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1 Introduction

The growth of ice is an important link in the macrophys-
ical evolution of atmospheric “cold clouds.” Unlike liq-
uid drops, ice crystals can grow to large sizes by vapor
deposition alone, leading to complex crystalline forms.
In fact, the growth of ice depends on crystal shape in
important ways, yet it is impossible to capture the com-
plexity of ice as it grows in nature. As a result, a sim-
plified framework that can capture the essence of crystal
growth is required for theories, and even simpler meth-
ods are needed for numerical cloud models.

In macroscopic cloud evolution, vapor diffusional
growth can have strong influences on crystal mass and
size, even at sizes where collection and sedimentation be-
come important. It is understood that the vapor growth
of ice is a vital link in the chain of cold-cloud evolution,
however, important gaps exist in our knowledge of the
rates and mechanisms involved. Unfortunately, because
cloud microphysical processes are interlinked, uncertain-
ties in the core physics of these processes can directly
lead to large variability in predicted cloud structure and
lifetime (Starr and Cox, 1985a,b; Harrington et al., 1999;
Starr and Co-authors, 2000; Liu et al., 2003; Harrington
et al., 2009). Simplicity is therefore essential in order to
correct these uncertainties and eventually prevent phys-
ical inconsistencies between actual crystal growth, mod-
eled growth, and the evolution of cold clouds.

Modeling the vapor growth of ice is difficult primarily
because of the non-spherical ice particle shapes. The
shapes of ice crystals are best characterized in terms
of their primary and secondary habits. The primary
habit is defined by the aspect ratio, φ = c/a, where c
is the semi-length of the prism face of a hexagonal prism
and a is the semi-length of the basal face. Early labo-
ratory results show that the primary habit depends on
the temperature. These habits oscillate between plate-
like (φ < 1) crystals for T between -1 and -3◦C, and
-10 and -22◦C, and column-like (φ > 1) crystals for T
between -3 and -10◦C and less than -22◦C (e.g. Taka-
hashi et al., 1991; Fukuta and Takahashi, 1999). How-
ever, more recent results suggest that both plates and
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columns can occur at low (< -22◦C) temperatures (e.g.
Libbrecth, 2003; Bailey and Hallett, 2002, 2004), while
some studies suggest that the primary habit at low tem-
peratures is almost always plate-like (Bailey and Hallett,
2009). The secondary habits depend on the vapor den-
sity of the environment. At low vapor densities, labo-
ratory studies suggest that crystals take on more “per-
fect” hexagonal forms like plates and columns. However,
as vapor densities rise and approach liquid saturation,
crystalline forms appear more complex with hollowing
resulting, and dendrites or rosettes appearing (Fukuta
and Takahashi, 1999). Moreover, many in-situ measure-
ments show irregular crystalline shapes occur frequently
in nature (Korolev et al., 1999), such as polycrystals
that have formed on frozen drops. Regardless, care must
be taken when interpreting both laboratory and in-situ
data. Laboratory data provide information in highly
controlled situations unlikely to occur in nature. How-
ever, this ideality is necessary in order to understand the
basic physics of crystal growth. In-situ data provides
only an end-point in a diverse chain of processes, and
hence it is difficult to know with any certainty what en-
vironments to which the resulting measured crystal was
exposed. Nevertheless, in-situ data provide a vital snap-
shot in the evolution of real clouds.

Representing basic crystal shapes in a cloud model
poses severe difficulties. It is impossible to solve, with
any analytical rigor, the diffusion equations for a non-
spherical crystal. However, some progress can be made
by assuming a spheroidal crystal shape as exemplified
in Chen and Lamb (1994). While atmospheric crys-
tals are certainly never spheroids, the spheroidal shape
does allow for an extension of the basic equations for
growth from spheres (radius only) to non-spheres (a and
c dimensions). Spheroids also allow approximation of
the aspect ratio of a large variety of crystalline types,
which is advantageous given that crystals sampled in
clouds are often irregular (e.g. Korolev et al., 1999).
Furthermore, because the capacitance is known analyti-
cally for spheroids, the mass diffusion equations can be
solved exactly. This is beneficial because changes in pri-
mary and secondary habits can be captured to first order
by supplementing the diffusion model with a mass dis-
tribution hypothesis from crystal growth theory which
supplies information regarding how the increased mass
should be distributed over the a and c-axes (Chen and



