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ABSTRACT 
 
The gamma family of probability densities, which includes the exponential family as a special case, has recently been 
used to model raindrop size data. The traditional approach of using method of moments to estimate the gamma 
distribution parameters, however, is known to be biased and can have substantial errors. Methods superior to the 
method of moments approach include maximum likelihood. In particular, maximum likelihood estimates have been 
shown to outperform method of moments estimators both in the case in which the full range of drop sizes are 
observed as well as the case in which small drop sizes fail to be observed because of the inability of disdrometers to 
record observations below a threshold. The foregoing comments concern the situation in which drop sizes are 
measured on a continuous scale. In this work we consider drop sizes from gamma distributions which are classified 
into broad size bins, as would be the case with data obtained from many disdrometers; we do also allow for the 
possibility of drop sizes below a threshold or above another threshold not being observed. Maximum likelihood 
performance in this case is investigated through simulation of sampling from gamma distributions with known 
parameters. In particular, we compare the performance of the maximum likelihood estimates with those of method of 
moments and a recently developed weighted least squares procedure. The simulation process, which relies in part on 
numerical optimization as the maximum likelihood estimates are not expressible in closed-form, is conducted using 
the R statistical package (http://www.r-project.org/). Slight modifications to this code allow parameter estimation with 
experimental data. 
 
1. INTRODUCTION 

When fitting raindrop size data by a gamma 
distribution the maximum likelihood and L-moments 
procedures have been shown to outperform commonly 
used method of moments procedures in terms of both 
bias and variability (Kliche et al. 2008; Johnson et al. 
2010). In Kliche et al. (2008) it was assumed that 
raindrop size was accurately observed over the entire 
range of values. In Johnson et al. (2010) this was 
relaxed to allow for values below some threshold to not 
be observed, as would be the case for many 
disdrometers. In this paper we likewise allow for data 
truncation but turn to the situation where raindrop size is 
only categorized as falling into one of several bins. That 
is, rather than having precise raindrop sizes we only 
have counts of the numbers of drops falling into several 
contiguous bins as would also be the case for many 
disdrometers. In the two papers referenced both the 
maximum likelihood and L-moments procedures of 
parameter estimation were investigated. Here, of the 
two procedures, we only look at modifying maximum 
likelihood estimation. Suitable modifications to the 
L-moments technique have not been identified.

 
 
Given such coarsely-binned disdrometer data it 

would seem natural to stick with parameter estimation 
schemes shown to work with continuous data by simply 
replacing bin counts with like numbers of bin midpoints. 
Somewhat surprisingly, the maximum likelihood (and 
L-moments) estimates of the gamma parameters 
seriously degrade by doing so. The major technical 
result of this paper shows how to correctly implement 
maximum likelihood in the coarsely-binned, truncated 
data situation. 

We compare the performance of our maximum 
likelihood method to two other estimation procedures 
through simulation of volume samples from known 
gamma raindrop distributions. One estimation procedure 
is a method of moments approach using bin midpoints. 
The other is the weighted least squares approach of 
Brawn and Upton (2008).  

The R software package (R Development Core 
Team 2009) was used to perform the simulations. Since 
the maximum likelihood and method of moments 
procedures do not give estimates in simple, closed form, 
some brief implementation details on how R was used 
are given. 
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2. MODELING RAINDROP SIZE 

We model raindrop size using the gamma drop size 
distribution (DSD) of, for example, Chandrasekar and 
Bringi (1987), namely 
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Here, the parameters are the total drop number 
concentration, NT, the shape parameter µ (µ > -1) and 
the rate parameter λ λ > ( 0).  Also, Γ is the gamma 
function. This form can be recognized as the product of 
the mean total number concentration, NT, and the 
gamma probability density function (PDF) of drop size. 
When µ = 0, the gamma DSD reduces to the 
exponential DSD. 

If instrumentation only allows drop sizes above a 
threshold, call it Dmin, and below another threshold, call 
it Dmax, to be observed, then the truncated drop size 
distribution for the drops observed is given by 
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for < <min max,D D D  where 

TN  is the number 
concentration for the truncated part of the DSD and  

1

0
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is the incomplete gamma function. To see how (2) 
follows from (1) note, in general, that if f(x) is the 
untruncated density, then = −

max min( ) ( ) / [ ( ) ( )]f x f x F D F D   
is the truncated density where F(x) = P(X ≤ x) is the 
cumulative distribution function. 

