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1. Introduction

The Dines, or pressure-tube, anemometer, consists ofexdéageter pitot tube mounted on a vane,
connected to a unique manometer. This manometer consistsapfen-bottomed tapered float in a water
tank, with the pressure tube from the pitot head feeding théoair space in the float. As the wind
speed rises, the pressure inside the float increases anddhedes, moving the recording pen. Further
information on the instrument may be found in Dines (1892) @old (1936). The Dines anemometer
is now obsolete in Australia, having been largely replacedup anemometers. Nevertheless, historical
records from the instrument are important to understanttiagvind risk climate, not least since the two
strongest gusts ever recorded on the Australian mainlanidopical Cyclones Tracy of 1974 and Vance
of 1999, were on Dines instruments.

The behaviour of cup anemometers in turbulence has beensesdty studied, but comparatively
little similar work has been done on the Dines, and none tgceBome studies have compared cup to
Dines anemometers (e.g. Mattice 1938; Dyck 1941; Handc86B;1Logue 1986; Smith 1981) or looked
at the Dines anemometer in isolation (e.g. Wieringa 1980e8w of Meteorology 1987) but these have
mostly focussed on the mean, rather than the transienipmesp Here, we present and analyse a hewly
developed physical model of the transient response of theDanemometer. Two previously observed
resonances are confirmed, and their physical mechanismiltlgsc A third low-frequency oscillation,
not previously known, is found in the model. Observatiora thay indicate this oscillation are briefly
discussed. In addition, it is shown that the instrument magyrspeed, albeit for different reasons to cup
anemometers.

Further work, in collaboration with the Cyclone Testingtitas at James Cook University and Geo-
sciences Australia, will involve verification and calibeet of the physical model by experiments on a
remnant functioning Dines instrument, and reinterpretatf the historic gust record.

2. Modédling the Float Chamber

The manometer of the Dines anemometer is illustrated inlHigs a complicated geometry, designed
to produce a steady-state float displacement that is ling@eiapplied wind speed. This geometry com-
plicates the analysis, so for convenience a simpler gegrélirbe temporarily assumed. In particular,
the following simplifying assumptions are made:

1. The cross-sectional areas of the water inside and outsithe float are equal.

2. The float and containing vessel have parallel sides.



3. The pressure in the suction chamber is constant, or dguotlya the suction chamber is open to
the atmosphere.

4. The movement of the float and liquid experience Newtonmmpmng with time-scales; andr
respectively.

5. The relative motion of the float and liquid is Newtonian ¢ with time-scales, to represent
the choke at the bottom of the float (see section 2.4.

With these assumptions, the float chambeesrly equivalent to a U-tube manometer with a frictionless
piston supported by some trapped air in one arm, and forcednying the amount of trapped air. Figure
1 sketches the successive approximations, from taperddtfiqzarallel-sided float, to U-tube. In the U-
tube, the piston represents the Dines float and the manohugiierthe water in the Dines float chamber.
The trapped air between the piston and the manometer liquidsponds to that inside the Dines float.
It is assumed to compress isothermally, and acts as a sptagebn the two masses.

An important difference with the Dines manometer is thatdimeplified system does not measure
pressure. In a Dines manometer, the net upwards force onothieditcreases as the float rises, because
the area of the water surface in the bottom of the tapereddio@hishes. In contrast, a parallel-sided
float will rise indefinitely given an infinite supply of intesthair at a fixed pressure, provided that the
pressure is sufficient to lift the float. Hence the forcinghistsystem is better regarded as being the
mass of trapped air, rather than its pressure. This simgtiific is helpful for understanding the transient
response, but will later be removed. The mass of air in thentlea will continue to be a key variable
in the system, but this mass will be eventually governed hyatgns which describe the flow of air
between the anemometer head and the chamber via the tubing.

A second difference is that the flow of the liquid around thé&doa of the Dines float is probably
rather complex, while the analogous flow around the bendarJdtube is much more simply modelled.
In particular, the liquid will be assumed to move as a singéss

The variables in the system are the positions and veloaditiehe piston and manometer liquid,
(z1,v1) and(x2,v9) respectively, and the pressuyseof the trapped air. The independent variables are
the piston mass;, the tube areal, the amount of trapped aif(t), the pressure of air in the suction
chamberp.,,, and the mass of the liquichy = 2z, Ap wherex, is the resting position of the liquid if
the piston was removed ands its density. All distances are measured along the tubra free bottom
of the U; distances towards the piston side are positive.

