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1. Introduction 

Landfalling hurricanes can pose deadly threats 
to many lives and cause loss of billions of dollars. 
Numerical prediction of the hurricane track has 
improved greatly in recent years but the 
improvement to hurricane intensity forecasting has 
been limited (Houze et al. 2007). Radar is one of 
the most effective observation platforms to provide 
essential information on hurricane structure at high 
temporal and spatial resolutions. When 
assimilated into high-resolution numerical models, 
radar observations can help to create more 
accurate initial conditions and lead to improved the 
intensity forecasts (e.g., Zhang et al. 2009; Zhao 
and Xue 2009).      1    

Among advanced data assimilation methods, 
the ensemble Kalman filter (EnKF) employs 
ensemble forecasts to estimate flow-dependent 
background error covariance. Its simple 
formulation and easy implementation compared to 
four-dimensional variational data assimilation 
method, allow it to enjoy popularity within the 
research community. It was first proposed by 
Evensen (1994) and has bred an array of variants 
since then. As one of these variants, the serial 
ensemble square root filter (Whitaker and Hamill 
2002, EnSRF) is chosen to assimilate radar 
observations in this study. 

The specific case in this study, Hurricane Ike 
(2008), started as a tropical disturbance near 
Cape Verde and developed into a category 4 
hurricane during its strongest stage. It made 
landfall in Galveston, Texas at 07:00 UTC 13 
September as a category 2 hurricane. Before and 
after Ike’s landfall in the U.S., it caused 32 billion 
dollars of damage and 112 deaths in the U.S., 
making it the third costliest hurricane in U.S. 
history. This study investigates the effect of 
assimilating radar reflectivity and radial velocity 
data from coastal WSR-88D radars using EnKF on 
the analysis and forecast of Ike.  
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2. Prediction Model and EnKF Configurations 
 

The Advanced Regional Prediction System 
(ARPS, Xue et al. 2004) is used in this study as 
the prediction model. A 515x515x53 grid with a 
horizontal resolution of 4 km defines the whole 
physical domain. Mean vertical grid spacing is 625 
m with a vertical grid stretching scheme having a 
grid spacing of 50 m at the surface. The Lin 
microphysical scheme is used along with the 1.5 
TKE-based sub-grid scale turbulence and PBL 
parameterizations. Details on these physics 
options can be found in Xue et al. (2001; 2003) 
Coastal WSR-88D radars at Houston-Gavelston, 
Texas (KHGX) and Lake Charles, Louisiana 
(KLCH) provide the coverage for Ike when it 
approached to the east Texas coast. Reflectivity 
(Z) and radial velocity (Vr) data from these two 
radars are assimilated with observation errors 
specified as 2 dBZ and 1 , respectively. The 
Vr from Level-II data is further manually quality-
controlled with the NCAR SOLO software to 
ensure correct velocity dealising. 

The baseline control forecast without radar 
data assimilation (NoDA) is run from 0600 UTC 13 
September, initialized with NCEP GFS analysis. In 
all other experiments with radar data assimilation, 
Gaussian random perturbations smoothed to have 
100 km horizontal correlation scales are added in 
the whole domain to initialize the 32-member 
ensemble at 2200 UTC 12 September. Six-hour-
long ensemble forecasts were made from these 
perturbed initial conditions to allow evolved 
background error covariance to develop. At 0400 
UTC 13 September, another set of perturbations 
with a smaller horizontal de-correlation scale of 12 
km is added to the forecast fields in the observed 
precipitation regions only to introduce storm-scale 
perturbations.  

The first set of experiments in which 10-
minute-long assimilation cycles are employed, Vr 
alone, Z alone and both Vr and Z are assimilated, 
respectively, in expereiments named ExpVr, ExpZ 
and ExpAll. In these experiments, The first EnKF 
analysis of radar data occurs at 0410 UTC, and 
the assimilation cycles end at 0600 UTC 13 
September. Two additional experiments, named 
Exp30Min and Exp60Min, are performed which 



has the same assimilation window length but only 
assimilate Vr and Z data every 30 and 60 minutes, 
respectively. At the end of the assimilation window, 
at 0600 UTC, 18-hour-long deterministic forecast 
and an ensemble of forecasts are performed until 
0000 UTC 14 September. To reduce sampling 
error caused by the small ensemble, a prior 
multiplicative covariance inflation of 5% and 
posterior additive error are used. A covariance 
localization to limit the spatial impact of the 
observations has cutoff radii of 12 km in the 
horizontal and 4 km in the vertical. The inflation 
and location parameters were chosen based on a 
number of sensitivity experiments. 

