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1. INTRODUCTION 
 

A tropical cyclone can be considered in an ideal-
ized sense as an autonomous dynamical system. 
Although it is possible to simulate tropical cyclones 
in numeric models quite accurately, only little is 
known about their dynamical system characteristics. 
These characteristics are important in order to find 
out how often tropical cyclones appear and which 
intensity they may reach under different climate 
conditions. Emanuel and Nolan (2004) hypothesized 
that tropical cyclones can be understood as a stable 
branch occurring after a subcritical saddle node 
bifurcation at a certain sea surface temperature. It 
remains, however, unclear why such a bifurcation 
should occur and what physical processes are re-
sponsible for this. Our aim is to gain more under-
standing of the dynamical system tropical cyclone 
by using a hierarchy of models. In this contribution 
we start with a highly simplified low order model that 
is lucid enough to grasp its dynamics. It is found that 
the model indeed reproduces the subcritical bifurca-
tion hypothesized by Emanuel and Nolan (2004). 
 
2. MODEL FORMULATION 

 
The model is based on the assumption of an ax-

isymmetric vortex and is formulated in cylindrical 
coordinates. The tropical cyclone is divided into 
three regions above the boundary layer: i) eye, ii) 
eyewall and iii) outer region (see Fig. 1). The eye is 
presumed to be at rest with a fixed outer radius. An 
angular momentum surface forms the boundary 
between eyewall and outer region. At lower tropo-
spheric levels within the Ekman layer it is located at 
the radius of maximum winds (RMW). Idealized 
axisymmetric model simulations reveal that the 
angular momentum at the RMW remains roughly 
constant during tropical cyclogenesis (Frisius 2006). 
For the model formulation it is useful to introduce 
the so-called potential radius: 

 

fmfvrrR /2/22 =+= ,             (1) 

 
where r denotes the physical radius, v the tangential 
velocity, f the Coriolis parameter and m the angular 
momentum density. We may interpret the model as 
a box-model since the boundaries between the 
three regions are fixed in potential radius space. 
 

2.1 THE BOUNDARY LAYER FLOW 
 

The dynamical equations are subject to the hy-
drostatic and the Boussinesq approximations. The 
latter leads to non-divergence of the radial-axial 
flow, i.e.: 

                                                                   

Figure 1: Sketch of the low-order tropical cyclone model.  
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where u is the radial velocity, w the vertical velocity 
and z the height. Because of non-divergence we 
can introduce a mass-stream function ψ having the 
following properties: 
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where ρb denotes the uniform density in the bound-
ary layer. 

The boundary layer is of a constant height Hb. 
We adopt the simple balanced boundary model of 
Schubert and Hack (1983) in which a simplified 
aerodynamic drag law as a function of the balanced 
tangential wind at the boundary layer top (z=Hb) is 
assumed. By using this closure and vertical integra-
tion of the continuity equation (2) we obtain the 
vertical velocity wb at z=Hb. A comparison to equa-
tion (3) leads to the following expression for the 
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mass stream function at the top of the boundary 
layer: 
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where CD is the surface drag coefficient and ζ the 
absolute vorticity. The index b symbolizes evalua-
tion at z=Hb .We are aware of the limitations of this 
simple balanced boundary layer model (see Smith 
and Montgomery 2008) but think it is appropriate in 
the context of a low order model. A more accurate 
closure by incorporation of radial wind in the drag 
law will be considered in the near future. 
 
2.2 THE EYEWALL 
 

Within the eyewall we assume validity of the 
gradient wind balance, saturated pseudoadiabatic 
ascent and angular momentum conservation. These 
conditions allow for application of the thermal wind 
balance equation derived by Emanuel (1986) which 
relates specific saturation entropy s* to angular 
momentum density m: 
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where T denotes the temperature. Note that the 
saturation entropy s* is only a function of angular 
momentum m. In Eq. (5), the radius r as well as the 
temperature T, are considered as a function of po-
tential radius R and height z. This equation is evalu-
ated at the outer eyewall boundary where the poten-
tial radius takes the value R=R2. The radial gradient 
of s* is approximated by a finite difference expres-
sion 
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where si* and sa* are the mean saturation entropies 
of the eyewall region and the ambient region, re-
spectively. As a model parameter, ∆R represents 
the potential radial distance between both regions. 
We approximate that temperature decreases verti-
cally with a constant lapse rate Γ. So we obtain at 
R=R2: 
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The index 2 indicates evaluation at the outer 

eyewall boundary and r2(z) denotes the physical 
radius of the angular momentum surface at R=R2. 
Eq. (7) prescribes the shape of the angular momen-
tum surface at the outer eyewall boundary. How-
ever, this equation has two unknowns, namely r2 
and rb2. For a closure we assume that the mass M 
enveloped by this angular momentum surface is 
conserved. Using the simplifying assumption that 

density ρ is a constant (Boussinesq approximation) 
the mass M as a function of G2 and rb2 becomes2 
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With this relation we can determine the physical 
radius rb2 and tangential wind speed vb2 at the outer 
eyewall boundary by the following equations: 
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2.3 THE AMBIENT REGION 
 