Note, by the way, that once estimates 
µ λmin max

ˆ ˆ ˆ, , ˆ,D D  of the parameters µ λmin max, , ,D D  have 
been determined,  
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is an estimate of the proportion, p, of missing 
(unobserved) drops. Also note that 
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giving us a way of estimating TN  once TN  has been 
estimated. 
 
3. MAXIMUM LIKELIHOOD FOR COARSE 

DISDROMETER DATA 

Suppose that the disdrometer used is equipped to 
record counts of drops in the k bins 

− +1 2 2 3 1 1[ , ], [ , ], , [ , ], [ , ]k k k ka a a a a a a a  with the ia  specified 

as known values. We may estimate minD  as the left end 
point of the smallest bin which contains at least one 
observation. Likewise, we may estimate maxD  as the 
right end point of the largest bin which contains at least 
one observation. These estimates, call them minD̂  and 

max
ˆ ,D  respectively, are reasonable if the bins are not 

“too large”. Suppose in  is the number of drops in bin 
+1[ , ]i ia a  and let 

=
= ∑ 1

.k
ii

n n   

The likelihood function in this case is multinomial. In 
particular, using the above notation the likelihood 
function, L, is 
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is an estimate of the chance of an observation falling in 
the bin +1[ , ]i ia a . To maximize L over µ  and λ  it is 
equivalent to maximize 
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Note that the above summation is performed only over 
those indices i for which > 0.in  

To numerically optimize (5) we use the R statistical 
package (R Development Core Team 2009, 
http://www.r-project.org/). In this package the desired 
maximization is performed using the optim function. This 
numerical nonlinear optimization routine, based on the 
algorithm of Nelder and Mead (1965), uses ordinary 
method of moments estimates (see (7)) as the starting 
point for estimating µ  and .λ  Further details may be 
found in the Appendix. 

By way of reminder, once we have the estimates 
µ λmin max

ˆ ˆ ˆ, , ˆ,D D  we may estimate NT  from an estimate of 


TN  using (3) and (4). A natural estimate of TN  here is 
simply the number of drops observed.  
 
4. A METHOD OF MOMENTS PROCEDURE 

Various combinations of moments based on 
samples from the DSDs have commonly been used by 
atmospheric scientists to estimate the parameters of the 
underlying population distributions. For example, in the 
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case of the gamma distribution these include the zeroth, 
3rd, and 6th moments (Szyrmer et al. 2005); the 2nd, 3rd, 
and 4th moments (Smith 2003; Kliche et al. 2008); the 
2nd, 4th

, and 6th moments (Ulbrich and Atlas 1998; 
Vivekanandan et al. 2004); and the 3rd, 4th

, and 6th 
moments (Ulbrich 1983; Kozu and Nakamura 1991; and 
Tokay and Short 1996).  

The bias is stronger and the errors greater when 
higher order moments are used in calculating the 
parameters (Kliche et al. 2008; Smith et al. 2009). 
Consequently, we consider the use of the 1st, 2nd and 3rd 
moments in this section. 
 
4.1  Continuous Measurements, Observations Not 
Truncated 

The general form for the moments Mi of the 
untruncated gamma DSD function (1) can be written as 
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where i is a non-negative integer and, for a sample 
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Setting E(Mi) = Mi for i equal to 1,2,3 gives three 
equations in the three unknowns µ, λ, NT. In particular, 
we obtain 
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Solving these gives the method of moments estimates 
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4.2  Continuous Measurements, Observations Truncated 

For the truncated gamma DSD (2) we have the following generalization of (6) 
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Given we have estimates of Dmin and Dmax (e.g. the smallest and largest observations seen, respectively, in this case) 
the three parameters µ λ,  and TN  remain to be estimated. As before we set E(Mi) = Mi for i equal to 1,2,3 to estimate 

µ λ,  and  .TN  In particular, we can solve these three equations by successfully minimizing the function 
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Once again, this optimization problem may be 

accomplished by using the optim function in the R 
software package (R Development Core Team 2009) 
with further details in the Appendix. As before, method 
of moments estimates for the untruncated case (recall 
(7)) were used as a starting point. 

For further details on method of moments for 
truncated observations from a gamma, see 
Vivekanandan et al. (2004). 