 
3. Spread, innovation and increment 

The EnKF relies on a sufficiently accurate 
estimate of the background error covariance to 
update the state variables. Due to sampling error 
and the lack of explicit representation of model, 
the forecast ensemble tend to be underdispersive.  
Maintaining adequate ensemble spread is 
necessary to prevent filter divergence. An 
examination of the spread of the state variables in 
the precipitation region during the analysis cycles 
of ExpAll (Fig. 1) reveals that for the horizontal 
wind components and pressure, the largest spread 
reduction by the EnKF analysis occurs in the first 
two cycles, suggesting more observation impact 
during those cycles. Despite the gradual reduction 
in the forecast spread in the subsequent cycles, 
the variances of the state variables remain at a 
reasonable level, which was helped by 
multiplicative and additive inflation.  

The observation innovations, or the rms 
difference between observations and the state 
projected to the observations, denoted as y-H(x), 
measure how well the model state fit the 
observations. The root-mean-square (rms 
hereafter) innovations of ExpAll averaged in 
precipitation region are shown in Fig. 2  for  the 
background  forecasts  and  analyses. With respect 
to both radars, the rms innovations of both Z and 
Vr have the largest reduction in the first two 
assimilation cycles. After 10 to 20 minutes of 
forecast and analysis, the innovation reductions 
remain and continue until the end of the analysis 
cycles. At the end, the rms innovations of Vr and Z 
are 2 to 4  and 5 dBZ, respectively, which are 
much smaller than the initial values of about 10 

 and 20 dBZ, respectively. This says that 
both the forecast and analysis states are 

significantly improved, in terms of the fit to 
observations, by the EnKF data assimilation. 

To better understand the behavior of radar 
data analysis, the increments of horizontal wind 
components in the first and last analysis cycles 
are plotted in Fig. 3. It is found that during the first 
analysis at 0410 UTC, the horizontal wind 
increments appear to systematically enhance the 
hurricane vortex, with the increment having a well-
organized structure of cyclonic rotation (Fig. 3a). 
At the end of the analysis cycles, the wind 
increments are much less organized, indicating 
that most of the corrections now corresponding to 
storm-scale structures at the sub-vortex scale (Fig. 
3b). The error in the overall vortex of the 
background forecast has been significantly 
reduced by this time. 

    

4. Impact on the analysis and deterministic 
forecast 
 

4.1 Impact on structure 

The composite reflectivity and horizontal wind 
vectors at the 3 km height from NoDA, ExpVr, 
ExpZ and ExpAll are presented in Fig. 4, together 
with the observed composite reflectivity (OBS). 
The stronger and tighter inner cores in the final 
analyses are identified with all radar data 
assimilation experiments, compared that in the 
GFS analysis at 0600 UTC. The reflectivity field in 
ExpVr shows a broader and stronger rainband 
than observations (Fig. 4c). There is no reflectivity 
in the GFS analysis. ExpAll and ExpZ have similar 
rainband structures and are closer to the 
observations than ExpVr (Fig. 4d-e). This 
difference is also reflected in rms innovations of Z 
at this time (not shown), where for both radars, Z 
rms innovation is about 15 dBZ in ExpVr and only 
about 5 dBZ in ExpAll and ExpZ. 

In the 6-hour forecast, the center of Ike is over 
the land north of Houston. Generally, all 
experiments with radar data assimilation display a 
more tightly wrapped rainband than NoDA. NoDA 
also has a spiral rainband on the north-west of the 
vortex center, which is too strong compared with 
the observation (Fig. 4f-j). 