Lamb, 1994). Using independently-derived laboratory
data, Chen and Lamb (1994) showed that this model
can accurately capture the mass and aspect ratio evo-
lution of individual ice crystals. Note that the Chen
and Lamb (1994) model is a significant departure from
the traditional capacitance model. The model combines
traditional Fickian diffusion with mass distribution from
crystal growth theory, and hence is no longer a capac-
itance model. It is the mass redistribution from crys-
tal growth theory that allows for a freely evolving as-
pect ratio, whereas the pure capacitance model holds
the aspect ratio constant in time (Nelson, 1994). Be-
cause of these physical facts, the model is re-termed the
Fickian-distribution model of ice crystal growth (Sulia
et al., 2010).

The method derived by Chen and Lamb (1994) pro-
vides perhaps the best method to date for parameter-
izing the nonlinear evolution of both crystal mass and
aspect ratio as a function of temperature: Its simplicity
allows for the use in at least one cloud model (Hashino
and Tripoli, 2007, 2008) in addition to providing the ba-
sis of a parameterization of ice habit evolution for bulk
cloud models (Sulia et al., 2010). While simple, Chen
and Lamb (1994) is most accurate near liquid satura-
tion making the model most appropriate for mixed-phase
clouds.

While accurate at liquid saturation, the traditional
Fickian diffusion model fails for ice crystal growth at
low ice supersaturations (e.g. Nelson and Baker, 1996;
Wood et al., 2001). Methods such as Chen and Lamb
(1994) overestimate the mass growth rate because sur-
face kinetic influences on crystal growth are not explicitly
included in the theory. Regardless of saturation state,
molecules in the vapor phase must find an attachment
point on the surface of the ice if the crystal is to grow.
Typically, growth is broken down along the two primary
axes (a and c) associated with perfect hexagonal prisms.
The efficiency of growth along each axis is defined in
terms of a deposition coefficient, αa and αc, which ranges
between zero and one: Zero means that no molecules
are incorporated and the axis does not grow, whereas a
value of one indicates that all molecules that encounter
the surface are incorporated, and so the axis grows at
its maximum rate. Laboratory data on the growth effi-
ciencies range from particle averaged values (e.g. Magee
et al., 2006) to values for each axis (Nelson and Knight,
1998; Libbrecth, 2003); though some of these data do not
agree with each other. Some data indicate that growth
efficiencies are very high (near one) whereas other data
suggest that the deposition coefficient for ice is quite
small (αd ∼ 0.005) at typical cirrus temperatures (T ∼
-50 ◦C) indicating that ice vapor growth can be strongly
limited by surface kinetics (Magee et al., 2006). Unfortu-
nately, no general method exists for the inclusion of the
deposition coefficient in theoretical models of ice crys-
tal growth, though some approximations do exist (e.g.
Gayet et al., 2002; Harrington et al., 2009). Neverthe-
less, the prediction of crystal habit has been shown to
be critical to mixed-phase cloud evolution (e.g. Avramov

and Harrington, 2010) and studies have illustrated the
importance of the deposition coefficient for cirrus evolu-
tion (e.g. Gayet et al., 2002; Khvorostyanov et al., 2006;
Harrington et al., 2009) where dynamic and microphys-
ical processes work in tandem to determine the micro-
and macrophysical evolution of the cloud system.

We provide a method for the inclusion of surface ki-
netics in the Fickian-distribution model of ice crystal
growth. First, we review the basics of surface kinetic
influences by considering spherical growth. We then in-
troduce our new model along with tests of its relevance
for atmospheric conditions.

