward from center to ob-
tain a radial wind profile for each TC fix.

Finally, we select a single azimuthal-average
wind speed, VQS , and for each TC fix determine
its radius, rQS , and extrapolate outward to r0 using
a theoretical model of outer wind structure that as-
sumes minimal deep convection in the outer region.
This model is described in detail in Emanuel (2004)
and is reviewed below.

3.2 Selecting VQS

Selection of an optimal QuikSCAT wind speed,
VQS , necessitates evaluations of three key limits on
QuikSCAT data quality. First, the assumption of
constant background flow, represented by the sin-
gle translation vector subtracted from all points, be-
comes increasingly erroneous as one moves away
from the center. This constraint renders any ef-
fort to extract r0 directly from the QuikSCAT data
invalid. On the other hand, due to simple geom-
etry and a decrease in data coverage caused by
rain-contamination, which occurs predominantly near
the TC center, the number of data points (and thus
the confidence in average values) increases dramat-
ically as one moves outward from center. Finally, as
noted by Brennan et al. (2009), QuikSCAT observed
winds have a near-zero bias in the range of 10-15
ms−1. The validity of a given azimuthal-average
wind speed depends on the trade-offs between the
above three factors. Based on these criteria we set
VQS = 12 ms−1, although the overall results pre-
sented here are largely insensitive to this selection
over the integer range VQS = [8, 15] (not shown).

The final result is a dataset of 2154 TC fixes
spread across five basins: Atlantic (482), East Pa-
cific (367), West Pacific (640), Indian Ocean (78),
and Southern Hemisphere (587).

3.3 Estimating Outer Radius r0

To estimate the outer radius, r0, we employ
the outer wind structure model derived in Emanuel
(2004) (for an abridged form, see Dean et al. (2009))
to extrapolate radially outwards from the QuikSCAT-
defined azimuthal-average radius, rQS , of the wind
speed VQS described above. Here, we briefly review
the model’s characteristics. The flow is assumed to
be steady and axisymmetric. The model assumes
that there is no deep convection beyond rQS , result-
ing in a local balance between subsidence warming
and radiative cooling. Furthermore, given that both
the lapse rate and the rate of clear-sky radiative cool-
ing are nearly constant in the tropics, the equilibrium
subsidence velocity, wrad, can be taken to be approx-
imately constant. In equilibrium, this subsidence rate



must match the rate of Ekman suction-induced en-
trainment of free tropospheric air into the boundary
layer in order to prevent the creation of large vertical
temperature gradients across the top of the boundary
layer. The radial profile of azimuthal velocity is there-
fore determined as that which provides the required
Ekman suction, and is given by

∂(rV )
∂r

=
2r2CDV 2

wrad(r2
0 − r2)

− fr (2)

where r is the radius, V is the azimuthal wind speed,
f is the Coriolis parameter, CD is the bulk aerody-
namic drag coefficient. We set CD = 10−3 and
wrad = 1.6 cms−1.

To our knowledge, this nonlinear first order differ-
ential equation has no analytical solution. Dean et al.
(2009) argued that the partial derivative term is small
except as r approaches r0, resulting in a simple ana-
lytical solution for r0. However, (2) can also be solved
numerically for r0, and the solution to the full equa-
tion is 30-150 km larger than the approximated so-
lution over the typical range of tropical latitudes and
rQS values (not shown). Thus, for our purposes we
elect to use the full numerical solution.

Figure 1: Correlation coefficients between r0 and vari-
ous parameters globally and across basins. Basins listed
are Atlantic (AL), East Pacific (EP), West Pacific (WP), In-
dian Ocean (IO), and Southern Hemisphere (SH). For the
Southern Hemisphere, "day" is phase shifted by 183 days
to coincide with the Northern Hemisphere.

4. RESULTS
4.1 Correlations and distributions

Figure 1 displays correlation coefficients be-
tween r0 and various parameters of interest. The
lone correlation of note exists between r0 and inten-
sity V (r = .36) and is relatively consistent across
basins; this matches the weak correlation (r = 0.28)

found by Merrill (1984). Meanwhile, r0 is effectively
independent of latitude, which contradicts the typical
finding that TCs tend to expand as they recurve pole-
ward (e.g. Merrill (1984)).