During 6 additional hours of forecast, the 
rainband in Ike moves further inland and an axis-
asymmetric structure is seen on Fig. 4k. Two 
major precipitation regions covering eastern Texas 
developed in the north-west and south-east 
quadrants around the vortex center. A clear-air 



hole without precipitation is visible in the vortex 
center in NoDA (Fig. 4l). With the radar data 
assimilated, the clear-air hole diminishes or 
disappears, and the precipitation patterns are 
closer to the observations (Fig. 4m-o). Amid the 
radar data assimilation experiments, ExpZ has a 
broader precipitation region in the south-east part 
and a tighter inner core, more similar to the 
observations (Fig. 4n). 

At the final forecast time of 0000 UTC 14 
September, most of the precipitation is out of 
Texas. The interaction with the cold front system 
to the north and the moisture transport from the 
Gulf lead to rainfall in Oklahoma and Arkansas 
and a more axis-asymmetric structure (Fig. 4p). 
The clear-air hole in the vortex center is still 
identifiable in NoDA (Fig. 4q). The rainbands in 
experiments with radar data are still more tightly 
wrapped. Like the observations, the hurricane 
eyes in ExpZ and ExpAll are filled with 
precipitation, and precipitation patterns in these 
two experiments are the closest to the 
observations (Fig. 4s and t). 

               

4.2 Intensity and track 

The minimum sea level pressure (MSLP) 
every 3 hours during the 18 hours of forecast from 
all experiments are plotted in Fig. 5b, along with 
the best track MSLP from the National Hurricane 
Center. All experiments with radar data exhibit 
solid improvement over NoDA during the first 12 
hours for intensity forecast. The analyzed MSLPs 
of 955 mb in ExpVr and ExpAll at 0600 UTC are 
significantly lower than the 975 mb of NoDA,  
although still somewhat higher than the best track 
value of 951 mb. Assimilation of Z alone leads to a 
mild improvement of 9 mb over NoDA at 0600 
UTC, resulting in a weaker vortex than 
assimilating Vr or Vr plus Z. The intensity of NoDA 
is too weak and does not change dramatically 
during the first 12 hours of forecast while the best 
track hurricane keeps weakening until 2100 UTC. 
ExpVr and ExpAll both capture the pressure rise at 
similar rate as the best track data before 1500 
UTC. Between 1500 to 2100 UTC, the best track 
data show faster weakening than earlier, which is 
not reflected in any of the radar data assimilation 
experiments. The prediction model error could 
have contributed to this discrepancy, in addition to 
possible initial condition error. 

The predicted tracks from all experiments are 
plotted in Fig. 5a, along with the best track. Even 
with a quite accurate initial position of only 7 km 
track error in the GFS analysis at 0600 UTC 13 
September, NoDA takes a west-most path in the 
18-hour forecast. The track error increases with 
the forecast time and reaches 80 km at 0000 UTC 
14 September (Fig. 5c). With radar data 
assimilation, the track errors at 0600 UTC are all 
larger than NoDA. One problem related to the 
larger track error at the initial time is identified. The 
initial track of the deterministic forecast is 
determined by finding the MSLP center in the 
mean field of the 32 member ensemble. After 
averaging the members, the mean field exhibits an 
elongated vortex owing to the hurricane position 
spread in the ensemble members. This creates 
some uncertainty with the vortex center estimation. 
An average of the tracks among all individual 
members provides a better result with an initial 
track error reduction of 10 km for ExpAll (Fig. 9a 
and c). All predicted tracks in the data assimilation 
experiments are closer to the best track than in 
NoDA, with the mean track errors in all being less 
than 20 km. Although ExpZ has a larger mean 
track error of 18 km compared to ExpVr and 
ExpAll, it is encouraging to see that assimilating Z 
alone still results in 56% improvement in track 
forecasting on average over NoDA. 
              