 
4.3  Discrete Measurements, Observations 
Truncated 

A natural approach here – and the one used in the 
simulation below, is to use the method immediately 
above with the diameters in the moment calculations 
replaced by the bin midpoints. That is, when computing 
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M D  use bin midpoints for the values of .kD  As 

discussed in the section on maximum likelihood 
estimation we may estimate minD  as the left end point of 
the smallest bin which contains at least one observation 
and maxD  as the right end point of the largest bin which 
contains at least one observation.  
 
5. BRAWN AND UPTON METHOD FOR COARSE 

DISDROMETER DATA 

In this section the parameter estimation method of 
Brawn and Upton (2008) is briefly outlined. We are 
content, however, to present their method for volume 
raindrop samples rather than surface samples. See 
Brawn and Upton (2008) for the modifications to the 
presentation below for surface samples. 

Rather than observing individual drop sizes, they 
assume that frequency counts of drops within known 
bins are observed. As before let jn  be the observed 
count or frequency of drops in bin j. Additionally, let jD  
be the midpoint of bin j, and jw  be the width of bin j. 
Consider the untruncated gamma DSD given by (1), 
namely 
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The frequency count nj of drops in bin j should be 
approximately equal to the DSD at the midpoint of that 
bin multiplied by the width of that bin. That is, it should 
be the case that  
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Loosely speaking, we wish to choose parameters to 

make the left- and right-hand sides of (9) agree as well 
as possible. Brawn and Upton (2008) first rewrite the 

right-hand side of (9) in terms of just 0N  and .λ  To 
write µ  on the right-hand side of (9) in terms of λ  use 
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Upton (2008) recommend k be taken to be 3.5 (the 
results in Smith et al. (2009) suggest that the ratio of 
neighboring moments of a gamma distribution can be 
estimated with relatively small bias and error). 
Replacing the approximation for µ  in (10) into (9) and 
performing some algebra then gives 
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Note in equation (11) that, in practice, jb  and jc  are 
readily calculated from the data (once k is selected) 
while φ  and λ  are unknown.  

The parameters φ  and λ  are then chosen to solve 
the weighted least squares problem 
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(One subtlety here: Note that φ ≡ 0ln( )N  depends on 
both µ and λ so that φ and λ are functionally related. 
The minimization performed here, however, allows φ 
and λ  to be independently and freely varied.) From the 
least squares literature (see, for example, Draper and 
Smith 1981, equation (2.11.10)) it follows that 
 

( ) ( ) ( )
( ) ( )

λ
−

=
−

∑ ∑ ∑
∑ ∑

2
2

ˆ j j j j j j jj j j

j j j jj j

n n b c n c n b

n n b n b
 

 
and 



 
 

 

 
( ) ( ) ( ) ( )

( ) ( )
φ

−
=

−

∑ ∑ ∑ ∑
∑ ∑

2

2
2

ˆ j j j j j j j j jj j j j

j j j jj j

n c n b n b c n b

n n b n b
 

 
where 

≡ ∑ j
j

n n  

(in the summations only sum out over those j for which 
jn  is strictly greater than zero). From this 0N  may be 

estimated by using φ ≡ 0ln( ),N  i.e. φ=0
ˆ ˆexp[ ].N  Using 

(7) note that µ may then be estimated as 
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6. SIMULATION PROCEDURE 

Comparisons of parameter-fitting procedures to 
evaluate biases and errors are readily done through 
computer simulation of repetitive sampling from known 
raindrop populations. The simulated gamma DSDs are 
represented as the product between the total drop 
number concentration, NT, assumed to follow a Poisson 
distribution, and the corresponding probability density 
function (PDF) of drop size, as in (1). (We used the 
rpois and rgamma functions in the R package to 
generate these random observations.) In our 
simulations we took the mean number of drops in the 
samples to be the numerical value of = − (1 )T TN p N  
(recall (3) and (4)), and organized the results by the 
value of  .TN  This approach can be interpreted as 
representing an instrument with a sample volume of 
1 m3 (independent of the drop size), or a sample volume 
of α m3 with a mean drop concentration of α/ .TN  

We used about 1,000,000 drops for each simulation 
run. For example, we drew 20,000 samples with TN = 

50 and 1,000 samples with TN  = 1,000.   