Table 1 lists the p-values for the statistical fit to
various distributions of log(r12), log(r0), as well as
the logarithm of each radius normalized by the nat-
ural tropical cyclone length scale, defined as the ra-
tio of the potential intensity to the Coriolis parame-
ter, denoted log(r∗12) and log(r∗0), respectively. All p-
values are calculated using the Kolmogorov-Smirnoff
test statistic. In the case of the normal and log-
normal test distributions, the observed data were
rescaled to have zero mean and unit variance for
comparison to the standard normal parent distribu-
tion N(0,1). P-values approaching 1 indicate that the
observed distribution is close to the parent normal
distribution.

Table 1: Kolmogorov-Smirnoff p-values for statistical fits to
various parent distributions for r12, r0, r∗12, and r∗0 . Log-
normal refers to the normal fit of log(r). Largest p-value is
bold.

Probability Distribution r12 r0 r∗12 r∗0
Log-normal .028 .626 .248 .226

Normal 0 0 0 0
Weibull .001 0 0 0

Rayleigh 0 0 0 0
Gamma .05 .11 0 0

It is clear that the best fit for the distribution of r0

is the log-normal distribution (p = .626) from among
those tested here, although the null hypothesis that
r0 is gamma distributed (p = .11) also cannot be re-
jected at the 95% confidence level. Using a χ2 met-
ric, the p-values for the log-normal and gamma dis-
tributions are .494 and .043, respectively, which indi-
cates that the gamma distribution can be rejected at
the 95% confidence interval. In either case, although
one cannot prove with certainty that an observed dis-
tribution has a specified parent distribution, p-values
indicate that the goodness of fit between the distribu-
tion of r0 and a log-normal parent distribution is the
most significant from among the variables and distri-
butions tested here. The global frequency distribu-
tion of both r12 and r0, along with the Gaussian fit to
the mean and variance of the datasets, are displayed
in Figure 2. To test the robustness of the result that
r0 is more closely log-normal than r12, we randomly
resample 50% (N=1077) of the global dataset 1000
times. In 98.7% of resamples, p(r0) > p(r12) and
the mean ∆p = .524, which indicates that the finding



that r0 is more closely log-normal than r12 is robust.

Figure 2: Global frequency distribution with Gaussian fit
(red line). Top: log(r12); Bottom: log(r0)

Among individual basins (not shown), p-values
are greater for r0 than for r12 in all cases, but the
largest increase in p-value between r12 and r0 oc-
curs for the full global dataset.

Dean et al. (2009) found that normalizing r0 by
PI
f results in a distribution that is much closer to log-

normal. Our results indicate that the distribution of r0

is significantly closer to log-normal than that of r12,
but that the subsequent normalization of r0 in fact
makes the log-normal fit worse.

4.2 Control experiments
To what extent is this log-normal distribution an

artifact of the outer wind structure model employed
here? Given that our version of r0 is only a func-
tion of r12 and f , we perform three test experiments.
First, we recalculate r0 using the observed distribu-
tion of f but set all values of r12 to be constant and
equal to the median value, r12 = 197.15 km (Figure
3a). Although still far from log-normal (p = .002), it
is interesting that our model, applied using the ob-
served distribution of TC latitudes, manages to bring
a purely constant "distribution" a significant ways to-
wards log-normality.

Second, we recalculate r0 using the observed
distribution of r12 but set all values of f to be constant
and equal to the median value, f = 5 ∗ 10−5 s−1

(Figure 3b). Interestingly, even with constant f ,
the distribution is substantially closer to log-normal
(∆p = .194), although the p-value remains only ap-
proximately 1

3 that of the full global dataset.

Figure 3: Distribution of log(r0) for control cases (a) Top:
constant r12 = 197.15 km (p=.002), and (b) Bottom: con-
stant f = 5 ∗ 10−5 s−1 (p=.222).

Finally, we recalculate r0 using the observed dis-
tribution of both r12 and f but randomly reshuffle
their pairings, the purpose of which is to address the
question of whether nature "matches" r12 and f in
some optimal way as to generate a log-normal distri-
bution. The p-value (N = 100) for the observed pair-
ings of r12 and f is larger than approximately 80%
of cases with randomized pairings, which suggests
that, though not optimized, how r12 and f are paired
in nature may play a role in bringing the distribution
of r0 closer to log-normal.