4.3  Precipitation 

Flooding caused by Ike was one of the major 
culprits of deaths and economy loss, highlighting 
the importance of precipitation forecast. Fig. 6 
shows the 18-hour accumulated precipitation for 
all experiments along with the Stage IV 
precipitation data. The observations show that the 
maximum accumulated rainfall is positioned 
around Huntsville and Conroe, Texas, north of 
Houston (Fig. 6a). NoDA fails to predict this strong 
rainfall region completely (Fig. 6b). Assimilation of 
radar data helps to capture this intense 
precipitation area in the three data assimilation 
experiments although the strength and area 
coverage are under-predicted (Fig. 6c-e). For the 
lighter or stratiform precipitation, it is not easy to 
tell which experiment has a better prediction. 

To quantify the precipitation forecast skills, 
equitable threat scores (ETS hereafter) for 3-



hourly accumulated precipitation are calculated 
and plotted for all experiments in Fig. 7. A 
threshold of 30 mm is chosen to present 
convective rainfall. In the first 6 hours of forecast, 
all experiments with radar data have higher ETS 
scores than NoDA. From 1200 UTC to 1800 UTC, 
the score is still higher in ExpZ while those of 
ExpAll and ExpVr are close to that of NoDA. There 
are increases in ETS scores for ExpAll and ExpVr 
from 1800 to 2100 UTC, which needs further 
examination. At the end of forecast, all 
experiments have their scores below 0.1, partly 
due to the shrunken area of convective 
precipitation at this time; in this situation, small 
position errors could lead to very low scores. 

The ETS of 18-hour accumulated precipitation 
is also calculated (Fig. 8) for four thresholds 
ranging from 30 mm to 120 mm. It is noted that for 
all the thresholds, radar data assimilation helps to 
improve the quantative precipitation forecast. The 
larger the threshold is, the stronger the relative 
improvement is, implying more importance in 
improving convective precipitation forecast. For 
the 120 mm threshold, the relative improvements 
of three radar data assimilation experiments over 
NoDA are around 300%.         

 
5. Ensemble forecast 

The EnKF provides an ensemble of analyses 
which can be used to initialize an ensemble of 
forecasts. Thirty two ensemble forecasts are 
therefore carried out from the 0600 UTC analyses 
of ExpAll. The intensities, tracks and ETS scores 
of the ensemble forecasts are plotted in Fig. 9. 
The results of the deterministic forecast starting 
from the ensemble mean analysis and the mean of 
ensemble forecasts are also shown for 
comparison. Because Ike is in a weakening stage 
during this forecast period, the spread of the 
ensemble forecasts in intensity did not increase 
noticeably with time (Fig. 9b). It is also found in 
other studies that the intensity error growth of a 
decaying hurricane system is not as strong as an 
intensifying one and the ensemble spread tends to 
decrease with time (see Fig. 12. of Zhang et al. 
2009). The mean of ensemble MSLPs is similar 
with that of the deterministic forecast.  

An increase in uncertainty is observed in the 
ensemble track forecasts (Fig. 9a). The variance 
of the center position is increased at the end of 
forecast. This trend is also reflected in the 
predicted track error. It should be noted that the 
calculation of track error spread could conceal the 
actual large track spread among the members 
where two widely separated vortex center could 
have similar track errors. As mentioned before, the 
average position of ensemble members is closer 
to the best track than the single ensemble mean at 
0600 UTC. The predicted track of the ensemble 
average also has certain improvement over the 
deterministic forecast at 1500 and 1800 UTC (Fig. 
9c), suggesting the potential benefit of using 
ensemble mean for hurricane track prediction. 

ETS scores are also calculated for the 
ensemble forecasts (Fig. 10). At most forecast 
times, most of the ensemble members have higher 
scores than NoDA. Similar to track error, we 
should be very cautious when using ETS scores to 
estimate the precipitation forecast uncertainty as 
two highly different precipitation forecasts can 
have very similar ETS scores. 

            
6. Sensitivity of assimilation interval 

The data assimilation interval is changed to 
test the assimilation frequency’s impact on 
intensity, track and precipitation forecast (Fig. 11). 
The intensity forecasts indicate the 60-minute 
interval is not enough to predict a vortex as strong 
as 10-minure and 30-minute in terms of MSLP (Fig. 
11b). The latter two have similar intensity 
forecasts while MSLP in 10-minute interval is 
closer to the best track during the first 3 hour 
forecast. All the three intervals show similar track 
forecasts while 30-minute interval has the smallest 
mean track error (Fig. 11a and c). The ETS scores 
show all of the three intervals share the close 
precipitation forecast (not shown). 