Four distinct gamma populations were generated. 
Reasoning that the truncation issue would be immaterial 
unless a significant portion of the drops were truncated, 
we used shape parameters µ = 2 and µ = 5  along with 
rate parameters λ chosen to give both a 10% chance 
and a 25% chance of  drop sizes being smaller than 
0.313 mm (the lower threshold for the Joss-Waldvogel 
disdrometer, chosen for purposes of illustration). A 
summary, listing the particular rate parameter values, is 
given in Table 1. The right-hand column of Table 1 
shows the rainfall rate that would be associated with a 
mean sample size of TN  = 1,000 drops.  

For each selection of population parameters and 
sample size we recorded the following numerical 
summary measures of estimates: the mean, the median 
and the normalized root mean squared error. The 
normalized root mean squared error of the estimates 
θ θ θ1 2
ˆ ˆ ˆ, , , n  of θ  is defined to be the square root of  

θ θ
=

−∑ 2
1

ˆ[( / 1] .n
ii

n  Boxplots were also generated 
during the simulation to compare estimates graphically; 
only selected boxplots are included in this paper. 

In our simulation we use the Joss-Waldvogel 
disdrometer (JWD) bins stated in the Appendix of Brawn 
and Upton (2008): =1 2[ , ] [0.313 mm,0.405 mm],a a  

=2 3[ , ] [0.405 mm,0.505 mm],a a …, =20 21[ , ]a a  = [5.148 

mm, 5.60 mm]. From this, note the midpoints jD  and 
widths wj  easily follow (e.g. D1 = (0.313 mm + 0.405 
mm)/2 = 0.359 mm, w1 = 0.405 mm – 0.313 mm = 0.092 
mm, etc.). While 5.60 mm is used as the upper 
truncation point in our simulations only rarely, if ever, 
were observations above this cutoff generated and, 
consequently, then truncated. For the parameter 
combination µ = 2 and λ = 3.52 mm-1 the chance of an 
observation above 5.60 mm is about 2.5 x 10-6

. 
Likewise, for µ = 2 and λ = 5.52 mm-1 this chance is 
about 2.0 x 10-10

,  for µ = 5 and λ = 10.07 mm-1 this 
chance is about 1.1 x 10-16

, and for µ = 5 and λ = 13.48 
mm-1 this chance is essentially zero. 

 
 

 

Chance of a drop 
below 0.313 mm 

Shape Parameter, µ  Rate Parameter, λ  
(mm-1) 

 

Mean 
µ λ+(( 1) / )  

(mm) 

Standard 
Deviation 

µ λ+( 1 / )
(mm) 

Rainfall 
Rate 

(mm/h) 
= 1,000TN  

10% 
2 3.52 0.85 0.49 16.30 

5 10.07 0.60 0.24 2.45 

25% 
2 5.52 0.54 0.31 3.06 

5 13.48 0.45 0.18 0.94 

Table 1. Parameter values used in the simulations. 
The mean and standard deviation values refer to the PDF given in (1). 

 
 



 
 

 

While we use the size bins associated with a 
surface-based disdrometer for purposes of illustration, 
the simulated samples are volume samples. This is 
done for simplicity as well as to facilitate comparisons 
with our earlier work. The results of simulations of 
surface-sampling instruments will differ in detail, but that 
will have no effect on the major conclusions.  

 
7. SIMULATION RESULTS 

We begin by comparing estimates obtained using 
the maximum likelihood method accounting for the 
coarse binning of data (MLB) with those obtained from 
the method of moments method previously described 
using bin midpoints (MM123).  

We generally find less bias using the MLB 
parameter estimates. Along these lines, note in Tables 
2-5 that the mean and median MLB estimates, as a 
general rule, are closer to the true parameter values 
than those for the MM123 estimates. Based on this 
limited experimentation, the two methods behave most 
similarly in terms of average performance when dealing 
with large sample sizes from narrow distributions. Note, 
in particular, the simulations associated with Tables 4 
and 5 for which the population standard deviations are 
smallest (0.24 mm and 0.18 mm, respectively) among 
the four parameter combinations examined. In these 
situations, when the sample size is 500 or more the 
mean and median estimates of the MLB and MM123 
methods are quite similar (see also Figure 3). With 
smaller sample sizes (see, as an example, Figure 1) or 
wider distributions (see, as an example, Figure 2), 
however, the average performance of the MLB 
estimates is substantially better than that of MM123.  