2 Surface Kinetic Influences
on Spherical Vapor Growth

The effects of surface kinetics appear as modifications to
the diffusion coefficients in the standard vapor growth
equation for an ice sphere:

dm

dt
= 4πCG(T, P, r, αd)si, (1)

where si is the ice supersaturation, C is the capacitance
(which is equal to r for an eqivalent volume sphere),
and the combined diffusion coefficient, G, is defined as
(Pruppacher and Klett, 1997)

G(T, P, r, αd) =

[
RvT

ei(T )D∗
v

+
Ls

K∗
TT

(
Ls

TRv
− 1

)1/2
]−1

(2)
where T is temperature, P is pressure, Rv is the vapor
gas constant, ei is the ice equilibirum vapor pressure, Ls

is the enthalpy of sublimation, and D∗
v and K∗

T are the
kinetically-modified vapor and thermal diffusion coeffi-
cients, respectively. For our analysis, we have assumed
spherical geometry for simplicity and because it is the
method most used in the literature (e.g. Pruppacher and
Klett, 1997). The assumption to use equivalent volume
or density spheres is necessary for it is unclear how to im-
plement the deposition coefficient, αd, into the Fickian-
distribution model.

The corrections for surface kinetic effects for spher-
ical particles are included through modified vapor and
thermal diffusion coefficients via Pruppacher and Klett
(1997)

D∗
v =

Dv

r
r+∆v

+ ld
r

and K∗
T =

KT

r
r+∆T

+ lT
r

(3)

where ∆v and ∆T are the so-called vapor and thermal
jump lengths, respectively, and each is proportional to
the mean free path. The last two variables, ld and lT are
interpreted as kinetic length scales (e.g. Mordy, 1959;
Pruppacher and Klett, 1997) and are defined as,

ld =
4Dv

αdvv
where vv =

(
RvT

8π

)1/2

, (4)
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Figure 1: Density profile as a function of radial distance
from the surface of an ice sphere for T = 268.15K, si
= 5%, and αd = 0.01. The aolid line is the classical
Fickian vapor profile, the dashed line is the vapor profile
for kinetically-limited growth, and the dash-dot line is
the Fickian vapor profile for a drop of size r + ld.

for the vapor kinetic length, and

lT =
4KT

αT ρacpva
where va =

(
RdT

8π

)1/2

(5)

for the thermal kinetic length. vv is the mean speed of
a vapor molecule, and va is the mean speed of an “air”
molecule. As αT is thought to be near one, its impacts
on growth are relatively minor and we do not attempt
to parameterize its influence in this paper.

These length scales prove useful for parameterizing
αd. The form of Eq. 3 suggests that this is the case as
r/ld appears in the modified diffusion coefficient. How-
ever, one may also interpret ld as the length-scale neces-
sary to correct the classical, Fickian, vapor gradient for
the influences of surface kinetics. For instance, Fig. 1
shows the profile of vapor density with distance away
from the surface of an ice sphere. Classical, Fickian, dif-
fusive growth indicates that the surface should be at the
equilibrium value. However, when surface kinetics are
included, vapor uptake at the surface is reduced leading
to a rise in the vapor density near the surface. A simple
analysis shows that when r + ld is used as an effective
size, the vapor flux is identical to that in the kinetically-
limited case. This is shown as a corrected gradient in
Fig. 1. We can therefore assume that ld, which is pro-
portionally dependent on the deposition coefficient, can
be considered the vapor jump length, and may be further
parameterized for non-spherical cases.
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Figure 2: Deposition coefficient changes with local su-
persaturation