The trapped air has mass,, pressure.,, + p and densityp,. Combining the definition of density
mg = (1 — x2) Ape With the gas lawpe,,, + p = pa R4T yields

C(t) = RdTma(t) = (penv + p)A(UUl - x2)

whereR; is the gas constant for dry air afdis the air temperature. We will us€t) as the principal
forcing of the system.

The forces on the float are its weight:, the net upwards pressure due to the trappeg.djrand
friction which we model as a linear damping to zero with tinaler;, and a linear damping to the liquid
motion with time scales. Newton’s second law gives

. T3
miv = pA — gmy —miTiv1 — ml;(vl - Uz) .

The liquid motion is forced by the air pressure differepcleetween the chamber and outside, and
by the hydrostatic pressure differerer. — x2)pg due to the different liquid levels inside and outside
of the float. A linear damping is again included. It is assurtied the water moves essentially as a solid
mass, hence

20 Aply = —pA + 2(xe — 22)Apg — 22 ApTova — 2xeAp%(v2 —v1).
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Figurel: The Dines anemometer float chamber and successive apptodisarhe left panel shows the classic
Dines manometer, with the float of tapered cross-sectioiged to produce a displacement that is linear in wind
speed. The central tube feeds the pressure at the pitot hibeieto the interior of the float. Blue shading
represents water. The middle panel approximates the floa&dsg parallel sides. The right panel has similar
topology to the other panels, but approximates the liquichasing as a single mass in a U-tube. The float is
represented as a piston in one arm of the tube, supportea d@heviquid by the trapped air. The notation is that
x1 represents the position of the pistan,the position of the liquid top in the piston arm, andthe equilibrium
position that the liquid would take if the piston was remavéistances are measured from the bottom of the
U-tube, with the piston arm being positive. The left and cedrawings are from Gold (1936).

where2x. Ap is the mass of the liquid. This last assumption is not undastrictive — if the channel
through which the water moves is not of constant cross@gcthen the greater mass per unit length in
the wider sections will be exactly compensated by the loweeleration experienced by water therein —
it is the inertia that matters.

In summary, the equations governing the system are

c(t)
e — N 1
LT A Do) @
i’l = U1 (2)
. A T
Ul:iz_l_g_ﬁvl_;(vl_vz) (3)
Tp = Vo (4)
. —pA+2(x, — x2)A T
b= Q(xeAP 2200 — - 52— w) ®)

Equation (1) is Boyle’s law and (3) and (5) are Newton’s selclawv. Equation (1) is used to eliminate

pA from the remaining equations, leaving a set of four nonlireeaipled differential equations. Linear

analytic solutions and numerical solutions (by fourthesrBRunge-Kutta integration) will be obtained.
The equilibrium state of the system is found by solving= 7, = 0 with ¢ = ¢y constant, giving

mi
e — de — T4 6
e = Te = 5 (6)
xle:w2e+& (7)
gmy

Note that the equilibrium water level (6) is independentfas in a real Dines anemometer (Gold 1936).
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The calibration of the system, practically speaking, is the readimgsndz- that it would produce
in response to steady forcing, provided that sufficient time had elapsed for it to reachildsjium
v = vy = 0. In the absence of damping, total energy is conserved andisstate will never be met,
but in reality, the anemometer will tend to this state. Itasnenient to be able to discuss the calibration
with respect to nonsteady forcing. Hence (6) and (7), thibreion equations of the system, will also be
applied to nonsteady forcingft), so as to compare the instantaneous readings of the insttuahat it
would give in a steady state with that instantaneous foriegld constant. In particular, this interpretation
is necessary for the analysis of “overshooting” and “unideosing” of gust measurements in unsteady
flow.