        
7. Summary 

The impact of radar data assimilation with 
EnKF on the analysis and forecast of Hurricane 
Ike’s intensity, track and precipitation is 
investigated in this study. Radial velocity and 
reflectivity bservations from two coastal radars are 
assimilated within a 2 hour long window. With the 
prior multiplicative and posterior additive inflations, 
the ensemble spread is well maintained and large 
impacts from the observations are obtained on the 
analyzed wind and microphysical fields. 



The assimilation of radar observations is found 
to significantly improve the structure, intensity, 
track and precipitation forecasts of Ike. 
Assimilating Vr alone leads to a much larger 
improvement to the intensity forecast than Z alone. 
For track forecast, Vr alone produces a slightly 
better forecast than Z alone. Z alone results in an 
precipitation forecast improvement that lasted 
longer than using Vr alone. Assimilating both Vr 
and Z has similar results as assimilating Vr alone, 
indicating dominant role of Vr data when analyzed 
using EnKF. 

Ensemble forecasts starting from the EnKF 
analyses exhibit uncertainty growth in track, but 
not much growth in intensity spread. The latter is 
most likely due to the weakening of the hurricane 
itself during the forecast period. The experiment 
with 30-minute assimilation cycles shows similar 
results as the 10-minute cycles, while assimilating 
radar data at 60-minute intervals fails to obtain a 
strong enough vortex in both analysis and forecast. 
Additional experiments using single radars have 
also been conducted and will be reported 
elsewhere. 
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Fig. 1. Time evolution of ensemble forecast and analysis spread during the EnKF analysis cycles, 
spatially averaged in precipitation region (Z > 10 dBZ) for u, v, cloud water mixing ratio (qc) and pressure, 
from experiment ExpAll. Those for the background forecast are in red and those for analysis are in blue. 

 

 

Fig. 2. Time evolution of innovation rms during the analysis cycles, averaged in precipitation region (Z > 
10 dBZ) for Vr and Z of KHGX and KLCH, from experiment ExpAll. Those for the background forecast are 
in red and those for analysis are in blue. 

 



 

 

Fig. 3. Horizontal wind component increment at z=3km for (a) the first analysis and (b) the last analysis of 
ExpAll. 
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Fig. 4. Composite reflectivity (color shaded) and wind vectors at 3 km height analyzed and predicted by 
experiments (b, g, l and q) NoDA, (c, h, m and r) ExpZ, (d, i, n and s) ExpVr, and (e, j, o, t) ExpAll, as 
compared with (a, f, k and p) corresponding observations. The times shown are 0600, 1200, 1800 UTC, 
September 13 and 0000 UTC September 14, 2008.  
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Fig. 5. The predicted (a) track, (b) intensity and (c) track error for Hurricane Ike, from 0600 UTC 
September 13 to 0000 UTC September 14. 
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Fig. 6. 18-hour accumulated precipitation forecast from 0600 UTC September 13 to 0000 UTC September 
14 for (a) observations, (b) NoDA, (c) ExpVr, (d) ExpZ and (e) ExpAll. 

 

 

Fig. 7. ETS of 3-hour accumulated precipitation at the 30 mm threshold for NoDA, ExpVr, ExpZ and 
ExpAll. 
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Fig. 8. ETS of 18-hour accumulated precipitation 0600 UTC September 13 to 0000 UTC September 14 at 
the threshold of 30 mm, 60 mm, 90 mm and 120 mm for NoDA, ExpVr, ExpZ and ExpAll. 
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Fig. 10. The ensemble ETS of 3-hour accumulated precipitation for ExpAll (red), against NoDA (brown) 
and the deterministic forecast (blue). 

  



 

Fig. 11. The predicted (a) track, (b) minimum SLP and (c) track error for NoDA (red), Exp30Min (green), 
Exp60Min (blue) and ExpAll (also Exp10Min; magenta), compared with the best track (black).  
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