3 Surface Kinetic Effects for
Spheroidal Growth

The use of spheroidal particles allows for more general-
ity when describing crystal shapes. Of course, spheroidal
crystals do not occur in nature, however a spheroid al-
lows for the prediction of two crystal lengths, the a and c
axes, unlike a sphere which only allows for the prediction
of the radial dimension. While spheroids are a rough,
first order approximation to the shapes of real crystals,
the ability to predict two axis lengths has the advan-
tage that crystal aspect ratios can be predicted, habits
can evolve naturally, and better predictions of cloud ice
mass are possible since some of the non-linearities in
crystal growth can be captured (e.g. Chen and Lamb,
1994; Sulia et al., 2010). A further advantage of using
spheroidal particles is that predicting an a and c axis
allows the use of laboratory-measured deposition coeffi-
cients for these two axes. Some measurements present
a particle averaged deposition coefficient, which is use-
ful for spherical particles, but many measurements pro-
vide data for growth efficiencies along the a and c axes.
Hence, traditional methods for including the deposition
coefficient for spherical particles cannot easily make use
of these data. Nevertheless, it is possible to modify the
spheroidal growth model of Chen and Lamb (1994) so
that the deposition coefficients for each axis length is
predicted.

3.1 Prediction of Deposition Coeffi-
cients

To predict the deposition coefficient along a particular
axis, we use the parameterization provided by Nelson

3



and Baker (1996) and Lamb and Chen (1995). They
suggest that αd can be calculated in a general way for
both molecular incorporation mechanisms: 2-D nucle-
ation and spiral dislocation growth. According to clas-
sic ice crystal growth theories (Burton et al., 1951), the
molecular incorporation on the ice surface normally is
considered in two ways. The difference comes from the
origin of the steps on the ice surface, whether they result
from two-dimensional (2-D) nucleation or from the emer-
gence of screw dislocations on the growing surface. An
single expression for αd that captures the main physics
of both growth mechanisms is,

αd =

(
Slocal

Scrit

)m

tanh

[(
Scrit

Slocal

)]m
(6)

where m is an adjustable parameter that represents the
growth mechanisms, Slocal is the supersaturation just
above the crystal’s axis, an Scrit is the critical super-
saturation for the initiation of growth along the axis.
The m value is somewhat arbitrary and is adjusted so
that αd matches theory and lab-based knowledge of crys-
tal growth. Spiral dislocations result from a permanent
ledge defect in the crystal face, and so growth occurs at
all supersaturations. As shown in Fig. 2, a value ofm = 1
produces a continual rise in αd with supersaturation, and
matches the theoretical functional dependence of Bur-
ton et al. (1951). In contrast, 2-D nucleation requires a
specific supersaturation over the crystal face (critical su-
persaturation, Scrit) before a two-dimensional ”island”
is formed. An m value of 30 produces a very sharp in-
crease in αd at Scrit, indicating a rapid transition from
nearly zero growth of the crystals axis to growth.

Most laboratory data on crystal growth provide values
of the critical supersaturations for the crystal faces (e.g.
Nelson and Baker, 1996; Libbrecth, 2003), and so depo-
sition coefficients can be predicted for each face (basal
and prism). In our analysis that follows, we make the
assumption that these data can be used to describe the
efficiency of growth of the a and c-axes of a spheroid.
Although this is a first-order assumption, the method is
able to reproduce some of the results of highly accurate
crystal growth models.

3.2 Spheroidal Growth Model

In order to further explore the complexity of the crys-
tal growth and to look at the feedback between the pri-
mary habit and the surface kinetics, we present a self-
consistant theory to calculate the mass growth rate of
spheroidal crystals. This theory is advantageous in many
ways: First, it makes use of the two separate, but inter-
related methods (as we discuss below). Second, diffusion
of vapor toward the particle occurring within a small va-
por jump length of the surface is computed using the tra-
ditional capacitance model for crystal growth. Third, the
effects of surface kinetics are included in a similar fashion
to that for spherical drops. For non-spherical particles
we allow for the prediction of different deposition coef-
ficients for each crystal axis (a and c) depending on the
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“Vapor Jump”

F
c

F
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c

Figure 3: Cartoon depicting surface kinetic modifica-
tions to Chen and Lamb’s (1994) habit evolution model.
The diffusive flow of mass in the a and c directions (Fa

and Fc respectively) is matched with kinetic theory along
the same directions. As in the spherical theory, the
fluxes are reduced by respective deposition coefficients
along each direction leading to a kinetically-modified
rate equation. The deposition coefficients along a and
c (αa and αc, respectively) are predicted using data for
the critical supersaturation along each direction.

vapor flux over each axis based on crystal growth theory
(see Fig. 3 and Sulia et al., 2010). Matching the total
mass flow toward the particle from both theories yields a
modified Fickian-distribution model of spheroidal crystal
growth that is consistent with surface kinetics.