The energy within the system for steady= ¢ is given by

1
Ex = §m1v% + 2, Apvs (8)
Ep1=mi(z1 — 21e)g %)
EP,Q = Apg [(‘T? - xe)2 - (x28 - we)z] (10)
x| —T
Epy, = colog <¥> + DenvA[(x1 — x2) — (T1e — T2¢)] (11)
Tle — L2e

representing respectively the kinetic eneigy, the potential energies due to the positions of the piston
Ep 1 and liquid Ep 2, and the potential energy due to the pressure of the trappégha. These potential
energies are relative to the equilibrium states. The acguhthe numerical solutions was checked by
requiring them to conserve total energy to high accuracynigtions with damping; = » = 3 = 0.

2.1 Undamped behaviour

Some limiting, small-amplitude undamped cases for steahyjrfg,c = ¢y, are of interest. The first
three are not very useful in understanding the numericaitisols, but the fourth will be seen to be of
significant importance. For simplicity we take,,, = 0 here; this simplification is relaxed in section 2.3.

1. Liquid stationary. Then writez; = z2 + ¢o/(gm1) + €, where the constamt /(gm; ) is motivated
by (7). Equations (2) and (3) with = 7o = 73 = 0 give

-1
'e':g<1+gc—nzle> _g (12)
92m1
~— ¢ (13)
co

which describes a simple harmonic oscillator with freqyenc

fi=ay/ " (14)

This limit will also describe the motion of the piston relatito the liquid when the liquid is moving
relatively slowly, or when the liquid is much more massivarthhe float. Physically, it is a mode
in which the piston “bounces” on the trapped air.

2. Piston mass negligible. Equations (4) and (5) become

ir=—Laytg (15)

e

which in which the liquid oscillates with frequency

fo= /2 (16)
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about mean positiom.. This is a gravitational mode.

. Piston and liquid move together That is,v; = v9, which is the same as the previous case, except
that the oscillating mass has increasediby The frequency is

- 24pg 1/2
1= (gat) ¢

This is also a gravitational mode.

. Coupled oscillations. Consider oscillations of the form

z1(t) = x1e + Sbe™t (18)
To(t) = 9 + de™! (19)
wherei? = —1. That is, the piston and liquid are oscillating with the sameguencyw, andb

describes the relative amplitude and phase of the osoifistiSubstituting these equations into the
governing equations (1) to (5), expanding as a Taylor sémiésand taking the first-order terms
yields

beomiw? + (1-— b)(gm1)2
2Acop(zew® — g) — (1 —b)(gm1)?

0 (20)
0 (21)

with solutions

g° (m% + 2Amypxe + 2Acop/g — \/SApxem‘I’ + (m? — 24pz.mq + 2Acop/g) 2>

2
1

4Acopxe
(22)
(m% — 2Apzemy + 2Acop/g + \/Sprem:‘l” + (m} — 2Apxemy + 2Acop/g)2>
and
g2 (m% + 2Amy pzxe + 2Acop/g + \/8Apxem§’ + (m? — 24pzemy + 2Acop/g)2>
2 _
W2 = 4Acopze
(24)
(m% — 2Apxemy + 2Acop/g — \/SApxem“Z’ + (m% —2Apxemy + 2ACop/g) 2>
by = . (25)

2
2my

The argument to the square root is always positivé, smdb, are always real. Clearlyy > 0 >
by, SO solution(by,wq) has the the piston and liquid in phase, dhgl w,) has them in opposite
phase. The argument to the square root can also be written

(m% + 2Amypx. + 2Acop/g)2 — (16A%comyp’ze) /g

from which it follows thatw; andw, are always real, witlh < w; < ws. The low frequency
oscillation has the liquid and piston in phase, and the higguency one in opposite phase.
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Figure2: Time series of simulated Dines
< 3‘\‘,\/\.,”“,,”/\,“/\,,”/\””(\,”/\ ,[\ /\ /\ /\ /\ /\ /\ ,/\1,\,/\,‘,(\‘,\,/\,” manometer. The upper panel shows the
oI AR AR AR AR AN I B \j \/ \/ V \/ \/ \/ AN float (blue) and liquid (green) position, and
v/\AvaAAvAAVM\/A/\/\/\/A\/AUA\/\/A\/ \/A\/NVNVM\/ the lower panel shows the respective veloc-
1 ities. The lighter lines in the upper panel
600 650 700 750 800 S "
time show the equilibrium positions of the float
and liquidx,. andxs., and the black line
shows the mean position of the float (cal-
culated over a much longer period than that
shown here). Parameters ate= 1,¢y =
09,9g=1m = 1,p=1,11 = 1o =
3 = 0,7z, = 2. The initial condition
-1 : : : wasz = 1. + ¢o/(gm1), x2 = 9. and
time v, = vy = 0.
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A time-series plot of simulated motion for the full equasois shown in Fig. 2. This example
clearly shows periods where the liquid and piston oscillagghase (e.g. 690 — 770), and periods where
they are out-of-phase. Apparently both oscillations aes@nt and beating is occurring, but see further
discussion of this case later. The mean position of the fldatk line) is significantly displaced from
its equilibrium positionzy. (lighter blue line). In the usual anemometer parlance, tistriument is
overspeeding; that is, the measured mean wind speed hagtigepbgs. In contrast, the mean liquid
position is indistinguishable from,, (light green line).