Pseudoadiabatic ascent with angular momentum 
conservation does not take place in the ambient 
region, which might be partially sub-saturated. The 
mean specific entropy sa is attributed to this region 
which is smaller than its saturation value sa*. These 
values are treated as constants. We intend to in-
clude prognostic equations for these entropies in a 
refined model version. For the present low order 
model we only need to calculate the boundary layer 
mass flux from the ambient region into the eyewall 
region. By Eq. (4) it does not only depend upon 
tangential wind vb2 and physical radius rb2 but also 
on absolute vorticity ζb2. To determine ζb2 a wind 
profile in the vicinity of rb2 must be known. We as-
sume the profile to be in the shape of 
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where the exponent β takes a value between 0.5 
and 1. Consequently, the absolute vorticity ζb2 at the 
outer eyewall boundary becomes 
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This expression can be substituted in Eq. (4) to 

determine the mass transport into the eyewall re-
gion. The mass transport turns out to be sensitive to 
changes in β. A theoretically determined value by 
Emanuel (1986) becomes β=0.542. For such a 
small value, however, the radial inflow to the eye-
wall region is too weak compared to simulations 
with more complex models. A maximum value of 
β=1 on the other hand results in an unrealistically 

                                                 
2 Please note that the coarse assumption of a constant 
density does not have a large impact on the tangential 
wind vb, as detected by Frisius (2005). Furthermore, the 
relation rb2

2 = (GH)-1 is almost satisfied for a fully devel-
oped tropical cyclone so that the assumptions of mass 
conservation and constant density are irrelevant in this 
regime. 
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high radial wind even larger than the tangential 
wind.  

 
2.4 THE THERMODYNAMIC EQUATIONS 

 
The low order model is based upon thermody-

namic variables. All needed hydrodynamic variables 
can be deduced diagnostically from Eqs. (7), (9), 
(10), (12) and (4). First, a prognostic equation for 
saturation entropy of the eyewall si* is needed. It is 
changed by the mass flux from the boundary layer 
and diabatic processes like radiation or turbulent 
mixing. The mass flux results from (4) evaluated at 
r=rb2. The mass of the eyewall region itself is given 
by: 
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and is treated as a constant. The diabatic pro-
cesses are parameterized with a linear relaxation to 
a reference state that is set to zero by convention. 
Furthermore, we assume saturation so that we can 
equate entropy with saturation entropy. Then, we 
obtain the following prognostic equation 
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where sbi is the specific entropy of the boundary 
layer beneath the eyewall and τE the time scale for 
damping by diabatic cooling processes.  

Further equations for specific entropy of the 
boundary layer are needed. To calculate their ten-
dencies, the mass of the boundary layer beneath 
the eyewall must be known. It is given by 
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and may change in the course of the development 
due to a change in rb2. The specific entropy is al-
tered by: surface heat fluxes, lateral inflow and 
diabatic cooling. These are applied by the following 
equation 
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where sba denotes the mean specific boundary layer 
entropy beneath the ambient region, CH the surface 
transfer coefficient for entropy and sO the specific 
entropy at the ocean surface. The factor ½ is intro-
duced to account for the decrease in wind speed 
from vb2 to a smaller value towards the centre of the 
storm.  

The specific boundary layer entropy sba beneath 
the ambient region is altered by surface heat fluxes, 
diabatic cooling and downwelling of low-entropy air 
from the free atmosphere above the boundary layer. 
Therefore, the prognostic equation for sba takes the 
form 
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where Mba=πρb(rba
2-R2

2)Hb is a characteristic bound-
ary layer mass. The radius rba can be interpreted as 
the outer radius of the ambient boundary layer and 
determines the strength of the entrainment of the 
overlying air, which possesses a relatively low spe-
cific entropy sa.  