The mathematics behind the theory are rather in-
volved and have been left out for brevity. The main
approach consists in keeping the growth rate equation
the same as Eq. 1 where the capacitance is a function
of the a and c-axis lengths. However, the combined va-
por and thermal diffusion coefficient, G, has a similar
form as Eq. 2 but is revised to include the geometry of
a spheroid and the vapor jump length surrounding the
particle for both crystal faces (Fig. 3). The deposition
coefficents along each axis direction (a and c), αa and αc,
are predicted using laboratory-derived data for the crit-
ical supersaturations, and follow the method described
in Lamb and Chen (1995).

An advantage of this new method is that it is able
to capture the feedback between the primary habit of
the crystal and the deposition coefficient along each axis
direction. Rather than calculating the average flux and
deposition coefficient over the particle as in the spherical
growth model, we are able to predict separate fluxes and
deposition coefficients for both the a and c-axes and re-
late them consistently with the mass distribution hypoth-
esis of Chen and Lamb (1994). This is possible because
the Chen and Lamb (1994) model uses the vapor fluxes
along the a and c axes in its explicit formulation. Con-
sequently, deposition coefficients along these axes can be
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predicted and combined with the vapor fluxes from the
model (see Sulia et al., 2010) using ideas from crystal
growth theory (e.g. Nelson and Baker, 1996) to produce
a model that is more appropriate under low supersatu-
ration conditions which produce weaker growth. In ad-
dition, our method is very flexible. We can use either an
average value of the deposition coefficient for the par-
ticle, something that is often measured in the lab (e.g.
Magee et al., 2006), or we can make use of the observa-
tional data for critical supersaturation on the prism and
basal faces derived through other measurements such as
(Nelson and Baker, 1996) and (Libbrecth, 2003).

As with any model or theory, ours has limitations
that should be borne in mind. First, computing the
diffusion rate to the particle based on the capacitance
model is a limitation. The capacitance model has the
wrong surface boundary condition for faceted crystal
growth: The vapor density over the particle surface is
a constant whereas in faceted growth the fluxes over the
faces are, on average, constant. This feature of the ca-
pacitance model causes the aspect ratio to remain con-
stant during crystal growth. Consequently, the capaci-
tance model breaks down for both faceted growth and
for crystal growth in general (since aspect ratios are not
constant). Nevertheless, the capacitance model can be
made to work well at water saturation if it is modified
so that it accounts for the flux distribution along the
a and c axes using crystal growth theory as is done by
Chen and Lamb (1994). This modification results in a
combined diffusion-crystal growth model (retermed the
Fickian-distribution model by Sulia et al., 2010) that
is more accurate for atmospheric applications than the
pure capacitance model. A second limitation is the use
of spheroids to represent crystals. Of course, real crys-
tals are never spheroids. However, it is important to
keep in mind that an ice growth model that is devel-
oped for atmospheric applications must necessarily be
simple. A spheroid is an improvement over a sphere in
the sense that two axes can be predicted, along with the
aspect ratio of the particle, allowing for the evolution
of primary habits. Moreover, by including a reduced
density for spheroidal growth and sublimation (e.g. Su-
lia et al., 2010), particles other than hexagonal prisms
can be modeled at least to first order. Using a spheroid,
then, allows for the modeling of a larger range of particle
types including irregular crystals.

4 Model Results

To investigate the link between surface kinetic resis-
tance and macroscopic crystal properties, we run our
new model in both a single-particle framework in which
only crystal size changes in time, and a Lagrangian par-
cel model framework. Both models are run over a range
of parameter values under atmospheric conditions. We
begin with single particle simulations and then use these
to understand the Lagrangian parcel model studies that
follow.