The power spectra aof; andx- for this simulation are shown in Fig. 3, with the coupled freg-
cieswy, w9 indicated by the filled diamonds. The spectrum is dominatgd tbroad peaks around

~ 0.6037, wo =~ 1.2347, and the harmonics thereof. The nonlinearity is evidentnftbe rela-
tively large amplitudes of the harmonics, and from the bnesd of the peaks. The broad peaks are
also notably spiky; in this example the spikes are spacedaitta.04, but when run at lower amplitude
they become fewer and are spaced.827 ~ w» — 2wy, suggesting that the spikes are the result of
nonlinear interactions between the frequencigsandw,. Reducing the amplitude of the oscillations
by changing the initial condition leads to narrower spegiesks and fewer spikes, confirming the role
of nonlinearity. There is significant power in the motion loé fpiston, but not the liquid, at frequencies
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A=1.0 c0=2.0 pe=0 r1=0.00 12=0.00 T3=0.00 g=1.0 m1=l.0 pW=1.O xe=2.0
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Frequency Figure5: As for Fig. 3, but withcy = 2.

below 0.3, while the power is more similar for other peakshim $pectrum. The high piston energy and
partial decoupling of float and liquid at low frequencies kgs apparent when the overall amplitudes
are reduced, again implying that nonlinearity may be theseatihis behaviour will be further discussed
below.

Limiting behaviour at very high wind speeds, (i.e. the limjt — o), is thatw? — 0, by/cy —
2Ap/(gm?), w? — g/x. andby/cy — 0. The in-phase oscillation becomes slow and predominantly i
the piston, while the opposite-phase essentially becontkependent of the piston and similar to the
case above.

If ¢o is increased from that shown in Fig. 2, then the charactehehtotion changes. Time-series
and spectra fory = 2 are shown in Figs 4 and 5. The motion is approximately peciadih the section
shown apparently beginning to repeat at aboat 830. The spectrum has many more peaks, but the
linear analysis describes the strongest two. The offsdtefitean float position from; . persists.

Further indication of the complexity is provided by Fig. 6hish shows the power spectra for a
range ofcy. Itis clear that the linear analysis successfully pickstbatdominant peaks; andw, (white
dotted curves), with their difference being the third proemt peak (black dotted curve). A rich range
of harmonics and interharmonics are also apparent. Theguogler at low frequencies seen in Fig. 3
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Figure6: Logarithm base 10 of the power
spectral density for:; (top) andx, (bot-
tom) for values ofc from 0.02 to 4 hy
0.02. Other parameters afe= 1, g = 1,
my; = 1, p = 1 andx, = 2. The dotted
white curves are); (lower) andw, (upper),
and the dotted black curvedis, — w;.
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02 Figure9: Wavelet power spectrum of the
i simulation shown in Fig. 2. The upper
g . .
< 18 panel shows the piston motion, and the
154 lower that of the water. The horizontal
ggg\ white lines indicate\ = 27/w; and X =
10240 100 200 300 400 500 600 700 800 27 Jwa. the _also the much lower fre-
time guency oscillation present near= 150.

is apparent in the upper panel negr= 0.9, f = 0, from which it seems that its origin is a prominent
interharmonic that happened to intersgct 0 at thatcy. This intersection occurred becausg~ 2w
around thaty (as already noted), a relationship that will presumabhdtemfavour relatively strong
coupling between the two oscillations. The closely-spaskles in the spectrum seen in Fig. 3 are also
apparent. Other interesting features include the regagaton in the width of the peak abowt and

to a lesser extent, and the remaining lines. Similar variation is also appagtiziero frequency, and is
shown more clearly in the lower panel of Fig. 7. The upper pahthat figure shows the overspeeding
previously noted in Figs. 2 and 4. Relationships betweeltvibgpanels are obvious, as is the systematic
nature of the overspeeding. Reducing the amplitude of ttialideparture from equilibrium by a factor
of 10 reduces the overspeeding by about a facto6fsuggesting that determining the cause of the
overspeed will require an analysis of the nonlinearity & $lgstem.