Turning to the variability of the MLB and MM123 
estimates we again note fairly similar performance in the 
case of larger sample sizes from narrow gamma 
distributions. The distributions of the MLB and MM123 
estimates in Figure 3, for example, show nearly identical 
interquartile ranges; the only apparent difference is a 
greater possibility of substantially underestimating both 

parameters when using MM123 estimates, as 
evidenced by the larger number of small-valued outliers. 
Similar performance in the case of large sample sizes 
from narrow distributions aside, it is notable that for all 
parameter combinations and sample sizes used in the 
simulation study we always obtained a smaller 
normalized root mean squared error using MLB 
estimates. 

We now compare MLB estimates with the estimates 
of Brawn and Upton (BU). Putting aside average 
performance for a moment, the variability of these two 
methods is quite similar across the various parameter 
combinations and sample sizes used in the simulation. 
Note, for example, that the interquartile ranges and 
overall spread of the two estimates are quite similar in 
Figures 1-3. Unfortunately, the simulations indicate that 
the BU estimates do not always converge to the true 
population values as the sample size increases. In 
particular, in Tables 2-5 examine the values of the 
estimate means and medians for a mean sample size of 
1,000. In all but the case of the broadest distribution 
considered (µ = 2 and λ = 3.52 mm-1) we see that the 
BU estimates tend to seriously underestimate the true 
parameter values. From Figure 3 we see that over 75% 
of both estimates are below the true population values. 
While it is not entirely clear when this bias for large 
samples occurs, comparing Table 1 to Tables 2, 3 and 4 
perhaps suggests that the magnitude of the bias 
increases with the amount of truncation. 

Somewhat surprisingly, the maximum likelihood 
method developed for accurately recorded, but possibly 
truncated, drop size data (described in Johnson et al. 
2010) using bin midpoints (ML in the figures) performed 
poorly. While we do not give numerical summaries of 
performance for these ML estimates, note from Figures 
1-3 that this “continuous data” maximum likelihood 
procedure does not fare nearly as well as the MLB 
procedure. The continuous procedure on bin midpoints 
tends to seriously underestimate both parameter values.  

 
 
 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

50 2.26; 2.17; 0.57 2.54; 2.45; 0.60 2.84; 2.75; 0.86 

100 2.15; 2.09; 0.39 2.28; 2.24; 0.42 2.51; 2.45; 0.61 

500 2.02; 2.02; 0.16 2.02; 2.03; 0.18 2.11; 2.10; 0.25 

1000 2.02; 2.01; 0.12 2.01; 2.01; 0.13 2.07; 2.07; 0.17 
 

Table 2a. Performance of µ  estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 2, λ = 3.52 mm-1  

(10% chance of missing drops with truncation = 0.313 mm). 
 

 



 
 

 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

50 3.83; 3.68; 0.34 4.10; 3.97; 0.39 4.33; 4.18; 0.49 

100 3.69; 3.61; 0.24 3.82; 3.76; 0.27 4.00; 3.90; 0.34 

500 3.55; 3.53; 0.10 3.54; 3.53; 0.11 3.61; 3.60; 0.13 

1000 3.54; 3.53; 0.07 3.52; 3.52; 0.08 3.57; 3.56; 0.09 
 

Table 2b. Performance of λ estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 2, λ = 3.52 mm-1  

(10% chance of missing drops with truncation = 0.313 mm). 
 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

50 2.44; 2.24; 0.86 2.73; 2.55; 0.88 3.20; 3.03; 1.16 

100 2.21; 2.14; 0.57 2.30; 2.21; 0.58 2.87; 2.70; 0.86 

500 2.06; 2.05; 0.25 1.96; 1.96; 0.26 2.35; 2.36; 0.34 

1000 2.02; 2.02; 0.17 1.90; 1.91; 0.19 2.12; 2.13; 0.23 

Table 3a. Performance of µ  estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 2, λ = 5.52 mm-1  

(25% chance of missing drops with truncation = 0.313 mm). 

 
 

 MLB BU MM123 

TN  Mean; Median;  
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

50 6.23; 5.85; 0.46 6.54; 6.22; 0.47 7.14; 6.81; 0.59 

100 5.86; 5.69; 0.29 5.91; 5.75; 0.30 6.64; 6.36; 0.42 

500 5.61; 5.59; 0.12 5.42; 5.42; 0.13 5.92; 5.92; 0.16 

1000 5.56; 5.55; 0.08 5.34; 5.36; 0.10 5.63; 5.66; 0.11 

Table 3b. Performance of λ estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 2, λ = 5.52 mm-1  

(25% chance of missing drops with truncation = 0.313 mm). 
 