0.0001 0.001 0.01 0.1 1 10

Knudsen Number

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d
m

/d
t|

(S
p

h
er

o
id

a
l)

  
/ 

 d
m

/d
t(

C
a
p

a
ci

ta
n

ce
)

α = 1.0

α = 0.1

α = 0.01

α = 0.001

1 µm100 µm

Figure 4: The Knudsen number dependence of the flux
ratio of the spheroidal growth model and the capaci-
tance model, given constant deposition coefficients on
both growth direction and αa = αc = α.

4.1 Single Particle Simulation

To understand the physical essence of including surface
kinetics in ice crystal growth, we examine how individual
particles react to varying environmental parameters, and
their effects on, and feedbacks with, the deposition coeffi-
cients. Current cloud models generally approximate the
rate of mass growth of a crystal ( dm

dt
) via the capacitance

model in which crystals are assumed to be spheres or
simple shapes. These models are also apt to neglect the
treatment of surface kinetics. We improve these methods
by combining the capacitance model and the mass redis-
tribution hypothesis (i.e. the Fickian-distribution model
Chen and Lamb, 1994; Sulia et al., 2010) with the depo-
sition coefficients described above.

It is important to note the level of accuracy demon-
strated by our model in comparison to the detailed
growth model developed by Wood et al. (2001). Their
method is based on solving the Laplace equation on a tri-
angular grid over a hexagonal-shaped ice crystal which
includes predictions of the deposition coefficients over
the crystal faces. Although this detailed model is com-
putationally expensive and is not suitable for implemen-
tation into cloud models, it is a relatively accurate stan-
dard to which we can compare. The comparison is lim-
ited in the sense that only hexagonal prisms are mod-
eled, not other types of atmospheric crystals. In sum,
we compare the instantaneous mass growth of the above
three models: the capacitance model, our spheroidal
growth model, and the detailed hexagonal growth model
of Wood et al. (2001) for the two growth mechanisms
(2-D nucleation and spiral dislocation).
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4.1.1 Knudsen Number Dependence

First, to determine the conditions when the surface ki-
netic effect is important to spherical particles, we use the
dimensionless Knudsen number, Kn. The Knudsen num-
ber is useful for determining whether diffusion or surface
kinetics dominate growth. In our case Kn is the ratio of
the diffusion rate which scales with Dv and the molecular
exchange at the surface which scales with 1

3
rvv, where

Dv is the gas phase diffusion coefficient, vv is the av-
eraged molecular speed and r is the size which is the
particle radius for a sphere. This leads to the classical
relationship,

Kn =
3Dv

rvv
(7)

which is commonly used (Kulmala and Wagner, 2001).
Large Knudsen number ( Kn � 1, small particles) cor-
responds to diffusion limited growth, in which the mass
flux is based on Fick’s law. In this case, the mass growth
rate can be represented by the capacitance model. A
Knudsen number of Kn ∼ 1 means both diffusion and
surface kinetics are important in the vapor transport.
Small Kundsen number ( Kn � 1, large particles) cor-
responds to kinetically limited growth, in which surface
resistance actively limits the vapor uptake by the parti-
cle. For relatively small Kundsen numbers, the diffusive
mass flux should be modified by a correction factor asso-
ciated with the deposition coefficient, as in the spherical
growth model. In Fig. 4, we show the Knudsen number
dependence of the correction factor, where we assume
the particles are spherical so the deposition coefficient
has one value. The magnitude of correction depends on
the deposition coefficient and Kn. For particle size rang-
ing from 1 to 100 µm, the kinetically modified mass flux
deviates significantly from the pure Fickian flux when α
< 0.1. Lab measurements show that the deposition co-
efficient can reach values as low as 0.005 (Magee et al.,
2006).Therefore, it is critical to provide a method to cor-
rect the mass flux from capacitance model for surface
kinetic effects.