Finally, we must determine the specific entropy 
sO at the sea surface since it changes with time due 
to its dependence on surface pressure ps. We use 
the approximated expression 
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where Ts denotes the sea surface temperature and 
qv the specific humidity. The index ref symbolizes 
that the quantity is a constant reference quantity 
and the asterisk denotes that the moisture variable 
is considered at saturation. The reference entropy 
sref coincides with the boundary layer entropy of the 
undisturbed environment. Here, the temperature is 
identical to the sea surface temperature Ts (SST) 
and the relative humidity takes the value href. There-
fore, we obtain  
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We assume gradient wind balance to calculate 

the surface pressure ps. Hence 
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where Rd is the specific gas constant. A radial inte-
gration to infinity would lead to a diverging integral 
when the tangential wind takes a profile of the 
shape described by Eq. (11). Therefore, the integra-
tion is only applied to a finite radius ra where the 
surface pressure coincides with the reference value. 
By integration of Eq. (20) we obtain 
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The surface pressure can be used to evaluate the 
entropy sO at the radius rb2 where Eqs. (16) and (17) 
are evaluated. 

Note that the convective-radiative equilibrium 
state is neutral to convective instability. Conse-
quently, the entropy values are relaxed to zero by 
the damping terms in Eqs. (14), (16) and (17).  For 
consistency the specific saturation entropy sa* of the 
ambient region is set to zero. The actual entropy sa 
however, is smaller than sa* due to sub-saturation. It 
is given by the formula 
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where the index a denotes that the quantity is 
evaluated in the ambient region at a characteristic 
pressure level above the boundary layer. The tem-
perature Ta is determined by a moist-adiabatic par-
cel displacement to the pressure level pa where 
saturation of the parcel is assumed. 
 
2.4 THE DYNAMICAL SYSTEM 
 

The low order model takes the form of a dy-
namical system with three autonomous ordinary 
differential equations for the three unknowns si*, sbi 
and sba. The equations are given by 
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In these equations the mass stream function 
ψb2, the tangential velocity vb2 and the specific en-
tropy at the sea surface sO  can be written as a func-
tion of si* by consideration of Eqs. (4), (10), (12) 
and (21). This is advantageous for the calculation of 
equilibria since we can derive a single equation for 
the equilibrium values of si*. 

The system dynamics depend on a number of 
model parameters. These are M, Mi, ra, rba, rb1, τE, 
CH, CD, H, Hb, f, R2, ∆R, ρ,  ρb, Γ, Ts, ha, pa, href, pref  
and β. 

 
3. MODEL RESULTS 
 

As a standard parameter set of our model ex-
periments we use the following values: 

 
ra=rba=400km, R2=300km, ∆R=30km, rb1=10km, 
Hb=2km, H=10km, ρ=0.5kg/m3, ρb=1.1kg/m3, 
CH=CD=0.003, τE=18h, f=0.5×10-4s-4, Γ=0.0065K/m, 
ha=70%, href=70%, pa=750hPa, pref=1000hPa  and 
β=0.875. 

 
Simulations are based on this set, unless stated 

otherwise. The mass M coincides with that of the 
state at rest, i.e.: 

. 2
2 HRM bπρ=                            (24) 

 
First, equilibria are determined by an iterative 

procedure. The output of the standard simulation 
with gradual change in sea surface temperature 
(SST) shows three equilibria. The first one is asso-
ciated with an atmosphere at rest, the second one 
with a low pressure system of small intensity and 
the third one with a tropical cyclone. Conducting a 
stability analysis by which eigenvalues from the 
respective Jacobi matrix are numerically deter-
mined, we detect that the equilibria of an atmos-
phere at rest and of a tropical cyclone are stable 
while the intermediate equilibrium is unstable. Fig-

ure 2 displays the maximum tangential wind of 
these equilibria as a function of SST for various 
values of the profile parameter β . Obviously, the 
upper two equilibria arise after a subcritical bifurca-
tion at a SST close to 5°C. The intensity of the trop i-
cal cyclone increases with SST as expected while 
that of the unstable solution decreases. There is 
also an increase of tropical cyclone intensity with β. 
This result stems from an intensification of the 
boundary layer inflow due to a decline in vorticity 
(see Eqs. (4) and (12)). For β=0.875 an inflection 
point arises in the tropical cyclone branch. This is 
related to a cusp catastrophe to be discussed be-
low. 
 

 

 
Figure 2: Bifurcation diagram of maximum tangential wind 
as a function of SST for different β values.  
 

 
Figure 3: Time development of maximum tangential wind 
started near the unstable equilibrium at different SSTs 
(26OC, 28OC and 30OC) for β=0.54 (dark-blue lines) and 
β=0.875 (purple lines). 
 

The repulsing effect of the unstable intermediate 
equilibrium leads to a threshold for cyclogenesis. It 
can be anticipated that tropical cyclogenesis only 
occurs in the model in cases where the initial inten-
sity exceeds the one of the unstable equilibrium. 
This can be seen in Figure 3, which shows the time 
development of maximum tangential wind for two 
initial conditions near the repulsing equilibrium and 
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at different SSTs observable in tropical regions and 
two different β values, one of which is very close to 
that proposed by Emanuel (1986). It becomes evi-
dent that the unstable equilibrium defines a thresh-
old and leads to a finite amplitude nature of tropical 
cyclogenesis in the model. This result is consistent 
with the observed fact that not all tropical depres-
sions transform into tropical cyclones. Furthermore, 
the results show that the amplitude threshold de-
creases with increasing temperature. 