We return now to the case witly = 0.9 and consider the cause of the overspeeding. Figure 8 shows
alonger version of Fig. 2, which includes also a low-passrild float position. This curve is a maximum
when the water and piston are most obviously out-of-phaskaaninimum when they are in-phase. The
trapped air acts as a nonlinear spring — the force requined fliven incremental displacement is larger
when the air is already compressed from its equilibrium fpmsi than when it is rarefied. Thus, as the
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, curves show the instantaneous positions,
time . .
and the lighter curves the calibrated values
! x1. and s, calculated frome(t). Lower
05 panel, piston and water velocity. Parame-
3 0 tersareA:1,C0:27T1:17T2:T3:
0,9 = 1,my = 1,p = 1,z = 1, giv-
05 I ingw; = 1.18, ws = 0.60, by = —0.56
1% — —20 60 — 500 andbs = 3.56. The forcing amplitude is
time G =0.1.

amplitude of the out-of-phase oscillation increases, thp will experience a nonlinear increase in the
upwards force it experiences at the bottom of its cycle, wthenwater rises to meet it. It appears that
this is sufficient to increase its mean position over thatweauld occur with a smaller-amplitude, more
linear, oscillation.

Figure 9 shows the wavelet power spectrum for the piston aam@mirom this simulation. The
amplitudes of the two coupled modes are not constant, bué gjowly with time. Evidently energy
is being transferred back and forwards between them. Témster is accompanied by a much slower
oscillation in the piston, but not in the water. The ampléuaf this latter oscillation depends on the
overall amplitudes in the system, so it is clearly nonlinearature. | can recall seeing in the past Dines
anemometer traces with an oscillation with a period of sEv@inutes, attributed to gravity waves. Is it
possible that this phenomenon is instead a manifestatitimsohonlinear effect within the instrument?

2.2 The effects of damping the float

A real Dines float has damping due to the viscosity of the watershaft from the float protruding
through the bushing at the top of the float chamber, from tinenpechanism, and from remote read-outs.
Thus such motions will be likely to be damped. On the otherdhdme forcinge(t) will vary due to
turbulence, not be constant as in section 2.1. The behawban the damping; # 0 andc varies in
time is now explored. To begin with,will oscillate sinusoidally,

c(t) = co[l + Gsin(ft)] (26)

wherec is related to the mean wind speédjs essentially a gust factor, arfds the forcing frequency.
The main diagnostic will be to compare the actual osciltabdthe piston and water with that expected
from the calibration equations, namely the equilibriumuesl expected for steady forcing. In these
simulations, quite heavy damping = 1 is applied.

Interesting cases are likely to include those whéris close to one of the dominant frequencies
apparent in Fig. 6, perhaps most strongly the oppositegpbasillation f = w, but note that both
coupled linear modes will be directly forced by oscillagam c. A sample time-series for this case is
shown in Fig. 10. The water and piston are oscillating ropgihbpposite phase, with relative amplitude
0.47, not too far from|be| = 0.56 for these settings. The amplitude of the piston oscillat®about
7% greater than that expected from the calibration, even ithrelatively heavy damping. Evidently
resonance is present at this frequency, as expected. Miaestingly, the mean piston position is
clearly offset slightly above its calibrated value, as d®ond in some undamped cases. As before,
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0.5
ol Figure12: As for Fig. 10, except with
N o = 1, giving wi = 1.41, wy — 0.71,
0sr | by = —1 andb, = 2. The forcing fre-
15 260 p— — 790 300 quency |'_5f = 26 roughly twicews, and
time the amplitude is increased @ = 0.5.

the instrument is overspeeding. Examination of the spectiig. 11) shows the now familiar peak at
low frequency. An appealing explanation for the overspegds that nonlinearities are generating this
peak (and many others), but that the Newtonian damping ibleria remove very low frequency (and
in particular, DC) motions. However, this explanation aainpe complete because overspeeding occurs
also in the undamped simulations.