4.1.2 Effects of Crystal Shapes

The above discussion is based on spherical particles,
however the shapes of the crystals (Φ = c/a) influence
the growth rate and the surface kinetics as well. Fig. 5
shows the effect of crystal shape on the predicted mass
growth rates for three growth models. Note that the
variation in mass growth rate with aspect ratio is pro-
portional to the crystal capacitance. When crystals are
isometric, the growth rates are at a minimum, while
rapid growth occurs for crystals with extreme shapes.
This change in growth with aspect ratio occurs because
the larger vapor gradient over the sharp crystal edges
provides an efficient sink of vapor molecules. The capac-
itance model over-predicts the mass growth rates by a
large amount when compared to the curves from Wood
et al. (2001) and our spheroidal growth model, and this
is especially true for 2-D nucleation growth. Note that
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the spheroidal model compares well with the detailed
hexagonal growth model for both growth mechanism.
However, compared with the detailed model, our model
results over-predict the mass growth rates for spiral dis-
location growth and for columns with 2-D nucleation
growth. The maximum deviation is about 25%.

The mass growth rates in Fig. 5 uses the predicted
values of α along both a and c axis. Fig. 6 shows the
value of the predict deposition coefficient on both the a
and c axes, using the lab derived critical supersatura-
tion Scrit,a= 0.55%, Scrit,c=0.58% . Spiral growth gives
higher deposition coefficient than 2-D nucleation growth
as expected. Columnar growth produces a deposition
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Figure 7: The effect of changing the supersaturation for isometric crystals, all the mass growth rates all
ratioed to the spiral growth rate . (a) shows the model results from our spherical growth model with the
ambient supersaturation from low value to water saturation. (b) is a zoom in plot for low supersaturation
region of (a) and plot the SGM results (black lines) on top of the detailed model results (Wood et al.,
2001) (red lines). The ambient conditions used here were T = 268.15K, p=500 mbar, the crystal mass
m=8 × 10−10kg, and the spherical crystal radius = 59µm.

coefficient on c axis (αc) that is larger than that on the
a axis (αa). During plate growth, the deposition coeffi-
cient on a axis (αa) exceeds that on the c axis (αc). Note
that the crossing points for αc and αa are not at an as-
pect ratio of one, and this is due to unequal values of
the critical supersaturation along the a and c direction.
In our case, Scrit,a < Scrit,c, the surface resistance on a
axis is less then that on c axis, therefore we have larger
αa for isometric particles.

4.1.3 Ambient Supersaturation Dependence

In this section, we examine the dependence of kinetically
reduced growth on the ambient supersaturation. At liq-
uid saturation, the crystal vapor growth is mainly lim-
ited by gas diffusion and the capacitance model holds in
these conditions. At low supersaturation, the vapor den-
sity of the environment is much lower and only a small
fraction of the vapor molecules impinging on the particle

surface can be incorporated into the ice crystal. There-
fore, surface resistance has to be taken into account. As
we see in Fig. 7, by considering surface processes, the
mass growth rates are reduced for situations in which
the supersaturations are relatively low, from 0 to a few
percent. This is especially true for 2-D nucleation. At
water saturation the SGM results have the trend to ap-
proach to the capacitance model result. It is well known
that large errors occur when surface kinetics through 2-
D nucleation is neglected at low supersaturations, and
this is shown in Fig. 7(b). By comparing our model re-
sults with the detailed hexagonal model of Wood et al.
(2001), we note a similar mass growth ratio trend at low
supersaturation, except we have a smaller ratio of capac-
itance growth rate to spiral growth rate. This means our
spiral growth model over predict the growth rate when
compared to the detailed model, which agrees with what
we show in Fig. 5
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Figure 8: The temperature dependence of ice parti-
cle surface property Scrit,a andScrit,c, regenerated from
Wood et al. (2001). For T > -15 ◦C, our model uses
measurements from Nelson and Knight (1998). For lower
temperatures, those values are from field experiments es-
timated by Wood et al. Note that these values are all
for 2-D nucleation growth mechanism.