 
 

 

 
 MLB BU MM123 

TN  Mean; Median;  
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

Mean; Median;  
Normalized RMSE 

50 5.58; 5.34; 0.47 5.53; 5.33; 0.44 6.08; 5.93; 0.54 

100 5.31; 5.21; 0.32 5.16; 5.07; 0.31 5.78; 5.79; 0.40 

500 5.05; 5.03; 0.14 4.83; 4.82; 0.14 5.04; 5.03; 0.16 

1000 5.03; 5.01; 0.10 4.80; 4.80; 0.10 5.02; 4.98; 0.13 

Table 4a. Performance of µ  estimates as a function of sample size for MLB, 
BU and MM123 estimation procedures in the case µ  = 5, λ = 10.07 mm-1  

(10% chance of missing drops with truncation = 0.313 mm). 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

50 11.03; 10.55; 0.36 10.87; 10.48; 0.34 11.62; 11.26; 0.40 

100 10.58; 10.36; 0.24 10.28; 10.12; 0.23 11.12; 11.05; 0.29 

500 10.16; 10.12; 0.10 9.75; 9.72; 0.11 10.06; 10.01; 0.12 

1000 10.10; 10.08; 0.07 9.68; 9.66; 0.08 10.01; 9.96; 0.09 

Table 4b. Performance of λ estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 5, λ = 10.07 mm-1  

(10% chance of missing drops with truncation = 0.313 mm). 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

50 5.89; 5.46; 0.70 5.31; 4.91; 0.64 6.64; 6.09; 0.81 

100 5.40; 5.20; 0.46 4.67; 4.52; 0.45 5.93; 5.50; 0.59 

500 5.10; 5.04; 0.19 4.33; 4.31; 0.24 5.22; 5.19; 0.23 

1000 5.05; 5.03; 0.14 4.30; 4.28; 0.20 5.05; 5.03; 0.16 

Table 5a. Performance of µ  estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 5, λ = 13.48 mm-1  

(25% chance of missing drops with truncation = 0.313 mm). 

 MLB BU MM123 

TN  Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

Mean; Median; 
Normalized RMSE 

50 15.24; 14.27; 0.48 13.91; 12.99; 0.43 16.40; 15.23; 0.55 

100 14.27; 13.82; 0.31 12.69; 12.31; 0.30 15.03; 14.24; 0.39 

500 13.68; 13.54; 0.13 12.00; 11.93; 0.17 13.75; 13.67; 0.15 

1000 13.57; 13.50; 0.09 11.93; 11.88; 0.15 13.45; 13.44; 0.10 

Table 5b. Performance of λ estimates as a function of sample size for MLB,  
BU and MM123 estimation procedures in the case µ  = 5, λ = 13.48 mm-1  

(25% chance of missing drops with truncation = 0.313 mm). 



 
 

 

 

 
 
 
 
 
 

Figure 1a. Comparative boxplots of estimates of µ  in the case µ λ −= = =

12, 5.52 mm , 100.TN  
There is a 25% chance of drop size being below 0.313 in this case. 

Figure 1b. Comparative boxplots of estimates of λ  in the case µ λ −= = =

12, 5.52 mm , 100.TN  
There is a 25% chance of drop size being below 0.313 in this case. 

 



 
 

 

 
Figure 2a. Comparative boxplots of estimates of µ  in the case µ λ −= = =

12, 3.52 mm , 1000.TN  
There is a 10% chance of drop size being below 0.313 in this case. 

 

Figure 2b. Comparative boxplots of estimates of λ  in the case µ λ −= = =

12, 3.52 mm , 1000.TN  
There is a 10% chance of drop size being below 0.313 in this case. 

 



 
 

 

 
Figure 3a. Comparative boxplots of estimates of µ  in the case µ λ −= = =

15, 13.48 mm , 1000.TN  
There is a 25% chance of drop size being below 0.313 in this case. 

 
Figure 3b. Comparative boxplots of estimates of λ  in the case µ λ −= = =

15, 13.48 mm , 1000.TN  
There is a 25% chance of drop size being below 0.313 in this case. 