More exotic behaviour is possible, in particular in the iagting case where satisfiesv, ~ 2w .
Figure 12 shows such a case forced at a little less than twicd he amplitude was increased tb=
0.5 to really let the nonlinearities rip. The system resonateg/a, half the forcing frequency, and
overspeeds by abo@5%.

The behaviour is summarised in Fig. 13. The energy (paneleaylg depicts the resonant peak,
with the overspeeding of the mean shown in panel (b). Not@ fpanel (c) that the gusts are measured
accurately at low frequencies, then tail off rapidly befbegng overestimated at resonance, then tailing
off again. From panel (d), the piston and water oscillatidiffer in phase by~ 7 /3 at low frequency,
and aboutr at high, with the dividing frequency being that at which thistgn ignores the forcing.
Increasing the amplitude of the forcing (Fig. 14) increasesamplitude of the response and introduces
the second resonant peak already seen in Fig. 12, but dopsaalice much else in the way of change.
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Figure13: A summary of the behaviour
for the forced damped system. Each panel
shows the system behaviour as a function
of forcing frequencyf, with the natural fre-
quenciesv; andws indicated by magenta
diamonds. Paremeters are shown at top left.
(a): the time-mean total energy in the sys-
tem,Ex + Ep1 + Epa + Ep,,. (b): the
mean piston and water position, relative to
that expected for steady forcing. (c):

the amplitude of the piston and water oscil-
lations, normalised by the expected piston
amplitude from the calibration equations.
(d): the phase difference between the forc-
ing and the response. (e): the phase of the
first harmonic of the response.

Figure 14: As for Fig. 13, except witli =
0.5.



2.3 Accounting for pressure in the outer chamber

Including a constant nonzero pressug, in the outer chamber increases the complexity of the
algebra but does not require any change in the method ofi@@luThe equilibrium water position is
unchanged, while the float position becomes

o
Tle = Toe + ————————. (27)
¢ ¢ gmi + Apenv
For comparison with the earlier simulations, we define
Apenv -1
Apg=co |1+ (28)
gmi

which is the length that the trapped air would assume,jf = 0. That is, we work in terms of the length
or volume of trapped air, rather than its mass. Searchingdopled oscillations following the procedure
in section 2.1 reveals that

beow®my + (1 — b)(gmy + Apeny)® = 0 (29)

and
2Acop(acew2 —g)— (1 =0b)(gm1 + Apem)Q =0 (30)

with solutions

2 S+ 4Ap$e(9m1 + Apenv)2 - \/S2 + SAmlpxe(gml + Apenv)4
i =

31
v 4 Acomy pxe (31)
b S + /8% + 8Ampre(gmi + Apeny)? (32)
! 2my (gml + Apenv)2
and
o S+ 4Apzc(gmi + Apeny)? + /S? + 8Amypze(gmy + Apeny)?
wy = (33)
4 Acomy pxe
S — \/SZ + 8Am1pwe(gm1 + Apenv)4
by = 3 (34)
2my (gml + Apenv)
where
S = (gml + Apenv)2(m1 - 2Ap$e) + 2A9m1PCO (35)
It follows from
[S + 4Apze(gmi + Apeny)’]* — [S® + 8Amipre(gmi + Apeny)’]
- 16A2Cogm1 (gml + Apenv)zpzxe (36)

>0

thatw? > 0, sow; is real.

Physically, the effect of including.,., is to increase the stiffness of the spring. Previously, & th
volume of the trapped air halved, thgroubled. Nowp become®(peyy + P) — Penv = Denv + 2p. FOX
Penv > p, @s Will usually be the case, this makes a big differencedaehltoring force. The main effect
will be to shift the oscillations to higher frequency.
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Figure15: Photograph of the lower end
of a Dines anemometer float, showing the
choke. The pressure tube enters up the hole
in the middle, almost filling it.
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2.4 Damping the relative motion

In a real Dines anemometer, the bottom of the float is not dp&ingontains a constriction, shown in
Fig. 15. For convenience, we call this constriction the Binkoke. We have not been able to discover
any literature on this feature, and so the reasons for ilsision in the design are unclear. However,
it will clearly have a damping effect on the relative motiaofsthe float and the liquid, and was the
motivation for the inclusion of the damping with time-scalein Egs. (3) and (5).