4.2 Parcel Model Simulation

To further examine the potential accuracy of our
spheroidal growth method, we implemented it into a La-
grangian parcel model framework and compare these re-
sults with those of the classical capacitance model and
the detailed hexagonal model. The parcel model sim-
ulations follow those conducted by Wood et al. (2001).
Comparing our model to the simulations of Wood et al.
(2001) in a more realistic cloud situation provides a more
robust test of our theory since temperature, pressure,
and supersaturation all vary in time. The simulations
are run for a warmer case (initial T = -13 ◦C) and a
colder case (initial T = -25 ◦C). For each case, we use
the same initial atmospheric parameters (i.e. tempera-
ture, ice supersaturation and vertical velocity) and parti-
cle properties (i.e. particle size, number concentration).
Data for the critical supersaturation over the a and c-
axes are available from laboratory measurements (Nelson
and Knight (1998)) for temperatures 0 to -15 ◦C and de-
rived values from Wood et al. (2001). for temperatures
-15 to -30 ◦C. These are used in our model simulations,
and linear interpolation is used to approximate the crit-
ical supersaturation between data points.

We begin by discussing the warmer cloud case in which
the parcel is lifted over 1200 seconds (Fig. 9). The am-
bient temperature of the parcel decreases rapidly in the
first 200 seconds and this decrease is slowed due to de-
positional warming. This result corresponds with the
total mass growth which is initially slow, therefore less
latent heating occurs. Additionally, these variations are
consistent with the supersaturation evolution. The ice
supersaturation increases due to vertical lifting and par-
cel cooling until the crystals are large enough to become
an effective sink of vapor. The latent heating that oc-
curs through vapor deposition leads to a slower decrease
in temperature at higher altitudes in the cloud. The new

spheroidal growth model compares well to the detailed
hexagonal model in all cases excluding that for 2-D nu-
cleation. In that case, a lower temperature and mass
results but a much higher supersaturation. This shows
that the spheroidal growth model produces greater sur-
face resistance than the hexagonal model in low ice sat-
uration (i.e. 0.5%) conditions.

In the cold case (Fig. 10), the parcel rises at 35 cms−1

with an initial temperature of T=-25◦C, and an initial
ice supersaturation of Si = 25%. A larger initial super-
saturation is used so that the crystals take up the excess
vapor quickly at the start of the simulation and reaches
quasi-equilibrium after approximately 100 seconds. The
latent heating caused by the early rapid growth over-
comes the cooling due to vertical motion which leads to a
temperature increase within the first few minutes. How-
ever, after this time the temperature decreases and con-
tinues to drop with time. The spheroidal growth model
produces trends similar to that of the hexagonal model in
the evolution of temperature, supersaturation, and total
ice mass.

The predicted shape evolution is substantially differ-
ent for each growth model, and this indicates a possi-
ble limitation of our method. In both the warm and
cold cases, the hexagonal model evolves a different as-
pect ratio (Φ) as compared to our spheroidal model for
each growth mechanism. The hexagonal model produces
extreme-shaped plates and columns for 2-D nucleation
growth with Φ values of approximately 0.07 for the warm
case and 7.0 for the cold-case simulation. For the case
of spiral dislocation growth, Φ is approximately 1.0 for
both cases. The aspect ratios predicted by the spheroidal
growth model are not sensitive to the growth mechanism,
and their values are more close to that from capacitance
model. The reason for the differences between the mod-
els is not completely clear, but it appears to be due to the
fact that the hexagonal model allows for the cessation of
growth along a given direction, whereas the spheroidal
growth model always grows crystal in both directions.
Another reason for the differences is that the mass distri-
bution hypotheses used by Wood et al. (2001) and Chen
and Lamb (1994) differ. The hexagonal results of Wood
et al. (2001) uses the hypothesis put forth by Nelson and
Baker (1996), whereas our model uses the hypothesis of
Chen and Lamb (1994). This difference could lead to
contrasting aspect ratio evolution, and hence to varying
crystal mass evolution. We have tested our model by us-
ing Nelson and Baker (1996) hypothesis, and got a better
match with the detailed hexagonal model results for as-
pect ratio evolution. However, it is difficult to determine
the relative accuracy of the hypotheses, as both methods
have the backing of empirical data. As a result, further
laboratory studies are required to critically examine the
growth hypotheses and constrain our numerical model.
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