The equilibria are also sensitive to parameters 
determining the entrainment of low-entropy air in the 
ambient region. Equilibrium solutions for a SST of 
28oC as a function of relative humidity ha and outer 
radius rba are displayed in Fig. 4. It shows that two 
additional equilibria arise at low relative humidity 
and small outer radii due to a cusp catastrophe that 
occurs for intermediate values of both parameters. 
The lower one of the two additional equilibria forms 
another stable solution that can be associated with 
a tropical depression. Therefore, tropical cyclogene-
sis is very unlikely in this regime. The cusp catas-
trophe is less pronounced at smaller β  (Fig. 4B) 
since reducing β  results in a weaker radial inflow. 

 

 
 
Figure 4: Equilibrium solutions for maximum tangential 
wind as a function of relative humidity ha and outer bound-
ary layer radius rba for: (A) β=0.875 and (B) β=0.54. 
 

The entrainment effect also affects the depend-
ence of equilibrium solutions on SST. This is dis-
played in Fig. 5 showing the equilibria as a function 
of SST and relative humidity ha. It becomes evident 
that relative humidity exerts a strong impact on the 
equilibria at an outer radius of 400km and β=0.875 
(Fig. 5A). Obviously, the four equilibria occur for 

SSTs typical of tropical oceans and a relative hu-
midity between 60% and 70%. Therefore, tropical 
cyclogenesis becomes impossible for smaller rela-
tive humidity in this model regime. Instead, non-
developing tropical depressions may form. Further-
more, the cusp catastrophe is related to a SST 
threshold for development in a certain relative hu-
midity range. The SST profile along a relative hu-
midity of 63% indeed displays the bifurcation lead-
ing to the four equilibria at a SST of 27oC. If this 
bifurcation is relevant to the observed SST thresh-
old for tropical cyclogenesis remains unclear and 
still needs further investigation. 

 

 
 
Figure 5: Equilibrium solutions for maximum tangential 
wind as a function of SST and relative humidity ha for: (A) 
β=0.875 and (B) β=0.54. 
 
4. CONCLUSIONS 
 

The three region low order model of a tropical 
cyclone displays bifurcation characteristics in 
agreement with Emanuel and Nolan (2004). The 
equilibria are formed by one unstable and two stable 
branches. Two of them arise after a saddle node 
bifurcation above a critical threshold temperature. 
The repulsive property of the unstable equilibrium 
explains why some initial model depressions de-
velop and others do not. Furthermore, it was found 
that relative humidity in the ambient region has an 
important qualitative impact on the system dynam-
ics. Within a certain relative humidity range depend-
ing on β, two additional equilibria arise by a cusp 
catastrophe. These form a large obstruction for 
tropical cyclone formation and can be explained by 
the entrainment of low-entropy air into the subcloud 
boundary layer. Previous studies also point to the 
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importance of mid-tropospheric moisture content for 
tropical cyclogenesis in reality (e.g. DeMaria et al. 
2001). Moreover, our results are consistent with 
findings by Emanuel (1989, 1995) based on a more 
complex but still simplified model. A similar effect by 
low-entropy air import has been found in complex 
non-hydrostatic tropical cyclone models by Frisius 
and Hasselbeck (2009). They related the existence 
of downdrafts to latent cooling. 

The dynamical system characteristics of the pre-
sent model depend crucially on the existence of 
damping terms, which we have not specified so far. 
They can be associated with radiative cooling and 
turbulent and convective exchange in radial and 
vertical direction. An investigation of the role of 
these various processes can only be carried out 
using a more complex model. Therefore, we intend 
to perform a bifurcation analysis with the non-
hydrostatic axisymmetric model HURMOD (for de-
tails see Frisius and Hasselbeck, 2009). In this 
model it is possible to detect steady state solutions 
when latent cooling processes are ignored. Identify-
ing maximum wind speed of such a solution as a 
function of SST exhibits a curve similar to the upper 
stable branch displayed in Figure 2 (not shown). 

With the dynamical system approach we also 
expect a better understanding of maximum potential 
intensity (MPI) of tropical cyclones. In the low order 
model many parameters influence the intensity and 
it is not obvious that existing MPI theories are con-
sistent with the model we present here. Therefore, 
more detailed investigations with the low order 
model as well as with more complex models will be 
carried out in the future to gain more insight in MPI.  
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