Figure 16 presents plots summarising the response of thelrtwdinusoidal forcing of various fre-
guencies, withrs = 0. It is clear that the out-of-phase resonance is weaker timmtphase, with these
settings, as is physically reasonable. Borges (1968) aaduaboratory experiments with a pressure-
tube anemometer float chamber, in which sinusoidal pre$stoimg was applied. He presented a graph
showing the amplitude and phase of the float response, nepedchere as Fig. 17. Clearly, this figure is
in good agreement with panels b and d of Fig. 16. Note that@&o(968) presented results for several
different mean wind speeds. Variation in the mean wind spéethges the mean mass of trapped air
co, and hence the resonant frequencigsandws. The results of Borges suggest that the magnitude
of the out-of-phase resonance is wind-speed dependergistam with this sensitivity teg, but full
investigation of this phenomenon in the model awaits furiineestigation.

3. Discussion

A simplified model of the Dines anemometer has been develd@dtion of the linearised equations
reveal two fundamental frequencies, corresponding tdlagons in which the water and float are either
exactly in or exactly out of phase. The former oscillatiors Hze lower frequency. Numerical solutions
reveal that the linear solution well captures the domineequencies, and that the numerical solutions
contain additionally a rich array of harmonics and intenmamics of the linear frequencies. Nonlinearity
in the out-of-phase oscillation leads to a positive biashie iInean measurement (overspeeding), the
magnitude of which depends on the amplitude of the osa@ltatiUnder certain circumstances, a third
oscillation, of much lower frequency, can occur and is egldb a regular transfer of energy between the
in-phase and out-of-phase oscillations.

Numerical solutions of the forced damped equations reVvedlresonances can occur at one or both
of the linear frequencies, depending on the precise cirtames. The amplitude of these resonances
can be greater than that suggested through the calibrajiatiens by the amplitude of the forcing. That
is, the magnitude of gusts at these resonant frequenciesmayerestimated. The model is capable,
with some tuning of the unknown parameters, of at least &kly reproducing the results of previous
laboratory investigations that reported these resonances

In this context, it is interesting to note the analysis oftdtesquency at Australian observing sites by
Cechet and Sanabria (2010). They studied sites with lomgrdedoth pre- and post- the period during
which the Australian Bureau of Meteorology was replacingd3i anemographs with cup anemometers
at such sites. Cechet and Sanabria (2010) show that stratg)\gare much more prevalent in the Dines
anemometer era than in the cup anemometer era. The resenaribe Dines float chamber, identified
here, seems to be a likely explanation for the greater medgustiness in the Dines era.

This is a preliminary report of work in progress. Colleagaethe Cyclone Testing Station at James
Cook University are currently undertaking laboratory amitifimeasurements on some remaining Dines
anemometers owned by the Bureau of Meteorology. These measnots will be used to calibrate an
improved version of the model described herein. The maimavgment planned is to remove the sim-
plifications to the float geometry. The final, calibrated, rmometer model will be coupled to a model
that produces synthetic turbulent wind time series, tonafiarther investigation of the record gusts in
Tropical Cyclones Tracy, Vance, and possibly others.

Several earlier studies (e.g. Sanuki 1952) have noted aesenin the system, without analysing the
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float dynamics as here. Some of these studies note that thearg@sfrequency depends on the length
and diameter of the tubing from the pitot-tube head (e.gd@adl935; Borges 1968). The explanation
for this phenomenon has been though to be some form of resemathe tubing, but another possibility

is that variations in the tubing correspond to variationghi@ mass of the trapped air, which would
change the resonant frequencies by changing the effegiiregsconstant. It is hoped that the laboratory
measurements, in conjunction with the improved model, aviwer this question.

Finally, it is hoped that the model will reach a degree of siemilitude such that it can be used to
determine whether or not the record gust measurements eré&avopical Cyclones Tracy and Vance
were affected by resonances in the float system. Answeriagjtlestion is critical to making informed
use of these measurements for purposes including risksassasand engineering design.
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