 



 

 

8. CONCLUSIONS 

In general, the modified maximum likelihood 
procedure designed to handle coarsely-binned 
disdrometer data substantially outperforms the method 
of moments procedure in terms of both bias and 
variability. For just some parameter combinations with a 
large enough sample size the method of moments 
procedure using bin midpoints performs as well as the 
maximum likelihood procedure. Consequently, we 
recommend this maximum likelihood procedure be used 
instead of method of moments.  

The maximum likelihood procedure for binned data 
is also superior to the weighted least squares procedure 
of Brawn and Upton (2008). A notable problem with the 
Brawn and Upton (2008) procedure is that parameter 
estimates, on average, do not always converge to the 
true parameter values as sample size increases – the 
shape and rate parameters may be substantially 
underestimated. 

When using disdrometers which record (possibly 
truncated) observations on a continuous scale, the 
maximum likelihood procedure presented by Mallet and 
Barthes (2009) and detailed by Johnson et al. (2010) is 

recommended. Simply substituting bin midpoints into 
this procedure for data from disdrometers that only 
record bin counts is not recommended – there is a 
serious degradation in performance by doing so.  

When using disdrometers which record (over a 
truncated range) bin counts, we recommend the 
maximum likelihood method discussed in this paper be 
used for the estimation of gamma shape and rate 
parameters. When dealing with truncated coarsely-
binned data from surface samples, by the way, if drop 
fall speeds are approximated by a power law 
relationship ∝( ) dv D D  the maximum likelihood 
estimates based on (5) can be used with disdrometer 
data to estimate µ µ≡ + d  and λ.  It is of no particular 
surprise that maximum likelihood should perform well 
here – such estimates are generally known to perform 
well in terms of bias and variability, especially for 
moderate to large sample sizes. See, for example, 
Norden (1972) and Norden (1973) for further details.  
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APPENDIX: R CODE 
 

For the below, when working with experimental data, it is understood that 
 

  +

+ +

=

=
1

1 1

lower smallest value of  with at least one observation in [ , ]
upper largest value of  with at least one observation in [ , ]

i i i

i i i

a a a
a a a  

 
In the Monte Carlo simulation lower = 1a  and upper = +1.ka   
 

Also, the pgamma function, namely 
γ− −= =

Γ Γ∫ 1

0

1 ( , )pgamma( , ) e
( ) ( )

x a t a xx a t dt
a a

 

 
is a standard function in R. 
 
a. Function LNLIKELIHOOD – for use in finding maximum likelihood estimates of ,µ λ  for binned (discrete) data 
from a truncated gamma (see (5)):   
 
lnlikelihood <- function(x){ 
 x1 <- x[1]     # mu 
 x2 <- x[2]     # lambda 
 if ((x1>-1) & (x2>0)) { 
    tmp <- 0.0 
    for (j in 1:numbins)  
        if (n[j]>0)  
           {tmp <- tmp - n[j]*log( (pgamma(x2*bins[j+1],x1+1)-pgamma(x2*bins[j],x1+1))/   
                                                 (pgamma(x2*upper,x1+1)-pgamma(x2*lower,x1+1)) )} 
    return(tmp) 
    } 
 else 
   {return(Inf)} 
} 
 
b. Function MM123 – for use in finding method of moments estimates of , , TNµ λ   for data from a truncated gamma 
(see (8)): 
 
MM123system <- function(x){ 
 x1 <- x[1]     # mu 
 x2 <- x[2]     # lambda 
 x3 <- x[3]     # N 
 if ((x1>-1) & (x2>0)) 
  {return( ( 1.0 - (x3/M1)*((x1+1)/x2)* 
                 (pgamma(upper*x2,x1+2)-pgamma(lower*x2,x1+2))/ 
                 (pgamma(upper*x2,x1+1)-pgamma(lower*x2,x1+1)) )^2 + 
                ( 1.0 - (x3/M2)*((x1+1)/x2)*((x1+2)/x2)* 
                 (pgamma(upper*x2,x1+3)-pgamma(lower*x2,x1+3))/ 
                 (pgamma(upper*x2,x1+1)-pgamma(lower*x2,x1+1)) )^2 + 
                ( 1.0 - (x3/M3)*((x1+1)/x2)*((x1+2)/x2)*((x1+3)/x2)* 
                 (pgamma(upper*x2,x1+4)-pgamma(lower*x2,x1+4))/ 
                 (pgamma(upper*x2,x1+1)-pgamma(lower*x2,x1+1)) )^2) } 
 else 
  {return(Inf)} 
} 
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