5. DISCUSSION AND CONCLUSION
QuikSCAT measures ocean surface wind vec-

tors directly and at significantly higher resolution and
higher precision than other available datasets of trop-
ical cyclone wind structure. Thus, the results pre-
sented here provide reliable evidence that the global
distribution of tropical cyclone size, defined as the
radius of vanishing winds calculated using an outer
wind structure model that assumes vanishing deep
convection beyond the azimuthally-averaged radius
of 12 ms−1 winds, is approximately log-normal.
While the distribution of r12 appears to be broadly
log-normal in nature, the distribution of r0 is quanti-
tatively much closer to log-normal. Moreover, in con-
trast to the work of Dean et al. (2009), we find here
that the normalization by the natural length scale of
tropical cyclones, defined as the ratio of the poten-
tial intensity to the Coriolis parameter, reduces rather
than improves the goodness of fit of the observed
distribution to log-normal.

The control experiments suggest that a compo-
nent of this result is simply an intrinsic characteristic



of the outer structure model chosen in this work. This
is not necessarily an indication that the log-normal
distribution is partially an artificial construct; rather,
to the extent that the model chosen here represents
the outer structure of actual tropical cyclones in na-
ture, it may represent an important piece of the dy-
namical puzzle that serves to generate a log-normal
distribution of r0. Nonetheless, the choice of model
alone is insufficient to explain the observed values of
∆p; the distributions observed in nature of r12 and f ,
from which the distribution of r0 is derived, appear to
play an important role as well.

What is the implication of the log-normal dis-
tribution in the context of tropical cyclones? Log-
normal distributions are commonly associated with
multiplicative processes and are ubiquitous in sci-
ence, including the cluster aggregation of particles
(Briehl and Urbassek, 1999), molecules and crys-
tals (Espiau de Lamaestre and Bernas, 2006), to-
tal rainfall, species abundance, income etc. (see
e.g. Limpert et al., 2001; Mitzenmacher, 2004; Koch,
1966). As noted earlier, in the absence of significant
external environmental forcing (e.g. interaction with
topography, such as Hurricane Ike (Atlantic 2008)),
the spatial extent of a given tropical cyclone remains
relatively constant throughout its lifetime, suggesting
that the existence of this distribution may be funda-
mental to the processes that generate tropical cy-
clones in the first place. Thus, this result begs the
question of whether tropical cyclogenesis could po-
tentially be represented as a cluster aggregation pro-
cess in a manner similar to that demonstrated in pre-
vious modeling studies of radiative-convective equi-
librium (Bretherton et al., 2005; Held et al., 1993).
Further investigation is needed to examine how the
dynamics of such a process would function for an in-
dividual tropical cyclone, and whether these dynam-
ics differ from those acting to generate a log-normal
distribution on a global scale.
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doi:10.1175/2008WAF2222188.1.

[3] Bretherton, C. S., P. N. Blossey, and M. Khairout-
dinov, 2005: An energy-balance analysis of deep
convective self-aggregation above uniform SST. J.
Atmos. Sci., 62, 4273-4292.

[4] Briehl, B., and H. M. Urbassek, 1999: Monte
Carlo simulation of growth and decay processes in
a cluster aggregation source. J. Vac. Sci. Technol.
A, 17, 256.

[5] Dean, L., K. A. Emanuel, and D. R. Chavas,
2009: On the size distribution of Atlantic trop-
ical cyclones. Geo. Res. Lett., 36, L14803.
doi:10.1029/2009GL039051.

[6] Emanuel, K. A., 2004: Tropical cyclone en-
ergetics and structure, In Atmospheric Turbu-
lence and Mesoscale Meteorology. R. R. a. B. S.
E. Federovich. New York, Cambridge University
Press, 240.

[7] Espiau de Lamaestre, R., and H. Bernas,
2006: Significance of lognormal nanocrystal
size distributions. Phys. Rev. B, 73, 125317.
doi:10.1103/PhysRevB.73.125317.

[8] Frank, W. M., 1977: Structure and energetics of
the tropical cyclone, Part I: Storm structure. Mon.
Wea. Rev., 105, 1119-1135.

[9] Held, I. M., R. S. Hemler, and V. Ramaswamy,
1993: Radiative-convective equilibrium with ex-
plicit two-dimensional convection. J. Atmos. Sci.,
50, 3909Ű3927.
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